메뉴 건너뛰기




Volumn , Issue , 2012, Pages 987-998

Density-based projected clustering over high dimensional data streams

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; SPACE DIVISION MULTIPLE ACCESS;

EID: 84868121916     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972825.85     Document Type: Conference Paper
Times cited : (94)

References (22)
  • 1
  • 2
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In Proc. VLDB, 2004.
    • (2004) Proc. VLDB
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 4
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. SIGMOD, 1998.
    • (1998) Proc. SIGMOD
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 7
    • 34548620153 scopus 로고    scopus 로고
    • Densitybased clustering over an evolving data stream with noise
    • F. Cao, M. Ester, W. Qian, and A. Zhou. Densitybased clustering over an evolving data stream with noise. In Proc. SDM, 2006.
    • (2006) Proc. SDM
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 8
    • 36849092449 scopus 로고    scopus 로고
    • Density-based clustering for realtime stream data
    • Y. Chen and L. Tu. Density-based clustering for realtime stream data. In Proc. KDD, 2007.
    • (2007) Proc. KDD
    • Chen, Y.1    Tu, L.2
  • 9
    • 0001899154 scopus 로고    scopus 로고
    • Incremental clustering for mining in a data warehousing environment
    • M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering for mining in a data warehousing environment. In Proc. VLDB, 1998.
    • (1998) Proc. VLDB
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Wimmer, M.4    Xu, X.5
  • 10
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. KDD, 1996.
    • (1996) Proc. KDD
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 11
    • 84880231038 scopus 로고    scopus 로고
    • An incremental data stream clustering algorithm based on dense units detection
    • J. Gao, J. Li, Z. Zhang, and P.-N. Tan. An incremental data stream clustering algorithm based on dense units detection. In Proc. PAKDD, 2005.
    • (2005) Proc. PAKDD
    • Gao, J.1    Li, J.2    Zhang, Z.3    Tan, P.-N.4
  • 12
    • 0036367429 scopus 로고    scopus 로고
    • Querying and mining data streams: You only get one look,A tutorial
    • M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: you only get one look. A tutorial. In Proc. SIGMOD, 2002.
    • (2002) Proc. SIGMOD
    • Garofalakis, M.1    Gehrke, J.2    Rastogi, R.3
  • 16
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD, 3(1):1-58, 2009.
    • (2009) ACM TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 18
    • 79951742996 scopus 로고    scopus 로고
    • Densityconnected subspace clustering for high-dimensional data
    • P. Kröger, H.-P. Kriegel, and K. Kailing. Densityconnected subspace clustering for high-dimensional data. In Proc. SDM, 2004.
    • (2004) Proc. SDM
    • Kröger, P.1    Kriegel, H.-P.2    Kailing, K.3
  • 19
    • 41149085604 scopus 로고    scopus 로고
    • Robust projected clustering
    • G. Moise, J. Sander, and M. Ester. Robust projected clustering. KAIS, 14(3):273-298, 2008.
    • (2008) KAIS , vol.14 , Issue.3 , pp. 273-298
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 20
    • 14644404956 scopus 로고    scopus 로고
    • Iterative projected clustering by subspace mining
    • M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. IEEE TKDE, 17(2):176- 189, 2005.
    • (2005) IEEE TKDE , vol.17 , Issue.2 , pp. 176-189
    • Yiu, M.L.1    Mamoulis, N.2
  • 21
    • 49749129993 scopus 로고    scopus 로고
    • Incremental subspace clustering over multiple data streams
    • Q. Zhang, J. Liu, and W. Wang. Incremental subspace clustering over multiple data streams. In Proc. ICDM, 2007.
    • (2007) Proc. ICDM
    • Zhang, Q.1    Liu, J.2    Wang, W.3
  • 22
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In Proc. SIGMOD, 1996.
    • (1996) Proc. SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.