메뉴 건너뛰기




Volumn 2, Issue 4, 2012, Pages 340-350

Clustering high dimensional data

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA MINING;

EID: 84866466048     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1062     Document Type: Article
Times cited : (139)

References (53)
  • 1
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: a survey
    • Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 2004, 16:1370-1386.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 2
    • 33746747476 scopus 로고    scopus 로고
    • Machine learning in bioinformatics: a brief survey and recommendations for practitioners
    • Bhaskar H, Hoyle D, Singh S. Machine learning in bioinformatics: a brief survey and recommendations for practitioners. Comput Biol Med 2006, 36:1104-1125.
    • (2006) Comput Biol Med , vol.36 , pp. 1104-1125
    • Bhaskar, H.1    Hoyle, D.2    Singh, S.3
  • 3
    • 9444236233 scopus 로고    scopus 로고
    • Ranking interesting subspaces for clustering high dimensional data
    • Cavtat-Dubrovnik, Croatia: Springer
    • Kailing K, Kriegel H, Kröger P, Wanka S. Ranking interesting subspaces for clustering high dimensional data. In: Knowledge Discovery in Databases: PKDD 2003. Cavtat-Dubrovnik, Croatia: Springer; 2003, 241-252.
    • (2003) Knowledge Discovery in Databases: PKDD 2003 , pp. 241-252
    • Kailing, K.1    Kriegel, H.2    Kröger, P.3    Wanka, S.4
  • 5
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw 2005, 16:645-678.
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 6
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • Kogan J, Nicholas C, Teboulle M, eds Heidelberg: Springer
    • Berkhin P. A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle M, eds. Grouping Multidimensional Data, Recent Advances in Clustering. Heidelberg: Springer; 2006, 25-71.
    • (2006) Grouping Multidimensional Data, Recent Advances in Clustering , pp. 25-71
    • Berkhin, P.1
  • 7
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • USA
    • Eisen M, Spellman P, Brown P, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95:14863-14868.
    • (1998) Proc Natl Acad Sci , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 10
    • 28444457322 scopus 로고    scopus 로고
    • Lifting the curse of dimensionality
    • Kuo F, Sloan I. Lifting the curse of dimensionality. Notices Am Math Soc 2005, 52:1320.
    • (2005) Notices Am Math Soc , vol.52 , pp. 1320
    • Kuo, F.1    Sloan, I.2
  • 15
    • 84949479246 scopus 로고    scopus 로고
    • On the surprising behavior of distance metrics in high dimensional space
    • London, UK: Springer
    • Aggarwal C, Hinneburg A, Keim D. On the surprising behavior of distance metrics in high dimensional space. In: Database Theory ICDT 2001. London, UK: Springer; 2001, 420-434.
    • (2001) Database Theory ICDT 2001 , pp. 420-434
    • Aggarwal, C.1    Hinneburg, A.2    Keim, D.3
  • 19
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • New York City, NY: American Association for Artificial Intelligence
    • Hinneburg A, Keim D. An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. New York City, NY: American Association for Artificial Intelligence; 1998:58.
    • (1998) Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining , pp. 58
    • Hinneburg, A.1    Keim, D.2
  • 20
    • 0003260456 scopus 로고
    • Density estimation for statistics and data analysis
    • New York: Chapman and Hall
    • Silverman B. Density estimation for statistics and data analysis. In: Monographs on Statistics and Applied Probability. New York: Chapman and Hall; 1986.
    • (1986) Monographs on Statistics and Applied Probability
    • Silverman, B.1
  • 22
    • 84866454507 scopus 로고    scopus 로고
    • Distance-preserving dimensionality reduction
    • Yang L. Distance-preserving dimensionality reduction. Wiley Interdiscip Rev: Data Min Knowl Discov 2011, 1:369-380. [http://dx.doi.org/10.1002/widm.39].
    • (2011) Wiley Interdiscip Rev: Data Min Knowl Discov , vol.1 , pp. 369-380
    • Yang, L.1
  • 24
    • 1942517297 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: a cluster ensemble approach
    • Fawcett T, MishraN, eds Menlo Park, CA: AAAI Press
    • Fern X, Brodley C. Random projection for high dimensional data clustering: a cluster ensemble approach. In: Fawcett T, MishraN, eds. The Twentieth International Conference on Machine Learning. Menlo Park, CA: AAAI Press; 2003.
    • (2003) The Twentieth International Conference on Machine Learning
    • Fern, X.1    Brodley, C.2
  • 25
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 2005, 17:491-502.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 26
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record 1998, 27:94-105.
    • (1998) ACM SIGMOD Record , vol.27 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 27
    • 67149084291 scopus 로고    scopus 로고
    • Clustering highdimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel H, Kröger P, Zimek A. Clustering highdimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 2009, 3:1-58.
    • (2009) ACM Trans Knowl Discov Data , vol.3 , pp. 1-58
    • Kriegel, H.1    Kröger, P.2    Zimek, A.3
  • 28
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • Müller E, Günnemann S, Assent I, Seidl T. Evaluating clustering in subspace projections of high dimensional data. PVLDB 2009, 2:1270-1281.
    • (2009) PVLDB , vol.2 , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4
  • 29
    • 71949123741 scopus 로고    scopus 로고
    • Subspace and projected clustering: experimental evaluation and analysis
    • Moise G, Zimek A, Kröger P, Kriegel H, Sander J. Subspace and projected clustering: experimental evaluation and analysis. Knowl Inf Syst 2009, 21:299-326.
    • (2009) Knowl Inf Syst , vol.21 , pp. 299-326
    • Moise, G.1    Zimek, A.2    Kröger, P.3    Kriegel, H.4    Sander, J.5
  • 30
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor Newslett 2004, 6:90-105.
    • (2004) ACM SIGKDD Explor Newslett , vol.6 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 32
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 1977, 39:1-38.
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 35
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: a survey
    • Madeira S, Oliveira A. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Computat Biol Bioinf 2004, 1:24-45.
    • (2004) IEEE/ACM Trans Computat Biol Bioinf , vol.1 , pp. 24-45
    • Madeira, S.1    Oliveira, A.2
  • 39
    • 0000835955 scopus 로고    scopus 로고
    • Optimal grid-clustering: towards breaking the curse of dimensionality in highdimensional clustering
    • Edinburgh, Scotland: Morgan Kaufmann
    • Hinneburg A, Keim D. Optimal grid-clustering: towards breaking the curse of dimensionality in highdimensional clustering. In: Proceedings of the 25th International Conference on Very Large Data Bases. Edinburgh, Scotland: Morgan Kaufmann. 1999, 506-517.
    • (1999) Proceedings of the 25th International Conference on Very Large Data Bases , pp. 506-517
    • Hinneburg, A.1    Keim, D.2
  • 42
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: a survey and empirical demonstration
    • Keogh E, Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowl Discov 2003, 7:349-371.
    • (2003) Data Min Knowl Discov , vol.7 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 43
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-a survey
    • Liao W. Clustering of time series data-a survey. Pattern Recognit 2005, 38:1857-1874.
    • (2005) Pattern Recognit , vol.38 , pp. 1857-1874
    • Liao, W.1
  • 44
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: a novel symbolic representation of time series
    • Lin J, Keogh E, Wei L, Lonardi S. Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 2007, 15:107-144.
    • (2007) Data Min Knowl Discov , vol.15 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 45
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Mach Learn 2004, 55:311-331.
    • (2004) Mach Learn , vol.55 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 47
    • 80055063556 scopus 로고    scopus 로고
    • Distance metrics for high dimensional nearest neighborhood recovery: compression and normalization
    • France SL, Carroll JD, Xiong H. Distance metrics for high dimensional nearest neighborhood recovery: compression and normalization. Inf Sci 2012, 184:92-110.
    • (2012) Inf Sci , vol.184 , pp. 92-110
    • France, S.L.1    Carroll, J.D.2    Xiong, H.3
  • 48
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • Cai D, He X, Han J. Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 2005, 17:1624-1637.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 52
    • 57849122848 scopus 로고    scopus 로고
    • Technical Report TR-07-35, Department of Computer Science, Virginia Tech. Blacksburg, VA
    • Andrews N.O., Fox E.A. Recent developments in document clustering. Technical Report TR-07-35, Department of Computer Science, Virginia Tech. Blacksburg, VA; 2007.
    • (2007) Recent developments in document clustering
    • Andrews, N.O.1    Fox, E.A.2
  • 53
    • 2542587466 scopus 로고    scopus 로고
    • Relationship-based clustering and visualization for high-dimensional data mining
    • Strehl A, Ghosh J. Relationship-based clustering and visualization for high-dimensional data mining. INFORMS J Comput 2003, 15:208-230.
    • (2003) INFORMS J Comput , vol.15 , pp. 208-230
    • Strehl, A.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.