-
1
-
-
38049175016
-
Detection and visualization of subspace cluster hierarchies
-
Ramamohanarao K, Krishna P, Mohania M, Nantajeewarawat E (eds) Bangkok, Thailand
-
Achtert E, Böhm C, Kriegel H-P, Kröger P, Müller-Gorman I, Zimek A (2007) Detection and visualization of subspace cluster hierarchies. In: Ramamohanarao K, Krishna P, Mohania M, Nantajeewarawat E (eds) Proceedings of the 12th international conference on database systems for advanced applications (DASFAA), Bangkok, Thailand, 2007, pp 152-163
-
(2007)
Proceedings of the 12th International Conference on Database Systems for Advanced Applications (DASFAA)
, pp. 152-163
-
-
Achtert, E.B.1
-
3
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional space
-
Bussche J, Vianu V (eds) London, UK, 2001
-
Aggarwal C, Hinneburg A, Keim D (2001) On the surprising behavior of distance metrics in high dimensional space. In: Bussche J, Vianu V (eds) Proceedings of the eighth international conference on database theory (ICDT), London, UK, 2001, pp 420-434
-
(2001)
Proceedings of the Eighth International Conference on Database Theory (ICDT)
, pp. 420-434
-
-
Aggarwal, C.1
Hinneburg, A.2
Keim, D.3
-
4
-
-
0347718066
-
Fast algorithms for projected clustering
-
Delis A, Faloutsos C, Ghandeharizadeh, S (eds) Philadelphia, PA, USA, 1999
-
Aggarwal C, Procopiuc C, Wolf J, Yu P, Park J (1999) Fast algorithms for projected clustering. In: Delis A, Faloutsos C, Ghandeharizadeh, S (eds) Proceedings of the ACM SIGMOD international conference on management of data, Philadelphia, PA, USA, 1999, pp 61-72
-
(1999)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 61-72
-
-
Aggarwal, C.1
Procopiuc, C.2
Wolf, J.3
Yu, P.4
Park, J.5
-
5
-
-
0039253822
-
Finding generalized projected clusters in high dimensional spaces
-
Chen W, Naughton J, Bernstein P (eds) Dallas, TX, USA, 2000
-
Aggarwal C, Yu P (2000) Finding generalized projected clusters in high dimensional spaces. In: Chen W, Naughton J, Bernstein P (eds) Proceedings of the ACM SIGMOD international conference on management of data, Dallas, TX, USA, 2000, pp 70-81
-
(2000)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 70-81
-
-
Aggarwal, C.1
Yu, P.2
-
6
-
-
0032090765
-
Automatic subspace clustering of high-dimensional data for data mining applications
-
Haas L, Tiwary A (eds) Seattle, WA, USA, 1998
-
Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high-dimensional data for data mining applications. In: Haas L, Tiwary A (eds) Proceedings of the ACM SIGMOD international conference on management of data, Seattle, WA, USA, 1998, pp 94-105
-
(1998)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
7
-
-
0001882616
-
Fast algorithms for mining association rules in large databases
-
Bocca J, Jarke M, Zaniolo C (eds) Santiago de Chile, Chile, 1994
-
Agrawal R, Srikan R (1994) Fast algorithms for mining association rules in large databases. In: Bocca J, Jarke M, Zaniolo C (eds) Proceedings of the international conference on very large data bases VLDB, Santiago de Chile, Chile, 1994, pp 487-499
-
(1994)
Proceedings of the International Conference on Very Large Data Bases VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikan, R.2
-
8
-
-
0347172110
-
OPTICS: Ordering points to identify the clustering structure
-
Delis A, Faloutsos C, Ghandeharizadeh S (eds) Philadelphia, PA, USA, 1999
-
Ankerst M, Breunig M, Kriegel H-P, Sander J (1999) OPTICS: Ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S (eds) Proceedings of the ACM international conference on management of data (SIGMOD), Philadelphia, PA, USA, 1999, pp 49-60
-
(1999)
Proceedings of the ACM International Conference on Management of Data (SIGMOD)
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.2
Kriegel, H.-P.3
Sander, J.4
-
9
-
-
47249137675
-
DUSC: Dimensionality unbiased subspace clustering
-
Omaha, NE, USA
-
Assent I, Krieger R, Müller E, Seidl T (2007) DUSC: dimensionality unbiased subspace clustering. In: Proceedings of the seventh international conference on data mining (ICDM), Omaha, NE, USA, 2007, pp 409-414
-
(2007)
Proceedings of the Seventh International Conference on Data Mining (ICDM)
, pp. 409-414
-
-
Assent, I.K.1
-
10
-
-
84947205653
-
When is "nearest neighbor" meaningful?
-
Beeri C, Buneman P (eds) Jerusalem, Israel, 1999
-
Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999) When is "nearest neighbor" meaningful?. In: Beeri C, Buneman P (eds) Proceedings of the seventh international conference on database theory (ICDT), Jerusalem, Israel, 1999, pp 217-235
-
(1999)
Proceedings of the Seventh International Conference on Database Theory (ICDT)
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
11
-
-
19544386608
-
Density connected clustering with local subspace preferences
-
Brighton, UK, 2004
-
Böhm C, Kailing K, Kriegel H-P, Kröger P (2004) Density connected clustering with local subspace preferences. In: Proceedings of the fourth international conference on data mining (ICDM), Brighton, UK, 2004, pp 27-34
-
(2004)
Proceedings of the Fourth International Conference on Data Mining (ICDM)
, pp. 27-34
-
-
Böhm, C.K.1
-
12
-
-
0002646822
-
Entropy-based subspace clustering for mining numerical data
-
San Diego, CA, USA, 1999
-
Cheng C, Fu A, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. In: Proceedings of the fifth ACM international conference on knowledge discovery and data mining (SIGKDD), San Diego, CA, USA, 1999, pp 84-93
-
(1999)
Proceedings of the Fifth ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD)
, pp. 84-93
-
-
Cheng, C.1
Fu, A.2
Zhang, Y.3
-
13
-
-
0002629270
-
Maximum likelihood for incomplete data via the em algorithm
-
0364.62022 501537
-
A Dempster N Laird D Rubin 1977 Maximum likelihood for incomplete data via the EM algorithm J R Stat Soc Ser B 39 1 1 38 0364.62022 501537
-
(1977)
J R Stat Soc ser B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
14
-
-
26944461753
-
Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
-
Barbara D, Kamath C (eds) San Francisco, CA, USA, 2003
-
Ertöz L, Steinbach M, Kumar V (2003) Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Barbara D, Kamath C (eds) Proceedings of the third SIAM international conference on data mining (SDM), San Francisco, CA, USA, 2003
-
(2003)
Proceedings of the Third SIAM International Conference on Data Mining (SDM)
-
-
Ertöz, L.S.1
-
15
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Simoudis E, Han J, Fayyad U (eds) Portland, OR, USA, 1996
-
Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U (eds) Proceedings of the second ACM international conference on knowledge discovery and data mining (KDD), Portland, OR, USA, 1996, pp 226-231
-
(1996)
Proceedings of the Second ACM International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
16
-
-
34248670415
-
Non-redundant data clustering
-
10.1007/s10115-006-0009-7
-
D Gondek T Hofmann 2007 Non-redundant data clustering Knowl Inf Syst 12 1 1 116 10.1007/s10115-006-0009-7
-
(2007)
Knowl Inf Syst
, vol.12
, Issue.1
, pp. 1-116
-
-
Gondek, D.1
Hofmann, T.2
-
18
-
-
1542292055
-
What is the nearest neighbor in high dimensional spaces?
-
Abbadi A, Brodie M, Chakravarthy, Dayal U, Kamel N, Schlageter G, Whang K (eds) Cairo, Egypt, 2000
-
Hinneburg A, Aggarwal C, Keim D (2000) What is the nearest neighbor in high dimensional spaces? In: Abbadi A, Brodie M, Chakravarthy, Dayal U, Kamel N, Schlageter G, Whang K (eds) Proceedings of the 26th international conference on very large data bases (VLDB), Cairo, Egypt, 2000, pp 506-515
-
(2000)
Proceedings of the 26th International Conference on Very Large Data Bases (VLDB)
, pp. 506-515
-
-
Hinneburg, A.1
Aggarwal, C.2
Keim, D.3
-
19
-
-
85132256511
-
A general approach to clustering in large databases with noise
-
10.1007/s10115-003-0086-9
-
A Hinneburg D Keim 2003 A general approach to clustering in large databases with noise Knowl Inf Syst 5 4 387 415 10.1007/s10115-003-0086-9
-
(2003)
Knowl Inf Syst
, vol.5
, Issue.4
, pp. 387-415
-
-
Hinneburg, A.1
Keim, D.2
-
20
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
Berry M, Dayal U, Kamath C, Skilicorn D (eds) Orlando, FL, USA, 2004
-
Kailing K, Kriegel H-P, Kröger P (2004) Density-connected subspace clustering for high-dimensional data. In: Berry M, Dayal U, Kamath C, Skilicorn D (eds) Proceedings of the fourth SIAM international conference on data mining (SDM), Orlando, FL, USA, 2004, pp 1-11
-
(2004)
Proceedings of the Fourth SIAM International Conference on Data Mining (SDM)
, pp. 1-11
-
-
Kailing, K.K.1
-
22
-
-
34547251368
-
A generic framework for efficient subspace clustering of high-dimensional data
-
Kriegel H-P, Kröger P, Renz M, Wurst S (2005) A generic framework for efficient subspace clustering of high-dimensional data. In: Proceedings of the fifth international conference on data mining, Houston, TX, USA, 2005, pp 250-257
-
(2005)
Proceedings of the Fifth International Conference on Data Mining, Houston, TX, USA, 2005
, pp. 250-257
-
-
Kriegel -P H, K.1
-
23
-
-
67149084291
-
Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
Kriegel H-P, Kröger P, Zimek A (2009) Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1)
-
(2009)
ACM Trans Knowl Discov Data
, vol.3
, Issue.1
-
-
Kriegel, H.-P.1
Kröger, P.2
Zimek, A.3
-
24
-
-
54049130028
-
Clustering based on matrix approximation: A unifying view
-
10.1007/s10115-007-0116-0
-
T Li 2008 Clustering based on matrix approximation: a unifying view Knowl Inf Syst 17 1 1 133 10.1007/s10115-007-0116-0
-
(2008)
Knowl Inf Syst
, vol.17
, Issue.1
, pp. 1-133
-
-
Li, T.1
-
25
-
-
34548723854
-
Distance based subspace clustering with flexible dimension partitioning
-
Istanbul, Turkey, 2007
-
Liu G, Li J, Sim K, Wong L (2007) Distance based subspace clustering with flexible dimension partitioning. In: Proceedings of the 23rd international conference on data engineering (ICDE), Istanbul, Turkey, 2007, pp 1250-1254
-
(2007)
Proceedings of the 23rd International Conference on Data Engineering (ICDE)
, pp. 1250-1254
-
-
Liu, G.1
Li, J.2
Sim, K.3
Wong, L.4
-
26
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
McQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley symposium on mathematics, statistics, and probabilistics, vol 1, 1967, pp 281-297
-
(1967)
Fifth Berkeley Symposium on Mathematics, Statistics, and Probabilistics
, vol.1
, pp. 281-297
-
-
McQueen, J.1
-
27
-
-
57849131064
-
P3C: A robust projected clustering algorithm
-
Hong Kong, China, 2006
-
Moise G, Sander J, Ester M (2006) P3C: A robust projected clustering algorithm. In: Proceedings of the sixth international conference on data mining (ICDM), Hong Kong, China, 2006, pp 414-425
-
(2006)
Proceedings of the Sixth International Conference on Data Mining (ICDM)
, pp. 414-425
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
28
-
-
41149085604
-
Robust projected clustering
-
1161.68770 10.1007/s10115-007-0090-6
-
G Moise J Sander M Ester 2008 Robust projected clustering Knowl Inf Syst 14 3 273 298 1161.68770 10.1007/s10115-007-0090-6
-
(2008)
Knowl Inf Syst
, vol.14
, Issue.3
, pp. 273-298
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
29
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
-
Las Vegas, NV, USA, 2008
-
Moise G, Sander J (2008) Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In: Proceedings of the 14th ACM international conference on knowledge discovery and data mining (SIGKDD), Las Vegas, NV, USA, 2008, pp 533-541
-
(2008)
Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD)
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
30
-
-
41149123106
-
Adaptive grids for clustering massive data sets
-
Chicago, IL, USA, 2001
-
Nagesh H, Goil S, Choudhary A (2001) Adaptive grids for clustering massive data sets. In: Proceedings of the first SIAM international conference on data mining (SDM), Chicago, IL, USA, 2001, pp 1-17
-
(2001)
Proceedings of the First SIAM International Conference on Data Mining (SDM)
, pp. 1-17
-
-
Nagesh, H.1
Goil, S.2
Choudhary, A.3
-
33
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
Bocca J, Jarke M, Zaniolo C (eds) Santiago de Chile, Chile, 1994
-
Ng R, Han J(1994) Efficient and effective clustering methods for spatial data mining. In: Bocca J, Jarke M, Zaniolo C (eds) Proceedings of the international conference on very large data bases VLDB, Santiago de Chile, Chile, 1994, pp 487-499
-
(1994)
Proceedings of the International Conference on Very Large Data Bases VLDB
, pp. 487-499
-
-
Ng, R.1
Han, J.2
-
34
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
10.1145/1007730.1007731
-
L Parsons E Haque H Liu 2004 Subspace clustering for high dimensional data: a review ACM SIGKDD Explor Newsl 6 1 90 105 10.1145/1007730.1007731
-
(2004)
ACM SIGKDD Explor Newsl
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
36
-
-
0036361164
-
A Monte Carlo algorithm for fast projective clustering
-
Franklin M, Moon B, Ailamaki, A (eds) Madison, WI, USA, 2002
-
Procopiuc C, Jones M, Agarwal P, Murali T (2002) A Monte Carlo algorithm for fast projective clustering. In: Franklin M, Moon B, Ailamaki, A (eds) Proceedings of the ACM international conference on management of data (SIGMOD, Madison, WI, USA, 2002, pp 418-427
-
(2002)
Proceedings of the ACM International Conference on Management of Data (SIGMOD
, pp. 418-427
-
-
Procopiuc, C.1
Jones, M.2
Agarwal, P.3
Murali, T.4
-
37
-
-
84871106113
-
-
R project http://www.r-project.org/
-
R Project
-
-
-
40
-
-
33845240405
-
Capabilities of outlier detection schemes in large datasets, framework and methodologies
-
DOI 10.1007/s10115-005-0233-6
-
J Tang J Chen A Fu W Cheung 2007 Capabilities of outlier detection schemes in large datasets, framework and methodologies Knowl Inf Syst 11 1 45 84 10.1007/s10115-005-0233-6 (Pubitemid 44857542)
-
(2007)
Knowledge and Information Systems
, vol.11
, Issue.1
, pp. 45-84
-
-
Tang, J.1
Chen, Z.2
Fu, A.W.3
Cheung, D.W.4
-
42
-
-
28444491389
-
On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
-
Tokyo, Japan, 2005
-
Yip K, Cheung D, Ng M (2005) On discovery of extremely low-dimensional clusters using semi-supervised projected clustering. In: Proceedings of the 21st international conference on data engineering (ICDE), Tokyo, Japan, 2005, pp 329-340
-
(2005)
Proceedings of the 21st International Conference on Data Engineering (ICDE)
, pp. 329-340
-
-
Yip, K.1
Cheung, D.2
Ng, M.3
-
43
-
-
39049184327
-
SemBiosphere: A semantic web approach to recommending microarray clustering services
-
Maui, HI, USA
-
Yip K, Qi P, Schultz M, Cheung D, Cheung K (2006) SemBiosphere: a semantic web approach to recommending microarray clustering services. In: Proceedings of the 11th pacific symposium on biocomputing (PSB), Maui, HI, USA, 2006
-
(2006)
Proceedings of the 11th Pacific Symposium on Biocomputing (PSB)
-
-
Yip, K.1
Qi, P.2
Schultz, M.3
Cheung, D.4
Cheung, K.5
|