-
2
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In Proc. VLDB, 2004.
-
(2004)
Proc. VLDB
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected clustering. In Proc. SIGMOD, 1999.
-
(1999)
Proc. SIGMOD
-
-
Aggarwal, C.C.1
Procopiuc, C.M.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
4
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. SIGMOD, 1998.
-
(1998)
Proc. SIGMOD
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
5
-
-
77953527363
-
MOA: Massive online analysis
-
A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive online analysis. J. Mach. Learn. Res., 11:1601-1604, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
7
-
-
34548620153
-
Densitybased clustering over an evolving data stream with noise
-
F. Cao, M. Ester, W. Qian, and A. Zhou. Densitybased clustering over an evolving data stream with noise. In Proc. SDM, 2006.
-
(2006)
Proc. SDM
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
8
-
-
36849092449
-
Density-based clustering for realtime stream data
-
Y. Chen and L. Tu. Density-based clustering for realtime stream data. In Proc. KDD, 2007.
-
(2007)
Proc. KDD
-
-
Chen, Y.1
Tu, L.2
-
9
-
-
0001899154
-
Incremental clustering for mining in a data warehousing environment
-
M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining in a data warehousing environment. In Proc. VLDB, 1998.
-
(1998)
Proc. VLDB
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Wimmer, M.4
Xu, X.5
-
10
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. KDD, 1996.
-
(1996)
Proc. KDD
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
11
-
-
84880231038
-
An incremental data stream clustering algorithm based on dense units detection
-
J. Gao, J. Li, Z. Zhang, and P.-N. Tan. An incremental data stream clustering algorithm based on dense units detection. In Proc. PAKDD, 2005.
-
(2005)
Proc. PAKDD
-
-
Gao, J.1
Li, J.2
Zhang, Z.3
Tan, P.-N.4
-
12
-
-
0036367429
-
Querying and mining data streams: You only get one look,A tutorial
-
M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: you only get one look. A tutorial. In Proc. SIGMOD, 2002.
-
(2002)
Proc. SIGMOD
-
-
Garofalakis, M.1
Gehrke, J.2
Rastogi, R.3
-
13
-
-
0038633423
-
Clustering data streams: Theory and practice
-
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. IEEE TKDE, 15(3):515-528, 2003.
-
(2003)
IEEE TKDE
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'callaghan, L.5
-
16
-
-
67149084291
-
Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1):1-58, 2009.
-
(2009)
ACM TKDD
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.-P.1
Kröger, P.2
Zimek, A.3
-
17
-
-
84862688946
-
Density-based clustering
-
H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. Density-based clustering. WIREs DMKD, 1(3):231- 240, 2011.
-
(2011)
WIREs DMKD
, vol.1
, Issue.3
, pp. 231-240
-
-
Kriegel, H.-P.1
Kröger, P.2
Sander, J.3
Zimek, A.4
-
18
-
-
79951742996
-
Densityconnected subspace clustering for high-dimensional data
-
P. Kröger, H.-P. Kriegel, and K. Kailing. Densityconnected subspace clustering for high-dimensional data. In Proc. SDM, 2004.
-
(2004)
Proc. SDM
-
-
Kröger, P.1
Kriegel, H.-P.2
Kailing, K.3
-
19
-
-
41149085604
-
Robust projected clustering
-
G. Moise, J. Sander, and M. Ester. Robust projected clustering. KAIS, 14(3):273-298, 2008.
-
(2008)
KAIS
, vol.14
, Issue.3
, pp. 273-298
-
-
Moise, G.1
Sander, J.2
Ester, M.3
-
20
-
-
14644404956
-
Iterative projected clustering by subspace mining
-
M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. IEEE TKDE, 17(2):176- 189, 2005.
-
(2005)
IEEE TKDE
, vol.17
, Issue.2
, pp. 176-189
-
-
Yiu, M.L.1
Mamoulis, N.2
-
21
-
-
49749129993
-
Incremental subspace clustering over multiple data streams
-
Q. Zhang, J. Liu, and W. Wang. Incremental subspace clustering over multiple data streams. In Proc. ICDM, 2007.
-
(2007)
Proc. ICDM
-
-
Zhang, Q.1
Liu, J.2
Wang, W.3
-
22
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In Proc. SIGMOD, 1996.
-
(1996)
Proc. SIGMOD
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|