메뉴 건너뛰기




Volumn 3202, Issue , 2004, Pages 173-184

Geometric and combinatorial tiles in 0-1 data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTERS;

EID: 35048851762     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-30116-5_18     Document Type: Article
Times cited : (44)

References (23)
  • 1
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces. In SIGMOD, 2000.
    • (2000) SIGMOD
    • Aggarwal, C.1    Yu, P.2
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehike, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Agrawal, R.1    Gehike, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 0027621699 scopus 로고
    • Mining associations between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets of items in large databases. In SIGMOD, 1993.
    • (1993) SIGMOD
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 4
    • 0032057853 scopus 로고    scopus 로고
    • A spectral algorithm for seriation and the consecutive ones problem
    • J. Atkins, E. Boman, and B. Hendrickson. A spectral algorithm for seriation and the consecutive ones problem. SIAM Journal on Computing, 28(1), 1999.
    • (1999) SIAM Journal on Computing , vol.28 , Issue.1
    • Atkins, J.1    Boman, E.2    Hendrickson, B.3
  • 5
    • 0035789624 scopus 로고    scopus 로고
    • Fast ordering of large categorical datasets for better visualization
    • A. Beygelzimer, C.-S. Perng, and S. Ma. Fast ordering of large categorical datasets for better visualization. In SIGKDD, 2001.
    • (2001) SIGKDD
    • Beygelzimer, A.1    Perng, C.-S.2    Ma, S.3
  • 6
    • 0345817936 scopus 로고    scopus 로고
    • Mining all non-derivable frequent itemsets
    • T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In PKDD, 2002.
    • (2002) PKDD
    • Calders, T.1    Goethals, B.2
  • 7
    • 0038323536 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • C. Cheng, A. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In SIGKDD, 1999.
    • (1999) SIGKDD
    • Cheng, C.1    Fu, A.2    Zhang, Y.3
  • 8
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G. Church. Biclustering of expression data. In ISMB, 2000.
    • (2000) ISMB
    • Cheng, Y.1    Church, G.2
  • 11
    • 0001350119 scopus 로고
    • Algebraic connectivity of graphs
    • M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23, 1973.
    • (1973) Czech. Math. J. , vol.23
    • Fiedler, M.1
  • 12
    • 35048891049 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • J. Friedman and J. Meulman. Clustering objects on subsets of attributes. JRSS B, 2004.
    • (2004) JRSS B
    • Friedman, J.1    Meulman, J.2
  • 13
    • 0029403698 scopus 로고
    • Induction of ripple-down rules applied to modeling large databases
    • B. Gaines and P. Compton. Induction of ripple-down rules applied to modeling large databases. JIIS, 5(3), 1993.
    • (1993) JIIS , vol.5 , Issue.3
    • Gaines, B.1    Compton, P.2
  • 14
    • 78149328321 scopus 로고    scopus 로고
    • Mining top-k frequent closed patterns without minimum support
    • J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without minimum support. In ICDM, 2002.
    • (2002) ICDM
    • Han, J.1    Wang, J.2    Lu, Y.3    Tzvetkov, P.4
  • 18
    • 84880671328 scopus 로고    scopus 로고
    • Discovering interesting holes in data
    • B. Liu, L.-P. Ku, and W. Hsu. Discovering interesting holes in data. In IJCAI, 1997.
    • (1997) IJCAI
    • Liu, B.1    Ku, L.-P.2    Hsu, W.3
  • 19
    • 0041627879 scopus 로고    scopus 로고
    • Extracting conserved gene expression motifs from gene expression data
    • T. Murali and S. Kasif. Extracting conserved gene expression motifs from gene expression data. In Pac. Symp. Biocomp., volume 8, 2003.
    • (2003) Pac. Symp. Biocomp. , vol.8
    • Murali, T.1    Kasif, S.2
  • 20
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 21
    • 0005809076 scopus 로고
    • Technical Report CS-92-01, Pennsylvania State University, Department of Computer Science
    • A. Pothen, H. Simon, and L. Wang. Spectral nested dissection. Technical Report CS-92-01, Pennsylvania State University, Department of Computer Science, 1992.
    • (1992) Spectral Nested Dissection
    • Pothen, A.1    Simon, H.2    Wang, L.3
  • 22
    • 1442267080 scopus 로고
    • Learning decision lists
    • R. Rivest. Learning decision lists. Machine Learning, 2(3), 1987.
    • (1987) Machine Learning , vol.2 , Issue.3
    • Rivest, R.1
  • 23
    • 0035751898 scopus 로고    scopus 로고
    • Bipartite graph partitioning and data clustering
    • H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Bipartite graph partitioning and data clustering. In CIKM, 2001.
    • (2001) CIKM
    • Zha, H.1    He, X.2    Ding, C.3    Gu, M.4    Simon, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.