-
2
-
-
0027621699
-
Mining associations between sets of items in massive databases
-
Washington, DC
-
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining associations between sets of items in massive databases. In Proceedings of the 1993 ACM-SIGMOD international conference on management of data (pp. 207-216). Washington, DC.
-
(1993)
Proceedings of the 1993 ACM-SIGMOD international conference on management of data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
3
-
-
84972545970
-
A survey of exact inference for contingency tables
-
Agresti, A. (1992). A survey of exact inference for contingency tables. Statistical Science, 7(1), 131-153.
-
(1992)
Statistical Science
, vol.7
, Issue.1
, pp. 131-153
-
-
Agresti, A.1
-
5
-
-
84867817851
-
Mining minimal non-redundant association rules using frequent closed itemsets
-
Berlin: Springer
-
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., & Lakhal, L. (2000). Mining minimal non-redundant association rules using frequent closed itemsets. In First international conference on computational logic - CL 2000 (pp. 972-986). Berlin: Springer.
-
(2000)
First international conference on computational logic - CL 2000
, pp. 972-986
-
-
Bastide, Y.1
Pasquier, N.2
Taouil, R.3
Stumme, G.4
Lakhal, L.5
-
6
-
-
23044527560
-
Detecting group differences: Mining contrast sets
-
Bay, S. D., & Pazzani, M. J. (2001). Detecting group differences: Mining contrast sets. Data Mining and Knowledge Discovery, 5(3), 213-246.
-
(2001)
Data Mining and Knowledge Discovery
, vol.5
, Issue.3
, pp. 213-246
-
-
Bay, S.D.1
Pazzani, M.J.2
-
7
-
-
23044517681
-
Constraint-based rule mining in large, dense databases
-
Bayardo, R. J., Jr., Agrawal, R., & Gunopulos, D. (2000). Constraint-based rule mining in large, dense databases. Data Mining and Knowledge Discovery, 4(2/3), 217-240.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 217-240
-
-
Bayardo Jr., R.J.1
Agrawal, R.2
Gunopulos, D.3
-
8
-
-
0001677717
-
Controlling the false discovery rate: A new and powerful approach to multiple testing
-
Benjamini, Y., & Hochberg, Y. (1995) Controlling the false discovery rate: A new and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289-300.
-
(1995)
Journal of the Royal Statistical Society Series B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
9
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Benjamini, Y., & Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165-1188.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.4
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
10
-
-
0242613626
-
Using association rules for product assortment decisions: A case study
-
Brijs, T., Swinnen, G., Vanhoof, K., & Wets, G. (1999). Using association rules for product assortment decisions: A case study. In Knowledge discovery and data mining (pp. 254-260).
-
(1999)
Knowledge discovery and data mining
, pp. 254-260
-
-
Brijs, T.1
Swinnen, G.2
Vanhoof, K.3
Wets, G.4
-
11
-
-
0031161999
-
Beyond market baskets: Generalizing association rules to correlations
-
J. Peckham Ed, New York: ACM
-
Brin, S., Motwani, R. & Silverstein, C. (1997). Beyond market baskets: Generalizing association rules to correlations. In J. Peckham (Ed.), SIGMOD 1997, proceedings ACM SIGMOD international conference on management of data (pp. 265-276). New York: ACM.
-
(1997)
SIGMOD 1997, proceedings ACM SIGMOD international conference on management of data
, pp. 265-276
-
-
Brin, S.1
Motwani, R.2
Silverstein, C.3
-
15
-
-
34249703318
-
-
Hettich, S., & Bay, S. D. (2006). The UCI KDD archive. From http://kdd.ics.uci.edu. Irvine, CA: University of California, Department of Information and Computer Science.
-
Hettich, S., & Bay, S. D. (2006). The UCI KDD archive. From http://kdd.ics.uci.edu. Irvine, CA: University of California, Department of Information and Computer Science.
-
-
-
-
16
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70.
-
(1979)
Scandinavian Journal of Statistics
, vol.6
, pp. 65-70
-
-
Holm, S.1
-
18
-
-
12244313033
-
Interestingness of frequent itemsets using Bayesian networks as background knowledge
-
R. Kohavi, J. Gehrke, & J. Ghosh Eds, New York: ACM
-
Jaroszewicz, S., & Simovici, D. A. (2004). Interestingness of frequent itemsets using Bayesian networks as background knowledge. In R. Kohavi, J. Gehrke, & J. Ghosh (Eds.), KDD-2004: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 178-186). New York: ACM.
-
(2004)
KDD-2004: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 178-186
-
-
Jaroszewicz, S.1
Simovici, D.A.2
-
19
-
-
0033907286
-
Multiple comparisons in induction algorithms
-
Jensen, D. D., & Cohen, P. R. (2000) Multiple comparisons in induction algorithms. Machine Learning 38(3), 309-338.
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 309-338
-
-
Jensen, D.D.1
Cohen, P.R.2
-
21
-
-
0002192370
-
Explora: A multipattern and multistrategy discovery assistant
-
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy Eds, Menlo Park: AAAI
-
Klösgen, W. (1996). Explora: A multipattern and multistrategy discovery assistant. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 249-271). Menlo Park: AAAI.
-
(1996)
Advances in knowledge discovery and data mining
, pp. 249-271
-
-
Klösgen, W.1
-
25
-
-
0003046840
-
A theory and methodology of inductive learning
-
R. S. Michalski, J. G. Carbonell, & T. M. Mitchell Eds, Berlin: Springer
-
Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach (pp. 83-129). Berlin: Springer.
-
(1983)
Machine learning: An artificial intelligence approach
, pp. 83-129
-
-
Michalski, R.S.1
-
26
-
-
33745834241
-
-
Machine-readable data repository, University of California, Department of Information and Computer Science, Irvine, CA
-
Newman, D. J., Hettich, S., Blake, C., & Merz, C. J. (2006). UCI repository of machine learning databases [Machine-readable data repository]. University of California, Department of Information and Computer Science, Irvine, CA.
-
(2006)
UCI repository of machine learning databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.3
Merz, C.J.4
-
27
-
-
34249663078
-
-
Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro, J. Frawley (Eds.), Knowledge discovery in databases (pp. 229-248). Menlo Park: AAAI/MIT Press.
-
Piatetsky-Shapiro, G. (1991). Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro, J. Frawley (Eds.), Knowledge discovery in databases (pp. 229-248). Menlo Park: AAAI/MIT Press.
-
-
-
-
29
-
-
0013114759
-
Oversearching and layered search in empirical learning
-
Los Altos: Kaufmann
-
Quinlan, J. R., & Cameron-Jones, R. M. (1995). Oversearching and layered search in empirical learning. In IJCAI'95 (pp. 1019-1024). Los Altos: Kaufmann.
-
(1995)
IJCAI'95
, pp. 1019-1024
-
-
Quinlan, J.R.1
Cameron-Jones, R.M.2
-
30
-
-
33749539847
-
Finding association rules that trade support optimally against confidence
-
Scheffer, T. (1995). Finding association rules that trade support optimally against confidence. Intelligent Data Analysis, 9(4), 381-395.
-
(1995)
Intelligent Data Analysis
, vol.9
, Issue.4
, pp. 381-395
-
-
Scheffer, T.1
-
31
-
-
0141719772
-
Finding the most interesting patterns in a database quickly by using sequential sampling
-
Scheffer, T., & Wrobel, S. (2002). Finding the most interesting patterns in a database quickly by using sequential sampling. Journal of Machine Learning Research, 3, 833-862.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 833-862
-
-
Scheffer, T.1
Wrobel, S.2
-
32
-
-
11944262819
-
Multiple hypothesis testing
-
Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561-584.
-
(1995)
Annual Review of Psychology
, vol.46
, pp. 561-584
-
-
Shaffer, J.P.1
-
34
-
-
0000835392
-
OPUS: An efficient admissible algorithm for unordered search
-
Webb, G. I. (1995). OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 3, 431-465.
-
(1995)
Journal of Artificial Intelligence Research
, vol.3
, pp. 431-465
-
-
Webb, G.I.1
-
36
-
-
34249649998
-
-
Webb, G. I, 2002, Magnum Opus Version 1.3. Software, G.I. Webb & Associates, Melbourne, Australia
-
Webb, G. I. (2002). Magnum Opus Version 1.3. Software, G.I. Webb & Associates, Melbourne, Australia.
-
-
-
-
37
-
-
33745626948
-
Preliminary investigations into statistically valid exploratory rule discovery
-
University of Technology, Sydney
-
Webb, G. I. (2003). Preliminary investigations into statistically valid exploratory rule discovery. In Proceedings of the Australasian data mining workshop (AusDM03) (pp. 1-9). University of Technology, Sydney.
-
(2003)
Proceedings of the Australasian data mining workshop (AusDM03)
, pp. 1-9
-
-
Webb, G.I.1
-
38
-
-
34249699417
-
-
Webb, G. I, 2005, Magnum Opus Version 3.0.1. Software, G.I. Webb & Associates, Melbourne, Australia
-
Webb, G. I. (2005). Magnum Opus Version 3.0.1. Software, G.I. Webb & Associates, Melbourne, Australia.
-
-
-
-
40
-
-
14844340628
-
K-optimal rule discovery
-
Webb, G. I., & Zhang, S. (2005). K-optimal rule discovery. Data Mining and Knowledge. Discovery, 10(1), 39-79.
-
(2005)
Data Mining and Knowledge. Discovery
, vol.10
, Issue.1
, pp. 39-79
-
-
Webb, G.I.1
Zhang, S.2
-
43
-
-
0035788918
-
Real world performance of association rule algorithms
-
New York: ACM
-
Zheng, Z., Kohavi, R., & Mason, L. (2001). Real world performance of association rule algorithms. In Proceedings of the seventh international conference, on knowledge discovery and data mining (KDD-2001) (pp. 401-406). New York: ACM.
-
(2001)
Proceedings of the seventh international conference, on knowledge discovery and data mining (KDD-2001)
, pp. 401-406
-
-
Zheng, Z.1
Kohavi, R.2
Mason, L.3
|