메뉴 건너뛰기




Volumn 329, Issue 1, 2014, Pages 85-93

DNA replication stress: Causes, resolution and disease

Author keywords

Chromosome fragile sites; DNA damage signaling; DNA replication; Genome stability; Replication stress

Indexed keywords

ATM PROTEIN; ATR PROTEIN; DNA;

EID: 84919413650     PISSN: 00144827     EISSN: 10902422     Source Type: Journal    
DOI: 10.1016/j.yexcr.2014.09.030     Document Type: Review
Times cited : (163)

References (86)
  • 1
    • 84855754937 scopus 로고    scopus 로고
    • Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells
    • Sacco E., Hasan M.M., Alberghina L., Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol. Adv. 2012, 30:73-98.
    • (2012) Biotechnol. Adv. , vol.30 , pp. 73-98
    • Sacco, E.1    Hasan, M.M.2    Alberghina, L.3    Vanoni, M.4
  • 2
    • 79953220813 scopus 로고    scopus 로고
    • MCM2-7 form double hexamers at licensed origins in Xenopus egg extract
    • Gambus A., Khoudoli G.A., Jones R.C., Blow J.J. MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J. Biol. Chem. 2011, 286:11855-11864.
    • (2011) J. Biol. Chem. , vol.286 , pp. 11855-11864
    • Gambus, A.1    Khoudoli, G.A.2    Jones, R.C.3    Blow, J.J.4
  • 3
    • 84880928633 scopus 로고    scopus 로고
    • Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing
    • Yamazaki S., Hayano M., Masai H. Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet. TIG 2013, 29:449-460.
    • (2013) Trends Genet. TIG , vol.29 , pp. 449-460
    • Yamazaki, S.1    Hayano, M.2    Masai, H.3
  • 4
    • 84861992434 scopus 로고    scopus 로고
    • Activation of the replicative DNA helicase: breaking up is hard to do
    • Boos D., Frigola J., Diffley J.F. Activation of the replicative DNA helicase: breaking up is hard to do. Curr. Opin. Cell Biol. 2012, 24:423-430.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 423-430
    • Boos, D.1    Frigola, J.2    Diffley, J.F.3
  • 5
    • 84860181097 scopus 로고    scopus 로고
    • Mechanisms of replication fork protection: a safeguard for genome stability
    • Errico A., Costanzo V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit. Rev. Biochem. Mol. Biol. 2012, 47:222-235.
    • (2012) Crit. Rev. Biochem. Mol. Biol. , vol.47 , pp. 222-235
    • Errico, A.1    Costanzo, V.2
  • 6
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer S.E., Lewis P.W., Botchan M.R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 2006, 103:10236-10241.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10236-10241
    • Moyer, S.E.1    Lewis, P.W.2    Botchan, M.R.3
  • 7
    • 74749095240 scopus 로고    scopus 로고
    • Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins
    • Ilves I., Petojevic T., Pesavento J.J., Botchan M.R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 2010, 37:247-258.
    • (2010) Mol. Cell , vol.37 , pp. 247-258
    • Ilves, I.1    Petojevic, T.2    Pesavento, J.J.3    Botchan, M.R.4
  • 8
    • 80052942659 scopus 로고    scopus 로고
    • Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase
    • Fu Y.V., et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 2011, 146:931-941.
    • (2011) Cell , vol.146 , pp. 931-941
    • Fu, Y.V.1
  • 9
    • 77953954908 scopus 로고    scopus 로고
    • How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
    • Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?. Genes Dev. 2010, 24:1208-1219.
    • (2010) Genes Dev. , vol.24 , pp. 1208-1219
    • Labib, K.1
  • 10
    • 78649317232 scopus 로고    scopus 로고
    • Regulation of the initiation step of DNA replication by cyclin-dependent kinases
    • Tanaka S., Araki H. Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 2010, 119:565-574.
    • (2010) Chromosoma , vol.119 , pp. 565-574
    • Tanaka, S.1    Araki, H.2
  • 11
    • 84891301320 scopus 로고    scopus 로고
    • Causes and consequences of replication stress
    • Zeman M.K., Cimprich K.A. Causes and consequences of replication stress. Nat. Cell Biol. 2014, 16:2-9.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 2-9
    • Zeman, M.K.1    Cimprich, K.A.2
  • 13
    • 84881439745 scopus 로고    scopus 로고
    • MUS81 promotes common fragile site expression
    • Ying S., et al. MUS81 promotes common fragile site expression. Nat. Cell Biol. 2013, 15:1001-1007.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1001-1007
    • Ying, S.1
  • 14
    • 84881471113 scopus 로고    scopus 로고
    • ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis
    • Naim V., Wilhelm T., Debatisse M., Rosselli F. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat. Cell Biol. 2013, 15:1008-1015.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1008-1015
    • Naim, V.1    Wilhelm, T.2    Debatisse, M.3    Rosselli, F.4
  • 15
    • 0021278143 scopus 로고
    • DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes
    • Glover T.W., Berger C., Coyle J., Echo B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum. Genet. 1984, 67:136-142.
    • (1984) Hum. Genet. , vol.67 , pp. 136-142
    • Glover, T.W.1    Berger, C.2    Coyle, J.3    Echo, B.4
  • 16
    • 0037069944 scopus 로고    scopus 로고
    • Evidence that instability within the FRA3B region extends four megabases
    • Becker N.A., Thorland E.C., Denison S.R., Phillips L.A., Smith D.I. Evidence that instability within the FRA3B region extends four megabases. Oncogene 2002, 21:8713-8722.
    • (2002) Oncogene , vol.21 , pp. 8713-8722
    • Becker, N.A.1    Thorland, E.C.2    Denison, S.R.3    Phillips, L.A.4    Smith, D.I.5
  • 17
    • 0035890419 scopus 로고    scopus 로고
    • WWOX, the FRA16D gene, behaves as a suppressor of tumor growth
    • Bednarek A.K., et al. WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res. 2001, 61:8068-8073.
    • (2001) Cancer Res. , vol.61 , pp. 8068-8073
    • Bednarek, A.K.1
  • 18
    • 0042522482 scopus 로고    scopus 로고
    • Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer
    • Denison S.R., Callahan G., Becker N.A., Phillips L.A., Smith D.I. Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Genes Chromosomes Cancer 2003, 38:40-52.
    • (2003) Genes Chromosomes Cancer , vol.38 , pp. 40-52
    • Denison, S.R.1    Callahan, G.2    Becker, N.A.3    Phillips, L.A.4    Smith, D.I.5
  • 19
    • 0031148646 scopus 로고    scopus 로고
    • Aphidicolin-induced FRA3B breakpoints cluster in two distinct regions
    • Wang L., et al. Aphidicolin-induced FRA3B breakpoints cluster in two distinct regions. Genomics 1997, 41:485-488.
    • (1997) Genomics , vol.41 , pp. 485-488
    • Wang, L.1
  • 20
    • 77956990244 scopus 로고    scopus 로고
    • PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice
    • Poulogiannis G., et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl. Acad. Sci. USA 2010, 107:15145-15150.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 15145-15150
    • Poulogiannis, G.1
  • 21
    • 84895929884 scopus 로고    scopus 로고
    • A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas
    • Gao G., et al. A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas. Genes Chromosomes Cancer 2014, 53:392-401.
    • (2014) Genes Chromosomes Cancer , vol.53 , pp. 392-401
    • Gao, G.1
  • 22
    • 13344279424 scopus 로고    scopus 로고
    • The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers
    • Ohta M., et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996, 84:587-597.
    • (1996) Cell , vol.84 , pp. 587-597
    • Ohta, M.1
  • 23
    • 79551661935 scopus 로고    scopus 로고
    • Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier A., et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 2011, 470:120-123.
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1
  • 24
    • 84873310832 scopus 로고    scopus 로고
    • Identification of early replicating fragile sites that contribute to genome instability
    • Barlow J.H., et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 2013, 152:620-632.
    • (2013) Cell , vol.152 , pp. 620-632
    • Barlow, J.H.1
  • 25
    • 9644302474 scopus 로고    scopus 로고
    • Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro
    • Vieira K.F., et al. Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. J. Biol. Chem. 2004, 279:50350-50357.
    • (2004) J. Biol. Chem. , vol.279 , pp. 50350-50357
    • Vieira, K.F.1
  • 26
    • 84255198334 scopus 로고    scopus 로고
    • Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes
    • Helmrich A., Ballarino M., Tora L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 2011, 44:966-977.
    • (2011) Mol. Cell , vol.44 , pp. 966-977
    • Helmrich, A.1    Ballarino, M.2    Tora, L.3
  • 27
    • 84255177502 scopus 로고    scopus 로고
    • RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability
    • Wahba L., Amon J.D., Koshland D., Vuica-Ross M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 2011, 44:978-988.
    • (2011) Mol. Cell , vol.44 , pp. 978-988
    • Wahba, L.1    Amon, J.D.2    Koshland, D.3    Vuica-Ross, M.4
  • 28
    • 84904459138 scopus 로고    scopus 로고
    • BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2
    • Bhatia V., et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 2014, 511:362-365.
    • (2014) Nature , vol.511 , pp. 362-365
    • Bhatia, V.1
  • 29
    • 79960802984 scopus 로고    scopus 로고
    • The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores
    • Bermejo R., et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 2011, 146:233-246.
    • (2011) Cell , vol.146 , pp. 233-246
    • Bermejo, R.1
  • 30
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis T.D., Gorgoulis V.G., Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319:1352-1355.
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 31
    • 17244367849 scopus 로고    scopus 로고
    • DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova J., et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005, 434:864-870.
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1
  • 32
    • 17244366865 scopus 로고    scopus 로고
    • Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions
    • Gorgoulis V.G., et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005, 434:907-913.
    • (2005) Nature , vol.434 , pp. 907-913
    • Gorgoulis, V.G.1
  • 33
    • 33845235459 scopus 로고    scopus 로고
    • Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints
    • Bartkova J., et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006, 444:633-637.
    • (2006) Nature , vol.444 , pp. 633-637
    • Bartkova, J.1
  • 34
    • 33845269825 scopus 로고    scopus 로고
    • Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication
    • Di Micco R., et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006, 444:638-642.
    • (2006) Nature , vol.444 , pp. 638-642
    • Di Micco, R.1
  • 36
    • 35548956063 scopus 로고    scopus 로고
    • The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo
    • Reimann M., et al. The Myc-evoked DNA damage response accounts for treatment resistance in primary lymphomas in vivo. Blood 2007, 110:2996-3004.
    • (2007) Blood , vol.110 , pp. 2996-3004
    • Reimann, M.1
  • 37
    • 33749852117 scopus 로고    scopus 로고
    • Genomic instability during Myc-induced lymphomagenesis in the bursa of Fabricius
    • Neiman P.E., et al. Genomic instability during Myc-induced lymphomagenesis in the bursa of Fabricius. Oncogene 2006, 25:6325-6335.
    • (2006) Oncogene , vol.25 , pp. 6325-6335
    • Neiman, P.E.1
  • 38
    • 84919450000 scopus 로고    scopus 로고
    • Myc induced replicative stress response: How to cope with it and exploit it
    • Rohban S., Campaner S. Myc induced replicative stress response: How to cope with it and exploit it. Biochim. Biophys. Acta 2014.
    • (2014) Biochim. Biophys. Acta
    • Rohban, S.1    Campaner, S.2
  • 39
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio J.G., Viggiani C.J., Gibson D.G., Aparicio O.M. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell Biol. 2004, 24:4769-4780.
    • (2004) Mol. Cell Biol. , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 40
    • 84887408314 scopus 로고    scopus 로고
    • The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity
    • Boyer A.S., Grgurevic S., Cazaux C., Hoffmann J.S. The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J. Mol. Biol. 2013, 425:4767-4781.
    • (2013) J. Mol. Biol. , vol.425 , pp. 4767-4781
    • Boyer, A.S.1    Grgurevic, S.2    Cazaux, C.3    Hoffmann, J.S.4
  • 41
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: making it safe to play with knives
    • Ciccia A., Elledge S.J. The DNA damage response: making it safe to play with knives. Mol. Cell 2010, 40:179-204.
    • (2010) Mol. Cell , vol.40 , pp. 179-204
    • Ciccia, A.1    Elledge, S.J.2
  • 42
    • 34247483506 scopus 로고    scopus 로고
    • ATM activation and DNA damage response
    • Lavin M.F., Kozlov S. ATM activation and DNA damage response. Cell Cycle 2007, 6:931-942.
    • (2007) Cell Cycle , vol.6 , pp. 931-942
    • Lavin, M.F.1    Kozlov, S.2
  • 43
    • 77955847245 scopus 로고    scopus 로고
    • Multiple roles of ATM in monitoring and maintaining DNA integrity
    • Derheimer F.A., Kastan M.B. Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett. 2010, 584:3675-3681.
    • (2010) FEBS Lett. , vol.584 , pp. 3675-3681
    • Derheimer, F.A.1    Kastan, M.B.2
  • 45
    • 84889589443 scopus 로고    scopus 로고
    • Naked replication forks break apRPArt
    • Fernandez-Capetillo O., Nussenzweig A. Naked replication forks break apRPArt. Cell 2013, 155:979-980.
    • (2013) Cell , vol.155 , pp. 979-980
    • Fernandez-Capetillo, O.1    Nussenzweig, A.2
  • 46
    • 84889563685 scopus 로고    scopus 로고
    • ATR prohibits replication catastrophe by preventing global exhaustion of RPA
    • Toledo L.I., et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 2013, 155:1088-1103.
    • (2013) Cell , vol.155 , pp. 1088-1103
    • Toledo, L.I.1
  • 47
    • 84887574546 scopus 로고    scopus 로고
    • ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress
    • Yamada M., et al. ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev. 2013, 27:2459-2472.
    • (2013) Genes Dev. , vol.27 , pp. 2459-2472
    • Yamada, M.1
  • 48
    • 77957123627 scopus 로고    scopus 로고
    • Pathways of mammalian replication fork restart. Nature reviews
    • Petermann E., Helleday T. Pathways of mammalian replication fork restart. Nature reviews. Mol. Cell Biol. 2010, 11:683-687.
    • (2010) Mol. Cell Biol. , vol.11 , pp. 683-687
    • Petermann, E.1    Helleday, T.2
  • 49
    • 84861843272 scopus 로고    scopus 로고
    • CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination
    • Falck J., et al. CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep. 2012, 13:561-568.
    • (2012) EMBO Rep. , vol.13 , pp. 561-568
    • Falck, J.1
  • 50
    • 4544339736 scopus 로고    scopus 로고
    • Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks
    • Robison J.G., Elliott J., Dixon K., Oakley G.G. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at sites of stalled replication forks. J. Biol. Chem. 2004, 279:34802-34810.
    • (2004) J. Biol. Chem. , vol.279 , pp. 34802-34810
    • Robison, J.G.1    Elliott, J.2    Dixon, K.3    Oakley, G.G.4
  • 51
    • 84876097735 scopus 로고    scopus 로고
    • A role for the MRN complex in ATR activation via TOPBP1 recruitment
    • Duursma A.M., Driscoll R., Elias J.E., Cimprich K.A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 2013, 50:116-122.
    • (2013) Mol. Cell , vol.50 , pp. 116-122
    • Duursma, A.M.1    Driscoll, R.2    Elias, J.E.3    Cimprich, K.A.4
  • 52
    • 84877156564 scopus 로고    scopus 로고
    • The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks
    • Lee J., Dunphy W.G. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol. Biol. Cell 2013, 24:1343-1353.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1343-1353
    • Lee, J.1    Dunphy, W.G.2
  • 53
    • 84878548877 scopus 로고    scopus 로고
    • Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1
    • Shiotani B., et al. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep. 2013, 3:1651-1662.
    • (2013) Cell Rep. , vol.3 , pp. 1651-1662
    • Shiotani, B.1
  • 54
    • 33646122683 scopus 로고    scopus 로고
    • ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks
    • Trenz K., Smith E., Smith S., Costanzo V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. 2006, 25:1764-1774.
    • (2006) EMBO J. , vol.25 , pp. 1764-1774
    • Trenz, K.1    Smith, E.2    Smith, S.3    Costanzo, V.4
  • 55
    • 77956881105 scopus 로고    scopus 로고
    • ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery
    • Ammazzalorso F., Pirzio L.M., Bignami M., Franchitto A., Pichierri P. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J. 2010, 29:3156-3169.
    • (2010) EMBO J. , vol.29 , pp. 3156-3169
    • Ammazzalorso, F.1    Pirzio, L.M.2    Bignami, M.3    Franchitto, A.4    Pichierri, P.5
  • 56
    • 17144395509 scopus 로고    scopus 로고
    • ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation
    • Davalos A.R., Kaminker P., Hansen R.K., Campisi J. ATR and ATM-dependent movement of BLM helicase during replication stress ensures optimal ATM activation and 53BP1 focus formation. Cell Cycle 2004, 3:1579-1586.
    • (2004) Cell Cycle , vol.3 , pp. 1579-1586
    • Davalos, A.R.1    Kaminker, P.2    Hansen, R.K.3    Campisi, J.4
  • 57
    • 79955490586 scopus 로고    scopus 로고
    • Replication stress induces 53BP1-containing OPT domains in G1 cells
    • Harrigan J.A., et al. Replication stress induces 53BP1-containing OPT domains in G1 cells. J. Cell Biol. 2011, 193:97-108.
    • (2011) J. Cell Biol. , vol.193 , pp. 97-108
    • Harrigan, J.A.1
  • 58
    • 79952281751 scopus 로고    scopus 로고
    • 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress
    • Lukas C., et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat. Cell Biol. 2011, 13:243-253.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 243-253
    • Lukas, C.1
  • 59
    • 41649120947 scopus 로고    scopus 로고
    • Interplay between ATM and ATR in the regulation of common fragile site stability
    • Ozeri-Galai E., Schwartz M., Rahat A., Kerem B. Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 2008, 27:2109-2117.
    • (2008) Oncogene , vol.27 , pp. 2109-2117
    • Ozeri-Galai, E.1    Schwartz, M.2    Rahat, A.3    Kerem, B.4
  • 60
    • 84861322877 scopus 로고    scopus 로고
    • Topoisomerase I poisoning results in PARP-mediated replication fork reversal
    • Ray Chaudhuri A., et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 2012, 19:417-423.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 417-423
    • Ray Chaudhuri, A.1
  • 61
    • 84895455197 scopus 로고    scopus 로고
    • Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components
    • Alabert C., et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 2014, 16:281-293.
    • (2014) Nat. Cell Biol. , vol.16 , pp. 281-293
    • Alabert, C.1
  • 62
    • 34250813133 scopus 로고    scopus 로고
    • ATMIN defines an NBS1-independent pathway of ATM signalling
    • Kanu N., Behrens A. ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO J. 2007, 26:2933-2941.
    • (2007) EMBO J. , vol.26 , pp. 2933-2941
    • Kanu, N.1    Behrens, A.2
  • 63
    • 22744456546 scopus 로고    scopus 로고
    • ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage
    • McNees C.J., Conlan L.A., Tenis N., Heierhorst J. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage. EMBO J. 2005, 24:2447-2457.
    • (2005) EMBO J. , vol.24 , pp. 2447-2457
    • McNees, C.J.1    Conlan, L.A.2    Tenis, N.3    Heierhorst, J.4
  • 64
    • 84871692987 scopus 로고    scopus 로고
    • Competition between NBS1 and ATMIN controls ATM signaling pathway choice
    • Zhang T., et al. Competition between NBS1 and ATMIN controls ATM signaling pathway choice. Cell Rep. 2012, 2:1498-1504.
    • (2012) Cell Rep. , vol.2 , pp. 1498-1504
    • Zhang, T.1
  • 65
    • 0032475885 scopus 로고    scopus 로고
    • Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2
    • Iwabuchi K., et al. Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J. Biol. Chem. 1998, 273:26061-26068.
    • (1998) J. Biol. Chem. , vol.273 , pp. 26061-26068
    • Iwabuchi, K.1
  • 66
    • 79953198187 scopus 로고    scopus 로고
    • Mutations in the pre-replication complex cause Meier-Gorlin syndrome
    • Bicknell L.S., et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat. Genet. 2011, 43:356-359.
    • (2011) Nat. Genet. , vol.43 , pp. 356-359
    • Bicknell, L.S.1
  • 67
    • 0345073699 scopus 로고    scopus 로고
    • A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome
    • O'Driscoll M., Ruiz-Perez V.L., Woods C.G., Jeggo P.A., Goodship J.A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 2003, 33:497-501.
    • (2003) Nat. Genet. , vol.33 , pp. 497-501
    • O'Driscoll, M.1    Ruiz-Perez, V.L.2    Woods, C.G.3    Jeggo, P.A.4    Goodship, J.A.5
  • 68
    • 80055077904 scopus 로고    scopus 로고
    • CtIP Mutations Cause Seckel and Jawad Syndromes
    • Qvist P., et al. CtIP Mutations Cause Seckel and Jawad Syndromes. PLoS Genet. 2011, 7:e1002310.
    • (2011) PLoS Genet. , vol.7 , pp. e1002310
    • Qvist, P.1
  • 69
    • 78951474460 scopus 로고    scopus 로고
    • The MRE11 complex: starting from the ends. Nature reviews
    • Stracker T.H., Petrini J.H. The MRE11 complex: starting from the ends. Nature reviews. Mol. Cell Biol. 2011, 12:90-103.
    • (2011) Mol. Cell Biol. , vol.12 , pp. 90-103
    • Stracker, T.H.1    Petrini, J.H.2
  • 70
    • 38649092988 scopus 로고    scopus 로고
    • Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling
    • Griffith E., et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 2008, 40:232-236.
    • (2008) Nat. Genet. , vol.40 , pp. 232-236
    • Griffith, E.1
  • 71
    • 84874696990 scopus 로고    scopus 로고
    • Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest
    • Singh M., et al. Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Mol. Cell Biol. 2013, 33:1210-1222.
    • (2013) Mol. Cell Biol. , vol.33 , pp. 1210-1222
    • Singh, M.1
  • 72
    • 84900330481 scopus 로고    scopus 로고
    • Chemical inhibition of NAT10 corrects defects of laminopathic cells
    • Larrieu D., Britton S., Demir M., Rodriguez R., Jackson S.P. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science 2014, 344:527-532.
    • (2014) Science , vol.344 , pp. 527-532
    • Larrieu, D.1    Britton, S.2    Demir, M.3    Rodriguez, R.4    Jackson, S.P.5
  • 73
    • 18544381908 scopus 로고    scopus 로고
    • Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia
    • Boerkoel C.F., et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 2002, 30:215-220.
    • (2002) Nat. Genet. , vol.30 , pp. 215-220
    • Boerkoel, C.F.1
  • 74
    • 84898619104 scopus 로고    scopus 로고
    • ATRX dysfunction induces replication defects in primary mouse cells
    • Clynes D., et al. ATRX dysfunction induces replication defects in primary mouse cells. PloS One 2014, 9:e92915.
    • (2014) PloS One , vol.9 , pp. e92915
    • Clynes, D.1
  • 75
    • 33746522835 scopus 로고    scopus 로고
    • Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection
    • Crow Y.J., et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 2006, 38:910-916.
    • (2006) Nat. Genet. , vol.38 , pp. 910-916
    • Crow, Y.J.1
  • 76
    • 84893737510 scopus 로고    scopus 로고
    • Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity
    • Tumbale P., Williams J.S., Schellenberg M.J., Kunkel T.A., Williams R.S. Aprataxin resolves adenylated RNA-DNA junctions to maintain genome integrity. Nature 2014, 506:111-115.
    • (2014) Nature , vol.506 , pp. 111-115
    • Tumbale, P.1    Williams, J.S.2    Schellenberg, M.J.3    Kunkel, T.A.4    Williams, R.S.5
  • 77
    • 3242658933 scopus 로고    scopus 로고
    • Fanconi anaemia and leukaemia - clinical and molecular aspects
    • Tischkowitz M., Dokal I. Fanconi anaemia and leukaemia - clinical and molecular aspects. Br. J. Haematol. 2004, 126:176-191.
    • (2004) Br. J. Haematol. , vol.126 , pp. 176-191
    • Tischkowitz, M.1    Dokal, I.2
  • 78
    • 14644391577 scopus 로고    scopus 로고
    • The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability
    • Howlett N.G., Taniguchi T., Durkin S.G., D'Andrea A.D., Glover T.W. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 2005, 14:693-701.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 693-701
    • Howlett, N.G.1    Taniguchi, T.2    Durkin, S.G.3    D'Andrea, A.D.4    Glover, T.W.5
  • 79
    • 43049162175 scopus 로고    scopus 로고
    • RecQ helicases: guardian angels of the DNA replication fork
    • Bachrati C.Z., Hickson I.D. RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 2008, 117:219-233.
    • (2008) Chromosoma , vol.117 , pp. 219-233
    • Bachrati, C.Z.1    Hickson, I.D.2
  • 80
    • 84874362586 scopus 로고    scopus 로고
    • Replication stress links structural and numerical cancer chromosomal instability
    • Burrell R.A., et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013, 494:492-496.
    • (2013) Nature , vol.494 , pp. 492-496
    • Burrell, R.A.1
  • 81
    • 84883780177 scopus 로고    scopus 로고
    • FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling
    • Lossaint G., et al. FANCD2 binds MCM proteins and controls replisome function upon activation of s phase checkpoint signaling. Mol. Cell 2013, 51:678-690.
    • (2013) Mol. Cell , vol.51 , pp. 678-690
    • Lossaint, G.1
  • 83
    • 84880534493 scopus 로고    scopus 로고
    • FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery
    • Chaudhury I., Sareen A., Raghunandan M., Sobeck A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res. 2013, 41:6444-6459.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 6444-6459
    • Chaudhury, I.1    Sareen, A.2    Raghunandan, M.3    Sobeck, A.4
  • 84
    • 84861741887 scopus 로고    scopus 로고
    • Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA
    • Sirbu B.M., Couch F.B., Cortez D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 2012, 7:594-605.
    • (2012) Nat. Protoc. , vol.7 , pp. 594-605
    • Sirbu, B.M.1    Couch, F.B.2    Cortez, D.3
  • 85
    • 84875754465 scopus 로고    scopus 로고
    • Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
    • Crosetto N., et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 2013, 10:361-365.
    • (2013) Nat. Methods , vol.10 , pp. 361-365
    • Crosetto, N.1
  • 86
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen B., et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013, 155:1479-1491.
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.