메뉴 건너뛰기




Volumn 6187 LNCS, Issue , 2010, Pages 482-500

Can shared-neighbor distances defeat the curse of dimensionality?

Author keywords

[No Author keywords available]

Indexed keywords

CURSE OF DIMENSIONALITY; DATA DISTRIBUTION; DATA MINING APPLICATIONS; DATA OBJECTS; DATA SETS; DISTANCE MEASURE; DISTRIBUTED DATA; SIMILARITY MEASURE;

EID: 77955045250     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-13818-8_34     Document Type: Conference Paper
Times cited : (226)

References (37)
  • 1
    • 84947205653 scopus 로고    scopus 로고
    • When is "nearest neighbor" meaningful?
    • Beeri, C., Bruneman, P. (eds.). Springer, Heidelberg, LNCS
    • Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is "nearest neighbor" meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol.1540, pp. 217-235. Springer, Heidelberg (1998)
    • (1998) ICDT 1999 , vol.1540 , pp. 217-235
    • Beyer, K.1    Goldstein, J.2    Ramakrishnan, R.3    Shaft, U.4
  • 2
    • 1542292055 scopus 로고    scopus 로고
    • What is the nearest neighbor in high dimensional spaces?
    • Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: Proc. VLDB (2000)
    • (2000) Proc. VLDB
    • Hinneburg, A.1    Aggarwal, C.C.2    Keim, D.A.3
  • 3
    • 84949479246 scopus 로고    scopus 로고
    • On the surprising behavior of distance metrics in high dimensional space
    • Van Den Bussche, J., Vianu, V. (eds.) ICDT 2001. Springer, Heidelberg
    • Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol.1973, p. 420. Springer, Heidelberg (2000)
    • (2000) LNCS , vol.1973 , pp. 420
    • Aggarwal, C.C.1    Hinneburg, A.2    Keim, D.3
  • 4
    • 0012908433 scopus 로고    scopus 로고
    • Density-based indexing for approximate nearest-neighbor queries
    • Bennett, K.P., Fayyad, U., Geiger, D.: Density-based indexing for approximate nearest-neighbor queries. In: Proc. KDD (1999)
    • (1999) Proc. KDD
    • Bennett, K.P.1    Fayyad, U.2    Geiger, D.3
  • 5
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD 3(1), 1-58 (2009)
    • (2009) ACM TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.P.1    Kröger, P.2    Zimek, A.3
  • 6
    • 0040154165 scopus 로고    scopus 로고
    • Re-designing distance functions and distance-based applications for high dimensional data
    • Aggarwal, C.C.: Re-designing distance functions and distance-based applications for high dimensional data. SIGMOD Record 30(1), 13-18 (2001)
    • (2001) SIGMOD Record , vol.30 , Issue.1 , pp. 13-18
    • Aggarwal, C.C.1
  • 8
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
    • Woo, K.G., Lee, J.H., Kim, M.H., Lee, Y.J.: FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting. Inform. Software Technol. 46(4), 255-271 (2004)
    • (2004) Inform. Software Technol , vol.46 , Issue.4 , pp. 255-271
    • Woo, K.G.1    Lee, J.H.2    Kim, M.H.3    Lee, Y.J.4
  • 9
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: A review. SIGKDD Explorations 6(1), 90-105 (2004)
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 10
    • 14644404956 scopus 로고    scopus 로고
    • Iterative projected clustering by subspace mining
    • Yiu, M.L., Mamoulis, N.: Iterative projected clustering by subspace mining. IEEE TKDE 17(2), 176-189 (2005)
    • (2005) IEEE TKDE , vol.17 , Issue.2 , pp. 176-189
    • Yiu, M.L.1    Mamoulis, N.2
  • 11
    • 34548723854 scopus 로고    scopus 로고
    • Distance based subspace clustering with flexible dimension partitioning
    • Liu, G., Li, J., Sim, K., Wong, L.: Distance based subspace clustering with flexible dimension partitioning. In: Proc. ICDE (2007)
    • (2007) Proc. ICDE
    • Liu, G.1    Li, J.2    Sim, K.3    Wong, L.4
  • 12
    • 49049119729 scopus 로고    scopus 로고
    • A general framework for increasing the robustness of PCA-based correlation clustering algorithms
    • Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. Springer, Heidelberg
    • Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: A general framework for increasing the robustness of PCA-based correlation clustering algorithms. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol.5069, pp. 418-435. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5069 , pp. 418-435
    • Kriegel, H.P.1    Kröger, P.2    Schubert, E.3    Zimek, A.4
  • 13
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • Moise, G., Sander, J.: Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In: Proc. KDD (2008)
    • (2008) Proc. KDD
    • Moise, G.1    Sander, J.2
  • 14
  • 15
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: Proc. SIGMOD (2001)
    • (2001) Proc. SIGMOD
    • Aggarwal, C.C.1    Yu, P.S.2
  • 16
    • 34548588734 scopus 로고    scopus 로고
    • Example-based robust outlier detection in high dimensional datasets
    • Zhu, C., Kitagawa, H., Faloutsos, C.: Example-based robust outlier detection in high dimensional datasets. In: Proc. ICDM (2005)
    • (2005) Proc. ICDM
    • Zhu, C.1    Kitagawa, H.2    Faloutsos, C.3
  • 17
    • 65449145220 scopus 로고    scopus 로고
    • Angle-based outlier detection in highdimensional data
    • Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in highdimensional data. In: Proc. KDD (2008)
    • (2008) Proc. KDD
    • Kriegel, H.P.1    Schubert, M.2    Zimek, A.3
  • 19
    • 0035020719 scopus 로고    scopus 로고
    • Distinctiveness-sensitive nearest-neighbor search for efficient similarity retrieval of multimedia information
    • Katayama, N., Satoh, S.: Distinctiveness-sensitive nearest-neighbor search for efficient similarity retrieval of multimedia information. In: Proc. ICDE (2001)
    • (2001) Proc. ICDE
    • Katayama, N.1    Satoh, S.2
  • 20
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional space
    • Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc. SIGMOD (2000)
    • (2000) Proc. SIGMOD
    • Aggarwal, C.C.1    Yu, P.S.2
  • 21
    • 0033897520 scopus 로고    scopus 로고
    • Independent Quantization: An index compression technique for high-dimensional data spaces
    • Berchtold, S., Böhm, C., Jagadish, H.V., Kriegel, H.P., Sander, J.: Independent Quantization: An index compression technique for high-dimensional data spaces. In: Proc. ICDE (2000)
    • (2000) Proc. ICDE
    • Berchtold, S.1    Böhm, C.2    Jagadish, H.V.3    Kriegel, H.P.4    Sander, J.5
  • 22
    • 0345359234 scopus 로고    scopus 로고
    • An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing
    • Jin, H., Ooi, B.C., Shen, H.T., Yu, C., Zhou, A.Y.: An adaptive and efficient dimensionality reduction algorithm for high-dimensional indexing. In: Proc. ICDE (2003)
    • (2003) Proc. ICDE
    • Jin, H.1    Ooi, B.C.2    Shen, H.T.3    Yu, C.4    Zhou, A.Y.5
  • 23
    • 52649131787 scopus 로고    scopus 로고
    • On high dimensional indexing of uncertain data
    • Aggarwal, C.C., Yu, P.S.: On high dimensional indexing of uncertain data. In: Proc. ICDE (2008)
    • (2008) Proc. ICDE
    • Aggarwal, C.C.1    Yu, P.S.2
  • 24
    • 34249788454 scopus 로고    scopus 로고
    • The concentration of fractional distances
    • Francois, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE TKDE 19(7), 873-886 (2007)
    • (2007) IEEE TKDE , vol.19 , Issue.7 , pp. 873-886
    • Francois, D.1    Wertz, V.2    Verleysen, M.3
  • 25
    • 26944461753 scopus 로고    scopus 로고
    • Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
    • Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proc. SDM (2003)
    • (2003) Proc. SDM
    • Ertöz, L.1    Steinbach, M.2    Kumar, V.3
  • 26
    • 49549100615 scopus 로고    scopus 로고
    • Navigating massive data sets via local clustering
    • Houle, M.E.: Navigating massive data sets via local clustering. In: Proc. KDD (2003)
    • (2003) Proc. KDD
    • Houle, M.E.1
  • 27
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An Efficient Clustering Algorithm for Large Databases
    • Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large databases. In: Proc. SIGMOD, pp. 73-84 (1998)
    • (1998) Proc. SIGMOD , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 28
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared near neighbors
    • Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE TC C-22(11), 1025-1034 (1973)
    • (1973) IEEE TC C-22 , vol.11 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 29
    • 72249092275 scopus 로고    scopus 로고
    • The relevant-set correlation model for data clustering
    • Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal. Data Min. 1(3), 157-176 (2008)
    • (2008) Stat. Anal. Data Min , vol.1 , Issue.3 , pp. 157-176
    • Houle, M.E.1
  • 30
    • 73849087914 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Proc. PAKDD (2009)
    • (2009) Proc. PAKDD
    • Kriegel, H.P.1    Kröger, P.2    Schubert, E.3    Zimek, A.4
  • 31
    • 0027983227 scopus 로고
    • Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimension
    • Faloutsos, C., Kamel, I.: Beyond uniformity and independence: Analysis of R-trees using the concept of fractal dimension. In: Proc. SIGMOD (1994)
    • (1994) Proc. SIGMOD
    • Faloutsos, C.1    Kamel, I.2
  • 32
    • 0002198703 scopus 로고
    • Estimating the selectivity of spatial queries using the 'correlation' fractal dimension
    • Belussi, A., Faloutsos, C.: Estimating the selectivity of spatial queries using the 'correlation' fractal dimension. In: Proc. VLDB (1995)
    • (1995) Proc. VLDB
    • Belussi, A.1    Faloutsos, C.2
  • 33
    • 0033901933 scopus 로고    scopus 로고
    • Deflating the dimensionality curse using multiple fractal dimensions
    • Pagel, B.U., Korn, F., Faloutsos, C.: Deflating the dimensionality curse using multiple fractal dimensions. In: Proc. ICDE (2000)
    • (2000) Proc. ICDE
    • Pagel, B.U.1    Korn, F.2    Faloutsos, C.3
  • 34
    • 0035049111 scopus 로고    scopus 로고
    • On the "dimensionality curse" and the "selfsimilarity blessing"
    • Korn, F., Pagel, B.U., Falutsos, C.: On the "dimensionality curse" and the "selfsimilarity blessing". IEEE TKDE 13(1), 96-111 (2001)
    • (2001) IEEE TKDE , vol.13 , Issue.1 , pp. 96-111
    • Korn, F.1    Pagel, B.U.2    Falutsos, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.