메뉴 건너뛰기




Volumn 21, Issue 3, 2009, Pages 299-326

Subspace and projected clustering: Experimental evaluation and analysis

Author keywords

Projected clustering; Subspace clustering

Indexed keywords

CLUSTER ANALYSIS;

EID: 71949123741     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0226-y     Document Type: Article
Times cited : (53)

References (44)
  • 1
    • 38049175016 scopus 로고    scopus 로고
    • Detection and visualization of subspace cluster hierarchies
    • Ramamohanarao K, Krishna P, Mohania M, Nantajeewarawat E (eds) Bangkok, Thailand
    • Achtert E, Böhm C, Kriegel H-P, Kröger P, Müller-Gorman I, Zimek A (2007) Detection and visualization of subspace cluster hierarchies. In: Ramamohanarao K, Krishna P, Mohania M, Nantajeewarawat E (eds) Proceedings of the 12th international conference on database systems for advanced applications (DASFAA), Bangkok, Thailand, 2007, pp 152-163
    • (2007) Proceedings of the 12th International Conference on Database Systems for Advanced Applications (DASFAA) , pp. 152-163
    • Achtert, E.B.1
  • 5
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • Chen W, Naughton J, Bernstein P (eds) Dallas, TX, USA, 2000
    • Aggarwal C, Yu P (2000) Finding generalized projected clusters in high dimensional spaces. In: Chen W, Naughton J, Bernstein P (eds) Proceedings of the ACM SIGMOD international conference on management of data, Dallas, TX, USA, 2000, pp 70-81
    • (2000) Proceedings of the ACM SIGMOD International Conference on Management of Data , pp. 70-81
    • Aggarwal, C.1    Yu, P.2
  • 7
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Bocca J, Jarke M, Zaniolo C (eds) Santiago de Chile, Chile, 1994
    • Agrawal R, Srikan R (1994) Fast algorithms for mining association rules in large databases. In: Bocca J, Jarke M, Zaniolo C (eds) Proceedings of the international conference on very large data bases VLDB, Santiago de Chile, Chile, 1994, pp 487-499
    • (1994) Proceedings of the International Conference on Very Large Data Bases VLDB , pp. 487-499
    • Agrawal, R.1    Srikan, R.2
  • 13
    • 0002629270 scopus 로고
    • Maximum likelihood for incomplete data via the em algorithm
    • 0364.62022 501537
    • A Dempster N Laird D Rubin 1977 Maximum likelihood for incomplete data via the EM algorithm J R Stat Soc Ser B 39 1 1 38 0364.62022 501537
    • (1977) J R Stat Soc ser B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 14
    • 26944461753 scopus 로고    scopus 로고
    • Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
    • Barbara D, Kamath C (eds) San Francisco, CA, USA, 2003
    • Ertöz L, Steinbach M, Kumar V (2003) Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Barbara D, Kamath C (eds) Proceedings of the third SIAM international conference on data mining (SDM), San Francisco, CA, USA, 2003
    • (2003) Proceedings of the Third SIAM International Conference on Data Mining (SDM)
    • Ertöz, L.S.1
  • 16
    • 34248670415 scopus 로고    scopus 로고
    • Non-redundant data clustering
    • 10.1007/s10115-006-0009-7
    • D Gondek T Hofmann 2007 Non-redundant data clustering Knowl Inf Syst 12 1 1 116 10.1007/s10115-006-0009-7
    • (2007) Knowl Inf Syst , vol.12 , Issue.1 , pp. 1-116
    • Gondek, D.1    Hofmann, T.2
  • 18
    • 1542292055 scopus 로고    scopus 로고
    • What is the nearest neighbor in high dimensional spaces?
    • Abbadi A, Brodie M, Chakravarthy, Dayal U, Kamel N, Schlageter G, Whang K (eds) Cairo, Egypt, 2000
    • Hinneburg A, Aggarwal C, Keim D (2000) What is the nearest neighbor in high dimensional spaces? In: Abbadi A, Brodie M, Chakravarthy, Dayal U, Kamel N, Schlageter G, Whang K (eds) Proceedings of the 26th international conference on very large data bases (VLDB), Cairo, Egypt, 2000, pp 506-515
    • (2000) Proceedings of the 26th International Conference on Very Large Data Bases (VLDB) , pp. 506-515
    • Hinneburg, A.1    Aggarwal, C.2    Keim, D.3
  • 19
    • 85132256511 scopus 로고    scopus 로고
    • A general approach to clustering in large databases with noise
    • 10.1007/s10115-003-0086-9
    • A Hinneburg D Keim 2003 A general approach to clustering in large databases with noise Knowl Inf Syst 5 4 387 415 10.1007/s10115-003-0086-9
    • (2003) Knowl Inf Syst , vol.5 , Issue.4 , pp. 387-415
    • Hinneburg, A.1    Keim, D.2
  • 20
    • 2942588997 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • Berry M, Dayal U, Kamath C, Skilicorn D (eds) Orlando, FL, USA, 2004
    • Kailing K, Kriegel H-P, Kröger P (2004) Density-connected subspace clustering for high-dimensional data. In: Berry M, Dayal U, Kamath C, Skilicorn D (eds) Proceedings of the fourth SIAM international conference on data mining (SDM), Orlando, FL, USA, 2004, pp 1-11
    • (2004) Proceedings of the Fourth SIAM International Conference on Data Mining (SDM) , pp. 1-11
    • Kailing, K.K.1
  • 23
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel H-P, Kröger P, Zimek A (2009) Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1)
    • (2009) ACM Trans Knowl Discov Data , vol.3 , Issue.1
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 24
    • 54049130028 scopus 로고    scopus 로고
    • Clustering based on matrix approximation: A unifying view
    • 10.1007/s10115-007-0116-0
    • T Li 2008 Clustering based on matrix approximation: a unifying view Knowl Inf Syst 17 1 1 133 10.1007/s10115-007-0116-0
    • (2008) Knowl Inf Syst , vol.17 , Issue.1 , pp. 1-133
    • Li, T.1
  • 28
    • 41149085604 scopus 로고    scopus 로고
    • Robust projected clustering
    • 1161.68770 10.1007/s10115-007-0090-6
    • G Moise J Sander M Ester 2008 Robust projected clustering Knowl Inf Syst 14 3 273 298 1161.68770 10.1007/s10115-007-0090-6
    • (2008) Knowl Inf Syst , vol.14 , Issue.3 , pp. 273-298
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 29
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • Las Vegas, NV, USA, 2008
    • Moise G, Sander J (2008) Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, NV, USA, 2008, pp 533-541
    • (2008) Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 33
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Bocca J, Jarke M, Zaniolo C (eds) Santiago de Chile, Chile, 1994
    • Ng R, Han J(1994) Efficient and effective clustering methods for spatial data mining. In: Bocca J, Jarke M, Zaniolo C (eds) Proceedings of the international conference on very large data bases VLDB, Santiago de Chile, Chile, 1994, pp 487-499
    • (1994) Proceedings of the International Conference on Very Large Data Bases VLDB , pp. 487-499
    • Ng, R.1    Han, J.2
  • 34
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • 10.1145/1007730.1007731
    • L Parsons E Haque H Liu 2004 Subspace clustering for high dimensional data: a review ACM SIGKDD Explor Newsl 6 1 90 105 10.1145/1007730.1007731
    • (2004) ACM SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 37
    • 84871106113 scopus 로고    scopus 로고
    • R project http://www.r-project.org/
    • R Project
  • 40
    • 33845240405 scopus 로고    scopus 로고
    • Capabilities of outlier detection schemes in large datasets, framework and methodologies
    • DOI 10.1007/s10115-005-0233-6
    • J Tang J Chen A Fu W Cheung 2007 Capabilities of outlier detection schemes in large datasets, framework and methodologies Knowl Inf Syst 11 1 45 84 10.1007/s10115-005-0233-6 (Pubitemid 44857542)
    • (2007) Knowledge and Information Systems , vol.11 , Issue.1 , pp. 45-84
    • Tang, J.1    Chen, Z.2    Fu, A.W.3    Cheung, D.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.