메뉴 건너뛰기




Volumn 2, Issue 4, 2012, Pages 351-364

Subspace clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; VECTOR SPACES;

EID: 84866446665     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1057     Document Type: Article
Times cited : (64)

References (107)
  • 1
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Explor 2004, 6:90-105.
    • (2004) SIGKDD Explor , vol.6 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 2
    • 84925655451 scopus 로고    scopus 로고
    • Subspace clustering techniques
    • Liu L, Özsu MT, eds New York, NY: Springer
    • Kröger P, Zimek A. Subspace clustering techniques. In: Liu L, Özsu MT, eds. Encyclopedia of Database Systems. New York, NY: Springer; 2009 2873-2875.
    • (2009) Encyclopedia of Database Systems , pp. 2873-2875
    • Kröger, P.1    Zimek, A.2
  • 3
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
    • Kriegel H-P, Kröger P, Zimek A. Clustering high dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 2009, 3:1-58.
    • (2009) ACM Trans Knowl Discov Data , vol.3 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 7
    • 71949123741 scopus 로고    scopus 로고
    • Subspace and projected clustering: experimental evaluation and analysis
    • Moise G, Zimek A, Kröger P, Kriegel H-P, Sander J. Subspace and projected clustering: experimental evaluation and analysis. Knowl Inf Syst 2009, 21:299-326.
    • (2009) Knowl Inf Syst , vol.21 , pp. 299-326
    • Moise, G.1    Zimek, A.2    Kröger, P.3    Kriegel, H.-P.4    Sander, J.5
  • 9
    • 0038670812 scopus 로고    scopus 로고
    • Searching in highdimensional spaces: index structures for improving the performance of multimedia databases
    • Böhm C, Berchtold S, Keim DA. Searching in highdimensional spaces: index structures for improving the performance of multimedia databases. ACM Comput Surv 2001, 33:322-373.
    • (2001) ACM Comput Surv , vol.33 , pp. 322-373
    • Böhm, C.1    Berchtold, S.2    Keim, D.A.3
  • 19
    • 0035049111 scopus 로고    scopus 로고
    • On the 'dimensionality curse' and the 'self-similarity blessing'
    • Korn F, Pagel B-U, Faloutsos C. On the 'dimensionality curse' and the 'self-similarity blessing'. IEEE Trans Knowl Data Eng 2001, 13:96-111.
    • (2001) IEEE Trans Knowl Data Eng , vol.13 , pp. 96-111
    • Korn, F.1    Pagel, B.-U.2    Faloutsos, C.3
  • 20
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • Fowlkes EB, Mallows CL. A method for comparing two hierarchical clusterings. J Am Stat Assoc 1983, 78:553-569.
    • (1983) J Am Stat Assoc , vol.78 , pp. 553-569
    • Fowlkes, E.B.1    Mallows, C.L.2
  • 21
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • Milligan GW. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika 1980, 45:325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 23
    • 21844501258 scopus 로고
    • Weighting and selection of variables for cluster analysis
    • Gnanadesikan R, Kettenring JR, Tsao SL. Weighting and selection of variables for cluster analysis. J Classif 1995, 12:113-136.
    • (1995) J Classif , vol.12 , pp. 113-136
    • Gnanadesikan, R.1    Kettenring, J.R.2    Tsao, S.L.3
  • 24
    • 41449108683 scopus 로고    scopus 로고
    • Selection of variables in cluster analysis: an empirical comparison of eight procedures
    • Steinley D, Brusco MJ. Selection of variables in cluster analysis: an empirical comparison of eight procedures. Psychometrika 2008, 73:125-144.
    • (2008) Psychometrika , vol.73 , pp. 125-144
    • Steinley, D.1    Brusco, M.J.2
  • 25
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182, 2003.
    • (2003) J Mach Learn Res 2003 , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 26
    • 84866454507 scopus 로고    scopus 로고
    • Distance-preserving dimensionality reduction
    • Yang L. Distance-preserving dimensionality reduction. WIREs Data Min Knowl Discov 2011, 1:369-380.
    • (2011) WIREs Data Min Knowl Discov , vol.1 , pp. 369-380
    • Yang, L.1
  • 33
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • Jing L, Ng MK, Huang JZ. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans Knowl Data Eng 2007, 19:1026-1041.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 34
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting
    • Woo K-G, Lee J-H, Kim M-H, Lee Y-J. FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting. Inf Softw Technol 2004, 46:255-271.
    • (2004) Inf Softw Technol , vol.46 , pp. 255-271
    • Woo, K.-G.1    Lee, J.-H.2    Kim, M.-H.3    Lee, Y.-J.4
  • 38
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • Friedman JH, Meulman JJ. Clustering objects on subsets of attributes. J R Stat Soc B 2004, 66:825-849.
    • (2004) J R Stat Soc B , vol.66 , pp. 825-849
    • Friedman, J.H.1    Meulman, J.J.2
  • 42
    • 78650700300 scopus 로고    scopus 로고
    • Particle swarm optimizer for variable weighting in clustering high-dimensional data
    • Lu Y, Wang S, Li S, Zhou C. Particle swarm optimizer for variable weighting in clustering high-dimensional data. Mach Learn 2010, 82:43-70.
    • (2010) Mach Learn , vol.82 , pp. 43-70
    • Lu, Y.1    Wang, S.2    Li, S.3    Zhou, C.4
  • 43
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B, 1977, 39:1-31.
    • (1977) J R Stat Soc B , vol.39 , pp. 1-31
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 47
    • 77950250511 scopus 로고    scopus 로고
    • Efficient mining of distance-based subspace clusters
    • Liu G, Sim K, Li J, Wong L. Efficient mining of distance-based subspace clusters. Stat Anal Data Min 2009, 2:427-444.
    • (2009) Stat Anal Data Min , vol.2 , pp. 427-444
    • Liu, G.1    Sim, K.2    Li, J.3    Wong, L.4
  • 50
  • 51
    • 14644404956 scopus 로고    scopus 로고
    • Iterative projected clustering by subspace mining
    • Yiu ML, Mamoulis N. Iterative projected clustering by subspace mining. IEEE Trans Knowl Data Eng 2005, 17:176-189.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 176-189
    • Yiu, M.L.1    Mamoulis, N.2
  • 68
    • 0019574599 scopus 로고
    • Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
    • Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 1981, 24:381-395.
    • (1981) Commun ACM , vol.24 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 71
    • 84857993572 scopus 로고    scopus 로고
    • Correlation clustering
    • Zimek A. Correlation clustering. ACM SIGKDD Explor 2009, 11:53-54.
    • (2009) ACM SIGKDD Explor , vol.11 , pp. 53-54
    • Zimek, A.1
  • 73
    • 84873198024 scopus 로고    scopus 로고
    • discovering, summarizing and using multiple clusterings MultiClust
    • Fern XZ, Davidson I, Dy J.G. MultiClust 2010: discovering, summarizing and using multiple clusterings. ACM SIGKDD Explor; 2010, 12:47-49.
    • (2010) ACM SIGKDD Explor. 2010 , vol.12 , pp. 47-49
    • Fern, X.Z.1    Davidson, I.2    Dy, J.G.3
  • 82
    • 70049108502 scopus 로고    scopus 로고
    • Simultaneous unsupervised learning of disparate clusterings
    • Jain P, Meka R, Dhillon IS. Simultaneous unsupervised learning of disparate clusterings. Stat Anal Data Min 2008, 1:195-210.
    • (2008) Stat Anal Data Min , vol.1 , pp. 195-210
    • Jain, P.1    Meka, R.2    Dhillon, I.S.3
  • 85
    • 84873117260 scopus 로고    scopus 로고
    • COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
    • Hong Kong, China
    • Bae E, Bailey J. COALA: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), Hong Kong, China; 2006.
    • (2006) Proceedings of the 6th IEEE International Conference on Data Mining (ICDM)
    • Bae, E.1    Bailey, J.2
  • 104
    • 33845981111 scopus 로고    scopus 로고
    • CLICKS: an effective algorithm for mining subspace clusters in categorical datasets
    • Zaki MJ, Peters M, Assent I, Seidl T. CLICKS: an effective algorithm for mining subspace clusters in categorical datasets. Data Knowl Eng 2007, 60:51-70.
    • (2007) Data Knowl Eng , vol.60 , pp. 51-70
    • Zaki, M.J.1    Peters, M.2    Assent, I.3    Seidl, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.