-
1
-
-
84947205653
-
When is "nearest neighbor" meaningful?
-
Jerusalem Israel
-
K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When is "nearest neighbor" meaningful? In Proceedings of the 7th ICDT Conference, Jerusalem, Israel, 1999, 217-235.
-
(1999)
Proceedings of the 7th ICDT Conference
, pp. 217-235
-
-
Beyer, K.S.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
2
-
-
1542292055
-
What is the nearest neighbor in high dimensional spaces?
-
Cairo Egypt
-
A. Hinneburg, C. C. Aggarwal, and D. A. Keim, What is the nearest neighbor in high dimensional spaces? In Proceedings of the 26th VLDB Conference, Cairo, Egypt, 2000, 506-515.
-
(2000)
Proceedings of the 26th VLDB Conference
, pp. 506-515
-
-
Hinneburg, A.1
Aggarwal, C.C.2
Keim, D.A.3
-
3
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional spaces
-
London UK
-
C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the surprising behavior of distance metrics in high dimensional spaces, In Proceedings of the 8th ICDT Conference, London, UK, 2001, 420-434.
-
(2001)
Proceedings of the 8th ICDT Conference
, pp. 420-434
-
-
Aggarwal, C.C.1
Hinneburg, A.2
Keim, D.A.3
-
4
-
-
17044376078
-
Subspace clustering for high dimensional data: a review
-
Lance Parsons, Ehtesham Haque, and Huan Liu, Subspace clustering for high dimensional data: a review. SIGKDD Explor Newslett 6(1) (2004), 90-105.
-
(2004)
SIGKDD Explor Newslett
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
5
-
-
67149084291
-
Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Hans-Peter Kriegel, Peer Kr̈oger, and Arthur Zimek, Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Dis Data Min 3(1) (2009), 1-58.
-
(2009)
ACM Trans Knowl Dis Data Min
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.P.1
Kröger P2
Zimek A3
-
6
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
Seattle Washington
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, In Proceedings of the 1998 ACM SIGMOD Conference, Seattle, Washington, 1998, 94-105.
-
(1998)
Proceedings of the 1998 ACM SIGMOD Conference
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
7
-
-
0002646822
-
Entropybased subspace clustering for mining numerical data
-
San Diego, California USA
-
C. H. Cheng, A. W.-C. Fu, and Yi Zhang, Entropybased subspace clustering for mining numerical data, In Proceedings of the 5th ACM SIGKDD Conference, San Diego, California, USA, 1999, 84-93.
-
(1999)
Proceedings of the 5th ACM SIGKDD Conference
, pp. 84-93
-
-
Cheng, C.H.1
Fu, A.W.C.2
Zhang, Yi.3
-
9
-
-
0036039291
-
A new cell-based clustering method for large, high-dimensional data in data mining applications
-
Madrid Spain
-
J.-W. Chang and D.-S. Jin, A new cell-based clustering method for large, high-dimensional data in data mining applications, In Proceedings of the 2002 ACM Symposium on Applied Computing, Madrid, Spain, 2002, 503-507.
-
(2002)
Proceedings of the 2002 ACM Symposium on Applied Computing
, pp. 503-507
-
-
Chang, J.W.1
Jin, D.S.2
-
10
-
-
85049067327
-
Clustering through decision tree construction
-
McLean, VA USA
-
B. Liu, Y. Xia, and P. S. Yu, Clustering through decision tree construction, In Proceedings of the 9th CIKM Conference, McLean, VA, USA, 2000, 20-29.
-
(2000)
Proceedings of the 9th CIKM Conference
, pp. 20-29
-
-
Liu, B.1
Xia, Y.2
Yu, P.S.3
-
11
-
-
34548723854
-
Distance based subspace clustering with flexible dimension partitioning
-
Istanbul Turkey
-
G. Liu, J. Li, K. Sim, and L. Wong, Distance based subspace clustering with flexible dimension partitioning, In Proceedings of the 23rd ICDE Conference, Istanbul, Turkey, 2007, 1250-1254.
-
(2007)
Proceedings of the 23rd ICDE Conference
, pp. 1250-1254
-
-
Liu, G.1
Li, J.2
Sim, K.3
Wong, L.4
-
12
-
-
0036372484
-
Clustering by pattern similarity in large data sets
-
Madison, Wisconsin USA
-
H. Wang, W. Wang, J. Yang, and P. S. Yu, Clustering by pattern similarity in large data sets, In Proceedings of the 2002 ACM SIGMOD Conference, Madison, Wisconsin, USA, 2002, 394-405.
-
(2002)
Proceedings of the 2002 ACM SIGMOD Conference
, pp. 394-405
-
-
Wang, H.1
Wang, W.2
Yang, J.3
Yu, P.S.4
-
13
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
Washington, D.C., USA
-
R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, In Proceedings of the 1993 ACM SIGMOD Conference, Washington, D.C., USA, 1993, 207-216.
-
(1993)
Proceedings of the 1993 ACM SIGMOD Conference
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.N.3
-
14
-
-
0002008071
-
-
Proceedings of the 7th ICDT Conference, Jerusalem, Israel
-
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, Discovering frequent closed itemsets for association rules, In Proceedings of the 7th ICDT Conference, Jerusalem, Israel, 1999, 398-416.
-
(1999)
Discovering frequent closed itemsets for association rules
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
15
-
-
77953564323
-
collaboration of array, bitmap and prefix tree for frequent itemset mining
-
Chicago, Illinois USA
-
T. Uno, M. Kiyomi, and H. Arimura, Lcm ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining, In Proceedings of the ACM SIGKDD OSDM Workshop, Chicago, Illinois, USA, 2005.
-
(2005)
Proceedings of the ACM SIGKDD OSDM Workshop
, vol.3
-
-
Uno, T.1
Kiyomi, M.2
Arimura, H.3
-
16
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
Dallas, Texas USA
-
J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, In Proceedings of the 2000 ACM SIGMOD Conference, Dallas, Texas, USA, 2000, 1-12.
-
(2000)
Proceedings of the 2000 ACM SIGMOD Conference
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
18
-
-
0034616930
-
Functional discovery via a compendium of expression profiles
-
T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend, Functional discovery via a compendium of expression profiles, Cell 102 (2000), 109-126.
-
(2000)
Cell
, vol.102
, pp. 109-126
-
-
Hughes, T.R.1
Marton, M.J.2
Jones, A.R.3
Roberts, C.J.4
Stoughton, R.5
Armour, C.D.6
Bennett, H.A.7
Coffey, E.8
Dai, H.9
He, Y.D.10
Kidd, M.J.11
King, A.M.12
Meyer, M.R.13
Slade, D.14
Lum, P.Y.15
Stepaniants, S.B.16
Shoemaker, D.D.17
Gachotte, D.18
Chakraburtty, K.19
Simon, J.20
Bard, M.21
Friend, S.H.22
more..
-
19
-
-
14644404956
-
Iterative projected clustering by subspace mining
-
M. L. Yiu and N. Mamoulis, Iterative projected clustering by subspace mining, IEEE Trans Knowl Data Eng, 17(2) (2005), 176-189.
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, Issue.2
, pp. 176-189
-
-
Yiu, M.L.1
Mamoulis, N.2
-
20
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
-
Las Vegas, Nevada USA
-
G. Moise and J. Sander, Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering, In Proceedings of the 14th ACM SIGKDD Conference, Las Vegas, Nevada, USA, 2008, 533-541.
-
(2008)
Proceedings of the 14th ACM SIGKDD Conference
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
21
-
-
12344269924
-
Go: termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes
-
E. I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein, J. M. Cherry, and G. Sherlock, Go: termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes, Bioinformatics 20(18) (2004), 3710-3715.
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3710-3715
-
-
Boyle, E.I.1
Weng, S.2
Gollub, J.3
Jin, H.4
Botstein, D.5
Cherry, J.M.6
Sherlock, G.7
-
22
-
-
0034566393
-
Biclustering of expression data
-
San Diego, CA USA
-
Y. Cheng and G. M. Church, Biclustering of expression data, In Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, San Diego, CA, USA, 2000, 93-103.
-
(2000)
Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology
, pp. 93-103
-
-
Cheng, Y.1
Church, G.M.2
-
23
-
-
0040154165
-
Re-designing distance functions and distance-based applications for high dimensional data
-
C. C. Aggarwal, Re-designing distance functions and distance-based applications for high dimensional data, SIGMOD Record 30(1) (2001), 13-18.
-
(2001)
SIGMOD Record
, vol.30
, Issue.1
, pp. 13-18
-
-
Aggarwal, C.C.1
-
24
-
-
3142768191
-
Biclustering algorithms for biological data analysis: a survey
-
S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEE/ACM Trans Comput Biol Bioinform 01(1) (2004), 24-45.
-
(2004)
IEE/ACM Trans Comput Biol Bioinform
, vol.1
, Issue.1
, pp. 24-45
-
-
Madeira, S.C.1
Oliveira, A.L.2
-
25
-
-
85060453814
-
Fast algorithms for projected clustering
-
Philadelphia, Pennsylvania USA
-
C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, Fast algorithms for projected clustering, In Proceedings of the 1999 ACM SIGMOD Conference, Philadelphia, Pennsylvania, USA, 1999, 61-72.
-
(1999)
Proceedings of the 1999 ACM SIGMOD Conference
, pp. 61-72
-
-
Aggarwal, C.C.1
Procopiuc, C.M.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
26
-
-
85134733586
-
Finding generalized projected clusters in high dimensional spaces
-
Dallas, Texas USA
-
C. C. Aggarwal and P. S. Yu, Finding generalized projected clusters in high dimensional spaces, In Proceedings of the 2000 ACM SIGMOD Conference, Dallas, Texas, USA, 2000, 70-81.
-
(2000)
Proceedings of the 2000 ACM SIGMOD Conference
, pp. 70-81
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
27
-
-
0742324835
-
Findit: a fast and intelligent subspace clustering algorithm using dimension voting
-
K.-Gu Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee, Findit: a fast and intelligent subspace clustering algorithm using dimension voting, Inf Soft Tech, 46(4) (2004), 255-271.
-
(2004)
Inf Soft Tech
, vol.46
, Issue.4
, pp. 255-271
-
-
Gu Woo, K.1
Lee, J.-H.2
Kim, M.-H.3
Lee, Y.-J.4
-
28
-
-
0036361164
-
A monte carlo algorithm for fast projective clustering
-
Madison Wisconsin
-
C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali, A monte carlo algorithm for fast projective clustering, In Proceedings of the 2002 ACM SIGMOD Conference, Madison, Wisconsin, 2002, 418-427.
-
(2002)
Proceedings of the 2002 ACM SIGMOD Conference
, pp. 418-427
-
-
Procopiuc, C.M.1
Jones, M.2
Agarwal, P.K.3
Murali, T.M.4
-
29
-
-
2942588997
-
Densityconnected subspace clustering for high-dimensional data
-
Orlando, Florida USA
-
K. Kailing, H.-P. Kriegel, and P. Kr̈oger, Densityconnected subspace clustering for high-dimensional data, In Proceedings of the 4th SIAM International Conference on Data Mining, Orlando, Florida, USA, 2004.
-
(2004)
Proceedings of the 4th SIAM International Conference on Data Mining
-
-
Kailing, K.1
Kriegel, H.-P.2
Kr̈oger, P.3
-
30
-
-
0036211103
-
δ-clusters: capturing subspace correlation in a large data set
-
San Jose, California USA
-
J. Yang, W. Wang, H. Wang, and P. S. Yu, δ-clusters: capturing subspace correlation in a large data set, In Proceedings of the 18th IEEE ICDE Conference, San Jose, California, USA, 2002, 517-528.
-
(2002)
Proceedings of the 18th IEEE ICDE Conference
, pp. 517-528
-
-
Yang, J.1
Wang, W.2
Wang, H.3
Yu, P.S.4
-
31
-
-
5444223340
-
MaPle: a fast algorithm for maximal pattern-based clustering
-
Melbourne, Florida USA
-
J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu, MaPle: a fast algorithm for maximal pattern-based clustering, In Proceedings of the 3rd ICDM Conference, Melbourne, Florida, USA, 2003, 259-266.
-
(2003)
Proceedings of the 3rd ICDM Conference
, pp. 259-266
-
-
Pei, J.1
Zhang, X.2
Cho, M.3
Wang, H.4
Yu, P.S.5
-
32
-
-
33749620002
-
Mining shiftingand-scaling co-regulation patterns on gene expression profiles
-
Atlanta, Georgia USA
-
X. Xu, Y. Lu, A. K. H. Tung, and W. Wang, Mining shiftingand-scaling co-regulation patterns on gene expression profiles, In Proceedings of the 22nd ICDE Conference, Atlanta, Georgia, USA, 2006.
-
(2006)
Proceedings of the 22nd ICDE Conference
-
-
Xu, X.1
Lu, Y.2
Tung, A.K.H.3
Wang, W.4
-
33
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Portland, Oregon USA
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, In Proceedings of the 2nd ACM SIGKDD Conference, Portland, Oregon, USA, 1996, 226-231.
-
(1996)
Proceedings of the 2nd ACM SIGKDD Conference
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
35
-
-
47249137675
-
Dusc: dimensionality unbiased subspace clustering
-
Omaha, Nebraska USA
-
I. Assent, R. Krieger, E. M̈uller, and T. Seidl, Dusc: dimensionality unbiased subspace clustering, In Proceedings of the 7th ICDM Conference, Omaha, Nebraska, USA, 2007, 409-414.
-
(2007)
Proceedings of the 7th ICDM Conference
, pp. 409-414
-
-
Assent, I.1
Krieger, R.2
M̈uller, E.3
Seidl, T.4
-
36
-
-
34547251368
-
A generic framework for efficient subspace clustering of high-dimensional data
-
Houston, Texas USA
-
H.-P. Kriegel, P. Kr̈oger, M. Renz, and S. Wurst, A generic framework for efficient subspace clustering of high-dimensional data, In Proceedings of the 5th IEEE International Conference on Data Mining, Houston, Texas, USA, 2005, 250-257.
-
(2005)
Proceedings of the 5th IEEE International Conference on Data Mining
, pp. 250-257
-
-
Kriegel, H.-P.1
Kr̈oger, P.2
Renz, M.3
Wurst, S.4
-
37
-
-
38049175016
-
Detection and visualization of subspace cluster hierarchies
-
Bangkok Thailand
-
E. Achtert, C. B̈ohm, H.-P. Kriegel, P. Kr̈oger, I. M̈uller-Gorman, and A. Zimek, Detection and visualization of subspace cluster hierarchies, In Proceedings of the 12th DASFAA Conference, Bangkok, Thailand, 2007, 152-163.
-
(2007)
Proceedings of the 12th DASFAA Conference
, pp. 152-163
-
-
Achtert, E.1
B̈ohm, C.2
Kriegel, H.-P.3
Kr̈oger, P.4
M̈uller-Gorman, I.5
Zimek, A.6
-
38
-
-
13844297591
-
Harp: a practical projected clustering algorithm
-
K. Y. Yip, D. W. Cheung, and M. K. Ng, Harp: a practical projected clustering algorithm, IEEE Trans Knowl Data Eng, 16(11) (2004), 1387-1397.
-
(2004)
IEEE Trans Knowl Data Eng
, vol.16
, Issue.11
, pp. 1387-1397
-
-
Yip, K.Y.1
Cheung, D.W.2
Ng, M.K.3
-
39
-
-
28444491389
-
On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
-
Tokyo Japan
-
K. Y. Yip, D. W. Cheung, and M. K. Ng, On discovery of extremely low-dimensional clusters using semi-supervised projected clustering, In Proceedings of the 21st ICDE Conference, Tokyo, Japan, 2005, 329-340.
-
(2005)
Proceedings of the 21st ICDE Conference
, pp. 329-340
-
-
Yip, K.Y.1
Cheung, D.W.2
Ng, M.K.3
-
40
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
Brighton UK
-
C. B̈ohm, K. Kailing, H.-P. Kriegel, and P. Kr̈oger, Density connected clustering with local subspace preferences, In Proceedings of the 4th IEEE International Conference on Data Mining, Brighton, UK, 2004, 27-34.
-
(2004)
Proceedings of the 4th IEEE International Conference on Data Mining
, pp. 27-34
-
-
Böhm, C.1
Kailing, K.2
Kriegel, H.-P.3
Kr̈oger, P.4
-
41
-
-
14644424597
-
Projective clustering by histograms
-
E. K. K. Ng, A. W.-C. Fu, and R. C.-W. Wong, Projective clustering by histograms, IEEE Trans Knowl Data Eng 17(3) (2005), 369-383.
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, Issue.3
, pp. 369-383
-
-
Ng, E.K.K.1
Fu, A.-C.2
Wong, R.-W.3
-
42
-
-
57849131064
-
P3c: a robust projected clustering algorithm
-
Hong Kong China
-
G. Moise, J. Sander, and M. Ester, P3c: a robust projected clustering algorithm, In Proceedings of the 6th IEEE International Conference on Data Mining, Hong Kong, China, 2006, 414-425.
-
(2006)
Proceedings of the 6th IEEE International Conference on Data Mining
, pp. 414-425
-
-
Moise, G.1
Sander, J.2
Ester, M.3
|