-
1
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, pages 94-105, 1998.
-
(1998)
SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
2
-
-
0002221136
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, pages 487-499, 1994.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
47249137675
-
DUSC: Dimensionality unbiased subspace clustering
-
I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: Dimensionality unbiased subspace clustering. In ICDM, pages 409-414, 2007.
-
(2007)
ICDM
, pp. 409-414
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
5
-
-
67049137962
-
INSCY: Indexing subspace clusters with in-process-removal of redundancy
-
I. Assent, R. Krieger, E. Müller, and T. Seidl. INSCY: indexing subspace clusters with in-process-removal of redundancy. In ICDM, 2008.
-
(2008)
ICDM
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
6
-
-
0002086686
-
When is nearest neighbors meaningful
-
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbors meaningful. In ICDT, pages 217-235, 1999.
-
(1999)
ICDT
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
8
-
-
49749149150
-
The chosen few: On identifying valuable patterns
-
B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable patterns. In ICDM, pages 63-72, 2007.
-
(2007)
ICDM
, pp. 63-72
-
-
Bringmann, B.1
Zimmermann, A.2
-
11
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, pages 1-12, 2000.
-
(2000)
SIGMOD
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
12
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
K. Kailing, H.-P. Kriegel, and P. Kroger. Density-connected subspace clustering for high-dimensional data. In SDM, pages 246-257, 2004.
-
(2004)
SDM
, pp. 246-257
-
-
Kailing, K.1
Kriegel, H.-P.2
Kroger, P.3
-
14
-
-
34547251368
-
A generic framework for efficient subspace clustering of high-dimensional data
-
H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic framework for efficient subspace clustering of high-dimensional data. In ICDM, pages 250-257, 2005.
-
(2005)
ICDM
, pp. 250-257
-
-
Kriegel, H.-P.1
Kröger, P.2
Renz, M.3
Wurst, S.4
-
15
-
-
33745614938
-
Consistently estimating the selectivity of conjuncts of predicates
-
V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. J. Haas, and U. Srivastava. Consistently estimating the selectivity of conjuncts of predicates. In VLDB, pages 373-384, 2005.
-
(2005)
VLDB
, pp. 373-384
-
-
Markl, V.1
Megiddo, N.2
Kutsch, M.3
Tran, T.M.4
Haas, P.J.5
Srivastava, U.6
-
16
-
-
57849131064
-
P3C: A robust projected clustering algorithm
-
G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering algorithm. In ICDM, pages 414-425, 2006.
-
(2006)
ICDM
, pp. 414-425
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
18
-
-
53949121843
-
Entropy based approximate querying and exploration of datacubes
-
T. Palpanas and N. Koudas. Entropy based approximate querying and exploration of datacubes. In SSDBM, pages 81-90, 2001.
-
(2001)
SSDBM
, pp. 81-90
-
-
Palpanas, T.1
Koudas, N.2
-
20
-
-
0030157406
-
Improved histograms for selectivity estimation of range predicates
-
V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved histograms for selectivity estimation of range predicates. SIGMOD Rec., 25(2):294-305, 1996.
-
(1996)
SIGMOD Rec
, vol.25
, Issue.2
, pp. 294-305
-
-
Poosala, V.1
Haas, P.J.2
Ioannidis, Y.E.3
Shekita, E.J.4
-
23
-
-
34548760779
-
Mining Colossal Frequent Patterns by Core Pattern Fusion
-
F. Zhu, X. Yan, J. Han, P. Yu, and H. Cheng. Mining Colossal Frequent Patterns by Core Pattern Fusion. In ICDE, pages 706-715, 2007.
-
(2007)
ICDE
, pp. 706-715
-
-
Zhu, F.1
Yan, X.2
Han, J.3
Yu, P.4
Cheng, H.5
|