메뉴 건너뛰기




Volumn , Issue , 2008, Pages 533-541

Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering

Author keywords

Projected clustering; Subspace clustering

Indexed keywords

CLUSTER DENSITIES; COMPUTATIONAL INFEASIBILITIES; DATA SETS; DISJOINT CLUSTERS; EXHAUSTIVE SEARCHES; EXPERIMENTAL EVALUATIONS; HIGH-DIMENSIONAL DATUM; OPTIMIZATION PROBLEMS; OVERLAPPING CLUSTERS; PROBLEM FORMULATIONS; PROJECTED CLUSTERING; SUBSPACE CLUSTERING; USER-DEFINED PARAMETERS; VIABLE SOLUTIONS;

EID: 65449163900     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401956     Document Type: Conference Paper
Times cited : (92)

References (26)
  • 2
    • 33749567386 scopus 로고    scopus 로고
    • D. Agarwal, A. McGregor, J. Phillips, S. Venkatasubramanian, and Z. Zhu. Spatial scan statistics: approximations and performance study. In KDD, 2006.
    • D. Agarwal, A. McGregor, J. Phillips, S. Venkatasubramanian, and Z. Zhu. Spatial scan statistics: approximations and performance study. In KDD, 2006.
  • 4
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikan. Fast algorithms for mining association rules. In VLDB, 1994.
    • (1994) VLDB
    • Agrawal, R.1    Srikan, R.2
  • 6
    • 47249137675 scopus 로고    scopus 로고
    • DUSC: Dimensionality unbiased subspace clustering
    • I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: Dimensionality unbiased subspace clustering. In ICDM, 2007.
    • (2007) ICDM
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 7
    • 33750523596 scopus 로고    scopus 로고
    • Spatial point processes and their applications
    • A. Baddeley. Spatial point processes and their applications. Lecture Notes in Mathematics, 1892:1-75, 2007.
    • (2007) Lecture Notes in Mathematics , vol.1892 , pp. 1-75
    • Baddeley, A.1
  • 8
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSS-B, 57:289-200, 1995.
    • (1995) JRSS-B , vol.57 , pp. 289-200
    • Benjamini, Y.1    Hochberg, Y.2
  • 10
    • 19544386608 scopus 로고    scopus 로고
    • Density connected clustering with local subspace preferences
    • C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kroger. Density connected clustering with local subspace preferences. In ICDM, 2004.
    • (2004) ICDM
    • Böhm, C.1    Kailing, K.2    Kriegel, H.-P.3    Kroger, P.4
  • 11
    • 65449184823 scopus 로고    scopus 로고
    • C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In KDD, 1999.
    • C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In KDD, 1999.
  • 12
    • 0007425929 scopus 로고    scopus 로고
    • Bump hunting in high-dimensional data
    • J. Friedman and N. Fisher. Bump hunting in high-dimensional data. Statistics and Computing, 9:123-143, 1999.
    • (1999) Statistics and Computing , vol.9 , pp. 123-143
    • Friedman, J.1    Fisher, N.2
  • 13
    • 65449167065 scopus 로고    scopus 로고
    • K. Kailing, H. P. Kriegel, and P. Kroger. Density-connected subspace clustering for high-dimensional data. In SDM, 2004.
    • K. Kailing, H. P. Kriegel, and P. Kroger. Density-connected subspace clustering for high-dimensional data. In SDM, 2004.
  • 14
    • 34547251368 scopus 로고    scopus 로고
    • A generic framework for efficient subspace clustering of high-dimensional data
    • H. P. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic framework for efficient subspace clustering of high-dimensional data. In ICDM, 2005.
    • (2005) ICDM
    • Kriegel, H.P.1    Kroger, P.2    Renz, M.3    Wurst, S.4
  • 15
    • 34548723854 scopus 로고    scopus 로고
    • Distance based subspace clustering with flexible dimension partitioning
    • G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with flexible dimension partitioning. In ICDE, 2007.
    • (2007) ICDE
    • Liu, G.1    Li, J.2    Sim, K.3    Wong, L.4
  • 16
    • 65449150036 scopus 로고    scopus 로고
    • TR08-03. Technical report, University of Alberta
    • G. Moise and J. Sander. TR08-03. Technical report, University of Alberta, http://www.cs.ualberta.ca/research/techreports/2008/TR08-03.php, 2008.
    • (2008)
    • Moise, G.1    Sander, J.2
  • 17
    • 57849131064 scopus 로고    scopus 로고
    • P3C: A robust projected clustering algorithm
    • G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering algorithm. In ICDM, 2006.
    • (2006) ICDM
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 18
    • 65449148920 scopus 로고    scopus 로고
    • H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive data sets. In SDM, 2001.
    • H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive data sets. In SDM, 2001.
  • 19
    • 14644424597 scopus 로고    scopus 로고
    • Projective clustering by histograms
    • K. Ng, A. Fu, and C.-W. Wong. Projective clustering by histograms. IEEE TKDE, 17(3):369-383, 2005.
    • (2005) IEEE TKDE , vol.17 , Issue.3 , pp. 369-383
    • Ng, K.1    Fu, A.2    Wong, C.-W.3
  • 20
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explorations Newsletter, 6(1):90-105, 2004.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 22
    • 19544389465 scopus 로고    scopus 로고
    • SCHISM: A new approach for interesting subspace mining
    • K. Sequeira and M. Zaki. SCHISM: a new approach for interesting subspace mining. In ICDM, 2004.
    • (2004) ICDM
    • Sequeira, K.1    Zaki, M.2
  • 24
    • 13844297591 scopus 로고    scopus 로고
    • HARP: A practical projected clustering algorithm
    • K. Yip, D. Cheung, and M. Ng. HARP: a practical projected clustering algorithm. IEEE TKDE, 16(11):1387-1397, 2004.
    • (2004) IEEE TKDE , vol.16 , Issue.11 , pp. 1387-1397
    • Yip, K.1    Cheung, D.2    Ng, M.3
  • 25
    • 28444491389 scopus 로고    scopus 로고
    • On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
    • K. Yip, D. Cheung, and M. Ng. On discovery of extremely low-dimensional clusters using semi-supervised projected clustering. In ICDE, 2005.
    • (2005) ICDE
    • Yip, K.1    Cheung, D.2    Ng, M.3
  • 26
    • 14644404956 scopus 로고    scopus 로고
    • Iterative projected clustering by subspace mining
    • M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. IEEE TKDE, 17(2): 176-189, 2005.
    • (2005) IEEE TKDE , vol.17 , Issue.2 , pp. 176-189
    • Yiu, M.L.1    Mamoulis, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.