메뉴 건너뛰기




Volumn 29, Issue 8, 2013, Pages 449-460

Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing

Author keywords

Checkpoint regulation; Chromatin loop; Chromatin structures; Regulation origin; Replication timing; Rif1 protein

Indexed keywords

CDC7 PROTEIN; CHECKPOINT KINASE 2; CHECKPOINT KINASE RAD3; CLB5 PROTEIN; CTF18 PROTEIN; CTF4 PROTEIN; DCC1 PROTEIN; DICER; DNA METHYLTRANSFERASE 1; FKH1 PROTEIN; FKH2 PROTEIN; HISTONE H3; MEC1 PROTEIN; MRC1 PROTEIN; ORC2 PROTEIN; PROTEIN; PROTEIN RAD9; RAD24 PROTEIN; REPLICATION FACTOR C; RIF1 PROTEIN; SILENT INFORMATION REGULATOR PROTEIN; SWI6 PROTEIN; TAZ1 PROTEIN; TOF1 PROTEIN; UNCLASSIFIED DRUG;

EID: 84880928633     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2013.05.001     Document Type: Review
Times cited : (64)

References (111)
  • 1
    • 76949086750 scopus 로고    scopus 로고
    • Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC
    • Katayama T., et al. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat. Rev. Microbiol. 2010, 8:163-170.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 163-170
    • Katayama, T.1
  • 2
    • 77953632048 scopus 로고    scopus 로고
    • Eukaryotic chromosome DNA replication: where, when, and how?
    • Masai H., et al. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 2010, 79:89-130.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 89-130
    • Masai, H.1
  • 3
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow J.J., et al. How dormant origins promote complete genome replication. Trends Biochem. Sci. 2011, 36:405-414.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 405-414
    • Blow, J.J.1
  • 4
    • 77953954908 scopus 로고    scopus 로고
    • How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
    • Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?. Genes Dev. 2010, 24:1208-1219.
    • (2010) Genes Dev. , vol.24 , pp. 1208-1219
    • Labib, K.1
  • 5
    • 33947127410 scopus 로고    scopus 로고
    • Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells
    • Arias E.E., Walter J.C. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 2007, 21:497-518.
    • (2007) Genes Dev. , vol.21 , pp. 497-518
    • Arias, E.E.1    Walter, J.C.2
  • 6
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
    • Karnani N., et al. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 2007, 17:865-876.
    • (2007) Genome Res. , vol.17 , pp. 865-876
    • Karnani, N.1
  • 7
    • 53549118586 scopus 로고    scopus 로고
    • Global organization of replication time zones of the mouse genome
    • Farkash-Amar S., et al. Global organization of replication time zones of the mouse genome. Genome Res. 2008, 18:1562-1570.
    • (2008) Genome Res. , vol.18 , pp. 1562-1570
    • Farkash-Amar, S.1
  • 8
    • 80052523848 scopus 로고    scopus 로고
    • Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features
    • Cayrou C., et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2010, 21:1438-1449.
    • (2010) Genome Res. , vol.21 , pp. 1438-1449
    • Cayrou, C.1
  • 9
    • 84864690009 scopus 로고    scopus 로고
    • Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs
    • Besnard E., et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 2012, 19:837-844.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 837-844
    • Besnard, E.1
  • 10
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani I., et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 2008, 6:e245.
    • (2008) PLoS Biol. , vol.6
    • Hiratani, I.1
  • 11
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen R.S., et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:139-144.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 139-144
    • Hansen, R.S.1
  • 12
    • 0026623241 scopus 로고
    • A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation
    • Hardy C.F., et al. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 1992, 6:801-814.
    • (1992) Genes Dev. , vol.6 , pp. 801-814
    • Hardy, C.F.1
  • 13
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova D.S., Gilbert D.M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 1999, 4:983-993.
    • (1999) Mol. Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 14
    • 0035939669 scopus 로고    scopus 로고
    • The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase
    • Li F., et al. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J. Cell Biol. 2001, 154:283-292.
    • (2001) J. Cell Biol. , vol.154 , pp. 283-292
    • Li, F.1
  • 15
    • 19644381697 scopus 로고    scopus 로고
    • Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states
    • Wu R., et al. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol. Biol. Cell 2005, 16:2872-2881.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2872-2881
    • Wu, R.1
  • 16
    • 0031005357 scopus 로고    scopus 로고
    • Cell cycle-dependent establishment of a late replication program
    • Raghuraman M.K., et al. Cell cycle-dependent establishment of a late replication program. Science 1997, 276:806-809.
    • (1997) Science , vol.276 , pp. 806-809
    • Raghuraman, M.K.1
  • 17
    • 0035931758 scopus 로고    scopus 로고
    • The positioning and dynamics of origins of replication in the budding yeast nucleus
    • Heun P., et al. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 2001, 152:385-400.
    • (2001) J. Cell Biol. , vol.152 , pp. 385-400
    • Heun, P.1
  • 18
    • 77951150595 scopus 로고    scopus 로고
    • Early initiation of a replication origin tethered at the nuclear periphery
    • Ebrahimi H., et al. Early initiation of a replication origin tethered at the nuclear periphery. J. Cell Sci. 2010, 123:1015-1019.
    • (2010) J. Cell Sci. , vol.123 , pp. 1015-1019
    • Ebrahimi, H.1
  • 19
    • 34548789595 scopus 로고    scopus 로고
    • Replication in hydroxyurea: it's a matter of time
    • Alvino G.M., et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 2007, 27:6396-6406.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6396-6406
    • Alvino, G.M.1
  • 20
    • 84857060479 scopus 로고    scopus 로고
    • DNTP pools determine fork progression and origin usage under replication stress
    • Poli J., et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 2012, 31:883-894.
    • (2012) EMBO J. , vol.31 , pp. 883-894
    • Poli, J.1
  • 21
    • 0032497548 scopus 로고    scopus 로고
    • Regulation of DNA-replication origins during cell-cycle progression
    • Shirahige K., et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 1998, 395:618-621.
    • (1998) Nature , vol.395 , pp. 618-621
    • Shirahige, K.1
  • 22
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C., Diffley J.F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 1998, 395:615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 23
    • 0033568196 scopus 로고    scopus 로고
    • Activation of dormant origins of DNA replication in budding yeast
    • Santocanale C., et al. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 1999, 13:2360-2364.
    • (1999) Genes Dev. , vol.13 , pp. 2360-2364
    • Santocanale, C.1
  • 24
    • 33645152790 scopus 로고    scopus 로고
    • Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
    • Feng W., et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 2006, 8:148-155.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 148-155
    • Feng, W.1
  • 25
    • 33747589932 scopus 로고    scopus 로고
    • Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast
    • Raveendranathan M., et al. Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J. 2006, 25:3627-3639.
    • (2006) EMBO J. , vol.25 , pp. 3627-3639
    • Raveendranathan, M.1
  • 26
    • 79960802984 scopus 로고    scopus 로고
    • The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores
    • Bermejo R., et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 2011, 146:233-246.
    • (2011) Cell , vol.146 , pp. 233-246
    • Bermejo, R.1
  • 27
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y., et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 2003, 424:1078-1083.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1
  • 28
    • 78549290265 scopus 로고    scopus 로고
    • Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
    • Crabbe L., et al. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 2010, 17:1391-1397.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1391-1397
    • Crabbe, L.1
  • 29
    • 79952609005 scopus 로고    scopus 로고
    • The effect of the intra-S-phase checkpoint on origins of replication in human cells
    • Karnani N., Dutta A. The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev. 2011, 25:621-633.
    • (2011) Genes Dev. , vol.25 , pp. 621-633
    • Karnani, N.1    Dutta, A.2
  • 30
    • 0035861492 scopus 로고    scopus 로고
    • Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins
    • Wyrick J.J., et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 2001, 294:2357-2360.
    • (2001) Science , vol.294 , pp. 2357-2360
    • Wyrick, J.J.1
  • 31
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing
    • Schubeler D., et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 2002, 32:438-442.
    • (2002) Nat. Genet. , vol.32 , pp. 438-442
    • Schubeler, D.1
  • 33
    • 57349149434 scopus 로고    scopus 로고
    • Genome-wide studies highlight indirect links between human replication origins and gene regulation
    • Cadoret J.C., et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15837-15842.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15837-15842
    • Cadoret, J.C.1
  • 34
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: beyond cause and effect - part II
    • Hiratani I., et al. Replication timing and transcriptional control: beyond cause and effect - part II. Curr. Opin. Genet. Dev. 2009, 19:142-149.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 142-149
    • Hiratani, I.1
  • 35
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio P., et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 2005, 20:575-587.
    • (2005) Mol. Cell , vol.20 , pp. 575-587
    • Norio, P.1
  • 36
    • 84864453016 scopus 로고    scopus 로고
    • Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
    • Demczuk A., et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol. 2012, 10:e1001360.
    • (2012) PLoS Biol. , vol.10
    • Demczuk, A.1
  • 37
    • 80555157584 scopus 로고    scopus 로고
    • Genome-wide depletion of replication initiation events in highly transcribed regions
    • Martin M.M., et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 2011, 21:1822-1832.
    • (2011) Genome Res. , vol.21 , pp. 1822-1832
    • Martin, M.M.1
  • 38
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
    • Knott S.R., et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 2012, 148:99-111.
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1
  • 39
    • 84873044090 scopus 로고    scopus 로고
    • Location, location, location: it's all in the timing for replication origins
    • Aparicio O.M. Location, location, location: it's all in the timing for replication origins. Genes Dev. 2013, 27:117-128.
    • (2013) Genes Dev. , vol.27 , pp. 117-128
    • Aparicio, O.M.1
  • 40
    • 34547232986 scopus 로고    scopus 로고
    • Non-transcriptional control of DNA replication by c-Myc
    • Dominguez-Sola D., et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007, 448:445-451.
    • (2007) Nature , vol.448 , pp. 445-451
    • Dominguez-Sola, D.1
  • 41
    • 33845212649 scopus 로고    scopus 로고
    • Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin
    • Minami H., et al. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol. Cell. Biol. 2006, 26:8770-8780.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 8770-8780
    • Minami, H.1
  • 42
    • 84863617583 scopus 로고    scopus 로고
    • Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1
    • Moriyama K., et al. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J. Biol. Chem. 2012, 287:23977-23994.
    • (2012) J. Biol. Chem. , vol.287 , pp. 23977-23994
    • Moriyama, K.1
  • 43
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson J.B., Gottschling D.E. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999, 13:146-151.
    • (1999) Genes Dev. , vol.13 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 44
    • 43049124410 scopus 로고    scopus 로고
    • An ARS element inhibits DNA replication through a SIR2-dependent mechanism
    • Crampton A., et al. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol. Cell 2008, 30:156-166.
    • (2008) Mol. Cell , vol.30 , pp. 156-166
    • Crampton, A.1
  • 45
    • 53549122748 scopus 로고    scopus 로고
    • HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
    • Miotto B., Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 2008, 22:2633-2638.
    • (2008) Genes Dev. , vol.22 , pp. 2633-2638
    • Miotto, B.1    Struhl, K.2
  • 46
    • 73649089696 scopus 로고    scopus 로고
    • HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin
    • Miotto B., Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol. Cell 2010, 37:57-66.
    • (2010) Mol. Cell , vol.37 , pp. 57-66
    • Miotto, B.1    Struhl, K.2
  • 47
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal B.D., Calvi B.R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 2004, 430:372-376.
    • (2004) Nature , vol.430 , pp. 372-376
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 48
    • 77954526472 scopus 로고    scopus 로고
    • The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin
    • Muller P., et al. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev. 2010, 24:1418-1433.
    • (2010) Genes Dev. , vol.24 , pp. 1418-1433
    • Muller, P.1
  • 49
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M., et al. Histone acetylation regulates the time of replication origin firing. Mol. Cell 2002, 10:1223-1233.
    • (2002) Mol. Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1
  • 50
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio J.G., et al. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004, 24:4769-4780.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1
  • 51
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott S.R., et al. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009, 23:1077-1090.
    • (2009) Genes Dev. , vol.23 , pp. 1077-1090
    • Knott, S.R.1
  • 52
    • 61849184077 scopus 로고    scopus 로고
    • The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
    • Hayashi M.T., et al. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat. Cell Biol. 2009, 11:357-362.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 357-362
    • Hayashi, M.T.1
  • 53
    • 33947110984 scopus 로고    scopus 로고
    • Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast
    • Hayashi M., et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 2007, 26:1327-1339.
    • (2007) EMBO J. , vol.26 , pp. 1327-1339
    • Hayashi, M.1
  • 54
    • 0036791764 scopus 로고    scopus 로고
    • Ku complex controls the replication time of DNA in telomere regions
    • Cosgrove A.J., et al. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 2002, 16:2485-2490.
    • (2002) Genes Dev. , vol.16 , pp. 2485-2490
    • Cosgrove, A.J.1
  • 55
    • 79955957615 scopus 로고    scopus 로고
    • The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
    • Lian H.Y., et al. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol. Biol. Cell 2011, 22:1753-1765.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1753-1765
    • Lian, H.Y.1
  • 56
    • 84866479376 scopus 로고    scopus 로고
    • Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast
    • Tazumi A., et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 2012, 26:2050-2062.
    • (2012) Genes Dev. , vol.26 , pp. 2050-2062
    • Tazumi, A.1
  • 57
    • 33947308706 scopus 로고    scopus 로고
    • Early replication of short telomeres in budding yeast
    • Bianchi A., Shore D. Early replication of short telomeres in budding yeast. Cell 2007, 128:1051-1062.
    • (2007) Cell , vol.128 , pp. 1051-1062
    • Bianchi, A.1    Shore, D.2
  • 58
    • 79958075422 scopus 로고    scopus 로고
    • Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast
    • Hayano M., et al. Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast. Mol. Cell. Biol. 2011, 31:2380-2391.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2380-2391
    • Hayano, M.1
  • 59
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission Yeast
    • Wu P.Y., Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell 2009, 136:852-864.
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 60
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S., et al. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr. Biol. 2011, 21:2055-2063.
    • (2011) Curr. Biol. , vol.21 , pp. 2055-2063
    • Tanaka, S.1
  • 61
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D., et al. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011, 30:4805-4814.
    • (2011) EMBO J. , vol.30 , pp. 4805-4814
    • Mantiero, D.1
  • 62
    • 0028979307 scopus 로고
    • +, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication
    • +, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 1995, 14:3094-3104.
    • (1995) EMBO J. , vol.14 , pp. 3094-3104
    • Masai, H.1
  • 63
    • 0034765174 scopus 로고    scopus 로고
    • Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast
    • Takeda T., et al. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol. Biol. Cell 2001, 12:1257-1274.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 1257-1274
    • Takeda, T.1
  • 64
    • 84856281556 scopus 로고    scopus 로고
    • Rif1 is a global regulator of timing of replication origin firing in fission yeast
    • Hayano M., et al. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012, 26:137-150.
    • (2012) Genes Dev. , vol.26 , pp. 137-150
    • Hayano, M.1
  • 65
    • 0036860727 scopus 로고    scopus 로고
    • The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells
    • Dimitrova D.S., Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 2002, 115:4037-4051.
    • (2002) J. Cell Sci. , vol.115 , pp. 4037-4051
    • Dimitrova, D.S.1    Berezney, R.2
  • 66
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T., et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010, 20:761-770.
    • (2010) Genome Res. , vol.20 , pp. 761-770
    • Ryba, T.1
  • 67
    • 0022504648 scopus 로고
    • Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus
    • Nakamura H., et al. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 1986, 165:291-297.
    • (1986) Exp. Cell Res. , vol.165 , pp. 291-297
    • Nakamura, H.1
  • 68
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S., et al. Rif1 regulates the replication timing domains on the human genome. EMBO J. 2012, 31:3667-3677.
    • (2012) EMBO J. , vol.31 , pp. 3667-3677
    • Yamazaki, S.1
  • 69
    • 84866412836 scopus 로고    scopus 로고
    • Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
    • Cornacchia D., et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012, 31:3678-3690.
    • (2012) EMBO J. , vol.31 , pp. 3678-3690
    • Cornacchia, D.1
  • 70
    • 84855720100 scopus 로고    scopus 로고
    • Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation
    • Matsumoto S., et al. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. J. Cell Biol. 2011, 195:387-401.
    • (2011) J. Cell Biol. , vol.195 , pp. 387-401
    • Matsumoto, S.1
  • 71
    • 44149084708 scopus 로고    scopus 로고
    • DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin
    • Goren A., et al. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 2008, 22:1319-1324.
    • (2008) Genes Dev. , vol.22 , pp. 1319-1324
    • Goren, A.1
  • 72
    • 75549090255 scopus 로고    scopus 로고
    • Mammalian Rif1 contributes to replication stress survival and homology-directed repair
    • Buonomo S.B., et al. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J. Cell Biol. 2009, 187:385-398.
    • (2009) J. Cell Biol. , vol.187 , pp. 385-398
    • Buonomo, S.B.1
  • 73
    • 77956886919 scopus 로고    scopus 로고
    • Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication
    • Xu D., et al. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J. 2010, 29:3140-3155.
    • (2010) EMBO J. , vol.29 , pp. 3140-3155
    • Xu, D.1
  • 74
    • 84873488846 scopus 로고    scopus 로고
    • 53BP1 regulates DSB repair using Rif1 to control 5' end resection
    • Zimmermann M., et al. 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science 2013, 339:700-704.
    • (2013) Science , vol.339 , pp. 700-704
    • Zimmermann, M.1
  • 75
    • 84873526612 scopus 로고    scopus 로고
    • Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching
    • Di Virgilio M., et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 2013, 339:711-715.
    • (2013) Science , vol.339 , pp. 711-715
    • Di Virgilio, M.1
  • 76
    • 84876855215 scopus 로고    scopus 로고
    • RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
    • Chapman J.R., et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 2013, 49:858-871.
    • (2013) Mol. Cell , vol.49 , pp. 858-871
    • Chapman, J.R.1
  • 77
    • 84876877091 scopus 로고    scopus 로고
    • A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
    • Escribano-Diaz C., et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 2013, 49:872-883.
    • (2013) Mol. Cell , vol.49 , pp. 872-883
    • Escribano-Diaz, C.1
  • 78
    • 33645381936 scopus 로고    scopus 로고
    • The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells
    • Loh Y.H., et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 2006, 38:431-440.
    • (2006) Nat. Genet. , vol.38 , pp. 431-440
    • Loh, Y.H.1
  • 79
    • 33751092246 scopus 로고    scopus 로고
    • A protein interaction network for pluripotency of embryonic stem cells
    • Wang J., et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006, 444:364-368.
    • (2006) Nature , vol.444 , pp. 364-368
    • Wang, J.1
  • 80
    • 80052919408 scopus 로고    scopus 로고
    • Mutation rates across budding yeast chromosome VI are correlated with replication timing
    • Lang G.I., Murray A.W. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol. Evol. 2011, 3:799-811.
    • (2011) Genome Biol. Evol. , vol.3 , pp. 799-811
    • Lang, G.I.1    Murray, A.W.2
  • 81
    • 77953011587 scopus 로고    scopus 로고
    • MRC1-dependent scaling of the budding yeast DNA replication timing program
    • Koren A., et al. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 2010,20.
    • (2010) Genome Res. , pp. 20
    • Koren, A.1
  • 82
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero P., et al. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 2002, 16:2479-2484.
    • (2002) Genes Dev. , vol.16 , pp. 2479-2484
    • Pasero, P.1
  • 83
    • 0037019025 scopus 로고    scopus 로고
    • Control of replication timing by a transcriptional silencer
    • Zappulla D.C., et al. Control of replication timing by a transcriptional silencer. Curr. Biol. 2002, 12:869-875.
    • (2002) Curr. Biol. , vol.12 , pp. 869-875
    • Zappulla, D.C.1
  • 84
    • 0032134456 scopus 로고    scopus 로고
    • CLB5-dependent activation of late replication origins in S. cerevisiae
    • Donaldson A.D., et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 1998, 2:173-182.
    • (1998) Mol. Cell , vol.2 , pp. 173-182
    • Donaldson, A.D.1
  • 85
    • 61849083545 scopus 로고    scopus 로고
    • The temporal program of chromosome replication: genomewide replication in clb5D Saccharomyces cerevisiae
    • McCune H.J., et al. The temporal program of chromosome replication: genomewide replication in clb5D Saccharomyces cerevisiae. Genetics 2008, 180:1833-1847.
    • (2008) Genetics , vol.180 , pp. 1833-1847
    • McCune, H.J.1
  • 86
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger C., et al. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 2006, 25:5171-5179.
    • (2006) EMBO J. , vol.25 , pp. 5171-5179
    • Heichinger, C.1
  • 87
    • 77953004689 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
    • Schwaiger M., et al. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 2010, 20:771-780.
    • (2010) Genome Res. , vol.20 , pp. 771-780
    • Schwaiger, M.1
  • 88
    • 62549132126 scopus 로고    scopus 로고
    • Cyclin A-Cdk1 regulates the origin firing program in mammalian cells
    • Katsuno Y., et al. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3184-3189.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 3184-3189
    • Katsuno, Y.1
  • 89
    • 39749176602 scopus 로고    scopus 로고
    • The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
    • Jorgensen H.F., et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 2007, 8:R169.
    • (2007) Genome Biol. , vol.8
    • Jorgensen, H.F.1
  • 90
    • 73349139918 scopus 로고    scopus 로고
    • G9a selectively represses a class of latereplicating genes at the nuclear periphery
    • Yokochi T., et al. G9a selectively represses a class of latereplicating genes at the nuclear periphery. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19363-19368.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19363-19368
    • Yokochi, T.1
  • 91
    • 84864686940 scopus 로고    scopus 로고
    • Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1
    • Oda M., et al. Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1. PLoS ONE 2012, 7:e42375.
    • (2012) PLoS ONE , vol.7
    • Oda, M.1
  • 92
    • 74049163810 scopus 로고    scopus 로고
    • Decreased replication origin activity in temporal transition regions
    • Guan Z., et al. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 2009, 187:623-635.
    • (2009) J. Cell Biol. , vol.187 , pp. 623-635
    • Guan, Z.1
  • 93
    • 77649231571 scopus 로고    scopus 로고
    • Genome-wide analysis of the replication program in mammals
    • Farkash-Amar S., Simon I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 2009, 18:115-125.
    • (2009) Chromosome Res. , vol.18 , pp. 115-125
    • Farkash-Amar, S.1    Simon, I.2
  • 94
    • 84855272663 scopus 로고    scopus 로고
    • Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
    • Guilbaud G., et al. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput. Biol. 2011, 7:e1002322.
    • (2011) PLoS Comput. Biol. , vol.7
    • Guilbaud, G.1
  • 95
    • 33845976373 scopus 로고    scopus 로고
    • Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin
    • Masai H., et al. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J. Biol. Chem. 2006, 281:39249-39261.
    • (2006) J. Biol. Chem. , vol.281 , pp. 39249-39261
    • Masai, H.1
  • 96
    • 33749075373 scopus 로고    scopus 로고
    • Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression
    • Sheu Y.J., Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol. Cell 2006, 24:101-113.
    • (2006) Mol. Cell , vol.24 , pp. 101-113
    • Sheu, Y.J.1    Stillman, B.2
  • 97
    • 33745925880 scopus 로고    scopus 로고
    • Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
    • Moyer S.E., et al. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10236-10241.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10236-10241
    • Moyer, S.E.1
  • 98
    • 0036566328 scopus 로고    scopus 로고
    • Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death
    • Kim J.M., et al. Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death. EMBO J. 2002, 21:2168-2179.
    • (2002) EMBO J. , vol.21 , pp. 2168-2179
    • Kim, J.M.1
  • 99
    • 35648944221 scopus 로고    scopus 로고
    • Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae
    • Hoang M.L., et al. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae. Mol. Cell. Biol. 2007, 27:7594-7602.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7594-7602
    • Hoang, M.L.1
  • 100
    • 73849129578 scopus 로고    scopus 로고
    • The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4
    • Sheu Y.J., Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 2010, 463:113-117.
    • (2010) Nature , vol.463 , pp. 113-117
    • Sheu, Y.J.1    Stillman, B.2
  • 101
    • 33745239698 scopus 로고    scopus 로고
    • Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories
    • Kitamura E., et al. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 2006, 125:1297-1308.
    • (2006) Cell , vol.125 , pp. 1297-1308
    • Kitamura, E.1
  • 102
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E., et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 2010, 6:e1001011.
    • (2010) PLoS Genet. , vol.6
    • Yaffe, E.1
  • 103
    • 84868693520 scopus 로고    scopus 로고
    • Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization
    • Farkash-Amar S., et al. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization. PLoS ONE 2012, 7:e48986.
    • (2012) PLoS ONE , vol.7
    • Farkash-Amar, S.1
  • 104
    • 0344490333 scopus 로고    scopus 로고
    • Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype
    • State M.W., et al. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4684-4689.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4684-4689
    • State, M.W.1
  • 105
    • 2942596084 scopus 로고    scopus 로고
    • Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and velocardiofacial syndromes
    • D'Antoni S., et al. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and velocardiofacial syndromes. Gene 2004, 333:111-119.
    • (2004) Gene , vol.333 , pp. 111-119
    • D'Antoni, S.1
  • 106
    • 50849099769 scopus 로고    scopus 로고
    • Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions
    • Yehezkel S., et al. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum. Mol. Genet. 2008, 17:2776-2789.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 2776-2789
    • Yehezkel, S.1
  • 107
    • 84866384009 scopus 로고    scopus 로고
    • Abnormal developmental control of replicationtiming domains in pediatric acute lymphoblastic leukemia
    • Ryba T., et al. Abnormal developmental control of replicationtiming domains in pediatric acute lymphoblastic leukemia. Genome Res. 2012, 22:1833-1844.
    • (2012) Genome Res. , vol.22 , pp. 1833-1844
    • Ryba, T.1
  • 108
    • 83255189766 scopus 로고    scopus 로고
    • DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes
    • De S., Michor F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol. 2011, 29:1103-1108.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 1103-1108
    • De, S.1    Michor, F.2
  • 109
    • 0036156599 scopus 로고    scopus 로고
    • Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: diseaserelated genes in timing-switch regions
    • Watanabe Y., et al. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: diseaserelated genes in timing-switch regions. Hum. Mol. Genet. 2002, 11:13-21.
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 13-21
    • Watanabe, Y.1
  • 110
    • 63449141981 scopus 로고    scopus 로고
    • Human mutation rate associated with DNA replication timing
    • Stamatoyannopoulos J.A., et al. Human mutation rate associated with DNA replication timing. Nat. Genet. 2009, 41:393-395.
    • (2009) Nat. Genet. , vol.41 , pp. 393-395
    • Stamatoyannopoulos, J.A.1
  • 111
    • 84866067741 scopus 로고    scopus 로고
    • DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes
    • Woo Y.H., Li W.H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat. Commun. 2012, 3:781-790.
    • (2012) Nat. Commun. , vol.3 , pp. 781-790
    • Woo, Y.H.1    Li, W.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.