-
1
-
-
67149091034
-
Detection and visualization of subspace clusters hierarchies
-
E. Achtert, C. Böhm, H.-P. Kriegel, P. Kroger, I. Müller-Gorman, and A. Zimek. Detection and visualization of subspace clusters hierarchies. In DASFAA, 2007.
-
(2007)
DASFAA
-
-
Achtert, E.1
Böhm, C.2
Kriegel, H.-P.3
Kroger, P.4
Müller-Gorman, I.5
Zimek, A.6
-
2
-
-
33749567386
-
-
D. Agarwal, A. McGregor, J. Phillips, S. Venkatasubramanian, and Z. Zhu. Spatial scan statistics: approximations and performance study. In KDD, 2006.
-
D. Agarwal, A. McGregor, J. Phillips, S. Venkatasubramanian, and Z. Zhu. Spatial scan statistics: approximations and performance study. In KDD, 2006.
-
-
-
-
3
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. C Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected clustering. In SIGMOD, 1999.
-
(1999)
SIGMOD
-
-
Aggarwal, C.C.1
Procopiuc, C.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
4
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, 1998.
-
(1998)
SIGMOD
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
5
-
-
0002221136
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikan. Fast algorithms for mining association rules. In VLDB, 1994.
-
(1994)
VLDB
-
-
Agrawal, R.1
Srikan, R.2
-
7
-
-
33750523596
-
Spatial point processes and their applications
-
A. Baddeley. Spatial point processes and their applications. Lecture Notes in Mathematics, 1892:1-75, 2007.
-
(2007)
Lecture Notes in Mathematics
, vol.1892
, pp. 1-75
-
-
Baddeley, A.1
-
8
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JRSS-B, 57:289-200, 1995.
-
(1995)
JRSS-B
, vol.57
, pp. 289-200
-
-
Benjamini, Y.1
Hochberg, Y.2
-
9
-
-
84947205653
-
When is nearest neighbor meaningful?
-
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor meaningful? LNCS, 1540:217-235, 1999.
-
(1999)
LNCS
, vol.1540
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
10
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kroger. Density connected clustering with local subspace preferences. In ICDM, 2004.
-
(2004)
ICDM
-
-
Böhm, C.1
Kailing, K.2
Kriegel, H.-P.3
Kroger, P.4
-
11
-
-
65449184823
-
-
C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In KDD, 1999.
-
C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In KDD, 1999.
-
-
-
-
13
-
-
65449167065
-
-
K. Kailing, H. P. Kriegel, and P. Kroger. Density-connected subspace clustering for high-dimensional data. In SDM, 2004.
-
K. Kailing, H. P. Kriegel, and P. Kroger. Density-connected subspace clustering for high-dimensional data. In SDM, 2004.
-
-
-
-
14
-
-
34547251368
-
A generic framework for efficient subspace clustering of high-dimensional data
-
H. P. Kriegel, P. Kroger, M. Renz, and S. Wurst. A generic framework for efficient subspace clustering of high-dimensional data. In ICDM, 2005.
-
(2005)
ICDM
-
-
Kriegel, H.P.1
Kroger, P.2
Renz, M.3
Wurst, S.4
-
15
-
-
34548723854
-
Distance based subspace clustering with flexible dimension partitioning
-
G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with flexible dimension partitioning. In ICDE, 2007.
-
(2007)
ICDE
-
-
Liu, G.1
Li, J.2
Sim, K.3
Wong, L.4
-
16
-
-
65449150036
-
TR08-03. Technical report, University of Alberta
-
G. Moise and J. Sander. TR08-03. Technical report, University of Alberta, http://www.cs.ualberta.ca/research/techreports/2008/TR08-03.php, 2008.
-
(2008)
-
-
Moise, G.1
Sander, J.2
-
17
-
-
57849131064
-
P3C: A robust projected clustering algorithm
-
G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering algorithm. In ICDM, 2006.
-
(2006)
ICDM
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
18
-
-
65449148920
-
-
H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive data sets. In SDM, 2001.
-
H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for clustering massive data sets. In SDM, 2001.
-
-
-
-
19
-
-
14644424597
-
Projective clustering by histograms
-
K. Ng, A. Fu, and C.-W. Wong. Projective clustering by histograms. IEEE TKDE, 17(3):369-383, 2005.
-
(2005)
IEEE TKDE
, vol.17
, Issue.3
, pp. 369-383
-
-
Ng, K.1
Fu, A.2
Wong, C.-W.3
-
20
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explorations Newsletter, 6(1):90-105, 2004.
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
22
-
-
19544389465
-
SCHISM: A new approach for interesting subspace mining
-
K. Sequeira and M. Zaki. SCHISM: a new approach for interesting subspace mining. In ICDM, 2004.
-
(2004)
ICDM
-
-
Sequeira, K.1
Zaki, M.2
-
24
-
-
13844297591
-
HARP: A practical projected clustering algorithm
-
K. Yip, D. Cheung, and M. Ng. HARP: a practical projected clustering algorithm. IEEE TKDE, 16(11):1387-1397, 2004.
-
(2004)
IEEE TKDE
, vol.16
, Issue.11
, pp. 1387-1397
-
-
Yip, K.1
Cheung, D.2
Ng, M.3
-
25
-
-
28444491389
-
On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
-
K. Yip, D. Cheung, and M. Ng. On discovery of extremely low-dimensional clusters using semi-supervised projected clustering. In ICDE, 2005.
-
(2005)
ICDE
-
-
Yip, K.1
Cheung, D.2
Ng, M.3
-
26
-
-
14644404956
-
Iterative projected clustering by subspace mining
-
M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. IEEE TKDE, 17(2): 176-189, 2005.
-
(2005)
IEEE TKDE
, vol.17
, Issue.2
, pp. 176-189
-
-
Yiu, M.L.1
Mamoulis, N.2
|