메뉴 건너뛰기




Volumn 4443 LNCS, Issue , 2007, Pages 152-163

Detection and visualization of subspace cluster hierarchies

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLUSTER ANALYSIS; EMBEDDED SYSTEMS; GRAPH THEORY; MATHEMATICAL MODELS;

EID: 38049175016     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: None     Document Type: Conference Paper
Times cited : (40)

References (15)
  • 1
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. SIGMOD. (1998)
    • (1998) Proc. SIGMOD
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 2
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • Cheng, C.H., Fu, A.W.C., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proc. KDD. (1999) 84-93
    • (1999) Proc. KDD , pp. 84-93
    • Cheng, C.H.1    Fu, A.W.C.2    Zhang, Y.3
  • 3
    • 33750297146 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • Railing, K., Kriegel, H.P., Kroger, P.: Density-connected subspace clustering for high-dimensional data. In: Proc. SDM. (2004)
    • (2004) Proc. SDM
    • Railing, K.1    Kriegel, H.P.2    Kroger, P.3
  • 4
    • 34547251368 scopus 로고    scopus 로고
    • A generic framework for efficient subspace clustering of high-dimensional data
    • Kriegel, H.P., Kroger, P., Renz, M., Wurst, S.: A generic framework for efficient subspace clustering of high-dimensional data. In: Proc. ICDM. (2005)
    • (2005) Proc. ICDM
    • Kriegel, H.P.1    Kroger, P.2    Renz, M.3    Wurst, S.4
  • 7
    • 19544386608 scopus 로고    scopus 로고
    • Density connected clustering with local subspace preferences
    • Böhm, C., Railing, K., Kriegel, H.P., Kroger, P.: Density connected clustering with local subspace preferences. In: Proc. ICDM. (2004)
    • (2004) Proc. ICDM
    • Böhm, C.1    Railing, K.2    Kriegel, H.P.3    Kroger, P.4
  • 10
    • 0036211103 scopus 로고    scopus 로고
    • Delta-Clusters: Capturing subspace correlation in a large data set
    • Yang, J., Wang, W., Wang, H., Yu, P.S.: Delta-Clusters: Capturing subspace correlation in a large data set. In: Proc. ICDE. (2002)
    • (2002) Proc. ICDE
    • Yang, J.1    Wang, W.2    Wang, H.3    Yu, P.S.4
  • 11
    • 0036372484 scopus 로고    scopus 로고
    • Clustering by pattern similarity in large data sets
    • Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proc. SIGMOD. (2002)
    • (2002) Proc. SIGMOD
    • Wang, H.1    Wang, W.2    Yang, J.3    Yu, P.S.4
  • 13
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional space
    • Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc. SIGMOD. (2000)
    • (2000) Proc. SIGMOD
    • Aggarwal, C.C.1    Yu, P.S.2
  • 14
    • 9444260615 scopus 로고
    • Fast algorithms for mining association rules
    • Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. SIGMOD. (1994)
    • (1994) Proc. SIGMOD
    • Agrawal, R.1    Srikant, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.