-
1
-
-
76949086750
-
Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC
-
Katayama T., et al. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat. Rev. Microbiol. 2010, 8:163-170.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 163-170
-
-
Katayama, T.1
-
2
-
-
77953632048
-
Eukaryotic chromosome DNA replication: where, when, and how?
-
Masai H., et al. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 2010, 79:89-130.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 89-130
-
-
Masai, H.1
-
3
-
-
79961170861
-
How dormant origins promote complete genome replication
-
Blow J.J., et al. How dormant origins promote complete genome replication. Trends Biochem. Sci. 2011, 36:405-414.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 405-414
-
-
Blow, J.J.1
-
4
-
-
77953954908
-
How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
-
Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?. Genes Dev. 2010, 24:1208-1219.
-
(2010)
Genes Dev.
, vol.24
, pp. 1208-1219
-
-
Labib, K.1
-
5
-
-
33947127410
-
Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells
-
Arias E.E., Walter J.C. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 2007, 21:497-518.
-
(2007)
Genes Dev.
, vol.21
, pp. 497-518
-
-
Arias, E.E.1
Walter, J.C.2
-
6
-
-
34250327950
-
Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
-
Karnani N., et al. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 2007, 17:865-876.
-
(2007)
Genome Res.
, vol.17
, pp. 865-876
-
-
Karnani, N.1
-
7
-
-
53549118586
-
Global organization of replication time zones of the mouse genome
-
Farkash-Amar S., et al. Global organization of replication time zones of the mouse genome. Genome Res. 2008, 18:1562-1570.
-
(2008)
Genome Res.
, vol.18
, pp. 1562-1570
-
-
Farkash-Amar, S.1
-
8
-
-
80052523848
-
Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features
-
Cayrou C., et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2010, 21:1438-1449.
-
(2010)
Genome Res.
, vol.21
, pp. 1438-1449
-
-
Cayrou, C.1
-
9
-
-
84864690009
-
Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs
-
Besnard E., et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 2012, 19:837-844.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 837-844
-
-
Besnard, E.1
-
10
-
-
54949085778
-
Global reorganization of replication domains during embryonic stem cell differentiation
-
Hiratani I., et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 2008, 6:e245.
-
(2008)
PLoS Biol.
, vol.6
-
-
Hiratani, I.1
-
11
-
-
76349123622
-
Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
-
Hansen R.S., et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:139-144.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 139-144
-
-
Hansen, R.S.1
-
12
-
-
0026623241
-
A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation
-
Hardy C.F., et al. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 1992, 6:801-814.
-
(1992)
Genes Dev.
, vol.6
, pp. 801-814
-
-
Hardy, C.F.1
-
13
-
-
0033369515
-
The spatial position and replication timing of chromosomal domains are both established in early G1 phase
-
Dimitrova D.S., Gilbert D.M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 1999, 4:983-993.
-
(1999)
Mol. Cell
, vol.4
, pp. 983-993
-
-
Dimitrova, D.S.1
Gilbert, D.M.2
-
14
-
-
0035939669
-
The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase
-
Li F., et al. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J. Cell Biol. 2001, 154:283-292.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 283-292
-
-
Li, F.1
-
15
-
-
19644381697
-
Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states
-
Wu R., et al. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol. Biol. Cell 2005, 16:2872-2881.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2872-2881
-
-
Wu, R.1
-
16
-
-
0031005357
-
Cell cycle-dependent establishment of a late replication program
-
Raghuraman M.K., et al. Cell cycle-dependent establishment of a late replication program. Science 1997, 276:806-809.
-
(1997)
Science
, vol.276
, pp. 806-809
-
-
Raghuraman, M.K.1
-
17
-
-
0035931758
-
The positioning and dynamics of origins of replication in the budding yeast nucleus
-
Heun P., et al. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 2001, 152:385-400.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 385-400
-
-
Heun, P.1
-
18
-
-
77951150595
-
Early initiation of a replication origin tethered at the nuclear periphery
-
Ebrahimi H., et al. Early initiation of a replication origin tethered at the nuclear periphery. J. Cell Sci. 2010, 123:1015-1019.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 1015-1019
-
-
Ebrahimi, H.1
-
19
-
-
34548789595
-
Replication in hydroxyurea: it's a matter of time
-
Alvino G.M., et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 2007, 27:6396-6406.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6396-6406
-
-
Alvino, G.M.1
-
20
-
-
84857060479
-
DNTP pools determine fork progression and origin usage under replication stress
-
Poli J., et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 2012, 31:883-894.
-
(2012)
EMBO J.
, vol.31
, pp. 883-894
-
-
Poli, J.1
-
21
-
-
0032497548
-
Regulation of DNA-replication origins during cell-cycle progression
-
Shirahige K., et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 1998, 395:618-621.
-
(1998)
Nature
, vol.395
, pp. 618-621
-
-
Shirahige, K.1
-
22
-
-
0032497529
-
A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
-
Santocanale C., Diffley J.F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 1998, 395:615-618.
-
(1998)
Nature
, vol.395
, pp. 615-618
-
-
Santocanale, C.1
Diffley, J.F.2
-
23
-
-
0033568196
-
Activation of dormant origins of DNA replication in budding yeast
-
Santocanale C., et al. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 1999, 13:2360-2364.
-
(1999)
Genes Dev.
, vol.13
, pp. 2360-2364
-
-
Santocanale, C.1
-
24
-
-
33645152790
-
Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
-
Feng W., et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 2006, 8:148-155.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 148-155
-
-
Feng, W.1
-
25
-
-
33747589932
-
Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast
-
Raveendranathan M., et al. Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J. 2006, 25:3627-3639.
-
(2006)
EMBO J.
, vol.25
, pp. 3627-3639
-
-
Raveendranathan, M.1
-
26
-
-
79960802984
-
The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores
-
Bermejo R., et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 2011, 146:233-246.
-
(2011)
Cell
, vol.146
, pp. 233-246
-
-
Bermejo, R.1
-
27
-
-
0042865938
-
S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
-
Katou Y., et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 2003, 424:1078-1083.
-
(2003)
Nature
, vol.424
, pp. 1078-1083
-
-
Katou, Y.1
-
28
-
-
78549290265
-
Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
-
Crabbe L., et al. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat. Struct. Mol. Biol. 2010, 17:1391-1397.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1391-1397
-
-
Crabbe, L.1
-
29
-
-
79952609005
-
The effect of the intra-S-phase checkpoint on origins of replication in human cells
-
Karnani N., Dutta A. The effect of the intra-S-phase checkpoint on origins of replication in human cells. Genes Dev. 2011, 25:621-633.
-
(2011)
Genes Dev.
, vol.25
, pp. 621-633
-
-
Karnani, N.1
Dutta, A.2
-
30
-
-
0035861492
-
Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins
-
Wyrick J.J., et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 2001, 294:2357-2360.
-
(2001)
Science
, vol.294
, pp. 2357-2360
-
-
Wyrick, J.J.1
-
31
-
-
0036842221
-
Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing
-
Schubeler D., et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet. 2002, 32:438-442.
-
(2002)
Nat. Genet.
, vol.32
, pp. 438-442
-
-
Schubeler, D.1
-
33
-
-
57349149434
-
Genome-wide studies highlight indirect links between human replication origins and gene regulation
-
Cadoret J.C., et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15837-15842.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15837-15842
-
-
Cadoret, J.C.1
-
34
-
-
65449142884
-
Replication timing and transcriptional control: beyond cause and effect - part II
-
Hiratani I., et al. Replication timing and transcriptional control: beyond cause and effect - part II. Curr. Opin. Genet. Dev. 2009, 19:142-149.
-
(2009)
Curr. Opin. Genet. Dev.
, vol.19
, pp. 142-149
-
-
Hiratani, I.1
-
35
-
-
27944452746
-
Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
-
Norio P., et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 2005, 20:575-587.
-
(2005)
Mol. Cell
, vol.20
, pp. 575-587
-
-
Norio, P.1
-
36
-
-
84864453016
-
Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
-
Demczuk A., et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol. 2012, 10:e1001360.
-
(2012)
PLoS Biol.
, vol.10
-
-
Demczuk, A.1
-
37
-
-
80555157584
-
Genome-wide depletion of replication initiation events in highly transcribed regions
-
Martin M.M., et al. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res. 2011, 21:1822-1832.
-
(2011)
Genome Res.
, vol.21
, pp. 1822-1832
-
-
Martin, M.M.1
-
38
-
-
84856103786
-
Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
-
Knott S.R., et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 2012, 148:99-111.
-
(2012)
Cell
, vol.148
, pp. 99-111
-
-
Knott, S.R.1
-
39
-
-
84873044090
-
Location, location, location: it's all in the timing for replication origins
-
Aparicio O.M. Location, location, location: it's all in the timing for replication origins. Genes Dev. 2013, 27:117-128.
-
(2013)
Genes Dev.
, vol.27
, pp. 117-128
-
-
Aparicio, O.M.1
-
40
-
-
34547232986
-
Non-transcriptional control of DNA replication by c-Myc
-
Dominguez-Sola D., et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007, 448:445-451.
-
(2007)
Nature
, vol.448
, pp. 445-451
-
-
Dominguez-Sola, D.1
-
41
-
-
33845212649
-
Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin
-
Minami H., et al. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol. Cell. Biol. 2006, 26:8770-8780.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 8770-8780
-
-
Minami, H.1
-
42
-
-
84863617583
-
Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1
-
Moriyama K., et al. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J. Biol. Chem. 2012, 287:23977-23994.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 23977-23994
-
-
Moriyama, K.1
-
43
-
-
0033556028
-
Telomeric chromatin modulates replication timing near chromosome ends
-
Stevenson J.B., Gottschling D.E. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999, 13:146-151.
-
(1999)
Genes Dev.
, vol.13
, pp. 146-151
-
-
Stevenson, J.B.1
Gottschling, D.E.2
-
44
-
-
43049124410
-
An ARS element inhibits DNA replication through a SIR2-dependent mechanism
-
Crampton A., et al. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol. Cell 2008, 30:156-166.
-
(2008)
Mol. Cell
, vol.30
, pp. 156-166
-
-
Crampton, A.1
-
45
-
-
53549122748
-
HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
-
Miotto B., Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 2008, 22:2633-2638.
-
(2008)
Genes Dev.
, vol.22
, pp. 2633-2638
-
-
Miotto, B.1
Struhl, K.2
-
46
-
-
73649089696
-
HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin
-
Miotto B., Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol. Cell 2010, 37:57-66.
-
(2010)
Mol. Cell
, vol.37
, pp. 57-66
-
-
Miotto, B.1
Struhl, K.2
-
47
-
-
3142768347
-
Chromatin regulates origin activity in Drosophila follicle cells
-
Aggarwal B.D., Calvi B.R. Chromatin regulates origin activity in Drosophila follicle cells. Nature 2004, 430:372-376.
-
(2004)
Nature
, vol.430
, pp. 372-376
-
-
Aggarwal, B.D.1
Calvi, B.R.2
-
48
-
-
77954526472
-
The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin
-
Muller P., et al. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev. 2010, 24:1418-1433.
-
(2010)
Genes Dev.
, vol.24
, pp. 1418-1433
-
-
Muller, P.1
-
49
-
-
0036863542
-
Histone acetylation regulates the time of replication origin firing
-
Vogelauer M., et al. Histone acetylation regulates the time of replication origin firing. Mol. Cell 2002, 10:1223-1233.
-
(2002)
Mol. Cell
, vol.10
, pp. 1223-1233
-
-
Vogelauer, M.1
-
50
-
-
2442660397
-
The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
-
Aparicio J.G., et al. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004, 24:4769-4780.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4769-4780
-
-
Aparicio, J.G.1
-
51
-
-
65449160972
-
Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
-
Knott S.R., et al. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009, 23:1077-1090.
-
(2009)
Genes Dev.
, vol.23
, pp. 1077-1090
-
-
Knott, S.R.1
-
52
-
-
61849184077
-
The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus
-
Hayashi M.T., et al. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat. Cell Biol. 2009, 11:357-362.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 357-362
-
-
Hayashi, M.T.1
-
53
-
-
33947110984
-
Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast
-
Hayashi M., et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 2007, 26:1327-1339.
-
(2007)
EMBO J.
, vol.26
, pp. 1327-1339
-
-
Hayashi, M.1
-
54
-
-
0036791764
-
Ku complex controls the replication time of DNA in telomere regions
-
Cosgrove A.J., et al. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 2002, 16:2485-2490.
-
(2002)
Genes Dev.
, vol.16
, pp. 2485-2490
-
-
Cosgrove, A.J.1
-
55
-
-
79955957615
-
The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation
-
Lian H.Y., et al. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol. Biol. Cell 2011, 22:1753-1765.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1753-1765
-
-
Lian, H.Y.1
-
56
-
-
84866479376
-
Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast
-
Tazumi A., et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 2012, 26:2050-2062.
-
(2012)
Genes Dev.
, vol.26
, pp. 2050-2062
-
-
Tazumi, A.1
-
57
-
-
33947308706
-
Early replication of short telomeres in budding yeast
-
Bianchi A., Shore D. Early replication of short telomeres in budding yeast. Cell 2007, 128:1051-1062.
-
(2007)
Cell
, vol.128
, pp. 1051-1062
-
-
Bianchi, A.1
Shore, D.2
-
58
-
-
79958075422
-
Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast
-
Hayano M., et al. Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast. Mol. Cell. Biol. 2011, 31:2380-2391.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 2380-2391
-
-
Hayano, M.1
-
59
-
-
61349201535
-
Establishing the program of origin firing during S phase in fission Yeast
-
Wu P.Y., Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell 2009, 136:852-864.
-
(2009)
Cell
, vol.136
, pp. 852-864
-
-
Wu, P.Y.1
Nurse, P.2
-
60
-
-
84155171119
-
Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
-
Tanaka S., et al. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr. Biol. 2011, 21:2055-2063.
-
(2011)
Curr. Biol.
, vol.21
, pp. 2055-2063
-
-
Tanaka, S.1
-
61
-
-
82455164158
-
Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
-
Mantiero D., et al. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011, 30:4805-4814.
-
(2011)
EMBO J.
, vol.30
, pp. 4805-4814
-
-
Mantiero, D.1
-
62
-
-
0028979307
-
+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication
-
+, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 1995, 14:3094-3104.
-
(1995)
EMBO J.
, vol.14
, pp. 3094-3104
-
-
Masai, H.1
-
63
-
-
0034765174
-
Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast
-
Takeda T., et al. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol. Biol. Cell 2001, 12:1257-1274.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 1257-1274
-
-
Takeda, T.1
-
64
-
-
84856281556
-
Rif1 is a global regulator of timing of replication origin firing in fission yeast
-
Hayano M., et al. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012, 26:137-150.
-
(2012)
Genes Dev.
, vol.26
, pp. 137-150
-
-
Hayano, M.1
-
65
-
-
0036860727
-
The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells
-
Dimitrova D.S., Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 2002, 115:4037-4051.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 4037-4051
-
-
Dimitrova, D.S.1
Berezney, R.2
-
66
-
-
77952994784
-
Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
-
Ryba T., et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010, 20:761-770.
-
(2010)
Genome Res.
, vol.20
, pp. 761-770
-
-
Ryba, T.1
-
67
-
-
0022504648
-
Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus
-
Nakamura H., et al. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 1986, 165:291-297.
-
(1986)
Exp. Cell Res.
, vol.165
, pp. 291-297
-
-
Nakamura, H.1
-
68
-
-
84866427034
-
Rif1 regulates the replication timing domains on the human genome
-
Yamazaki S., et al. Rif1 regulates the replication timing domains on the human genome. EMBO J. 2012, 31:3667-3677.
-
(2012)
EMBO J.
, vol.31
, pp. 3667-3677
-
-
Yamazaki, S.1
-
69
-
-
84866412836
-
Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
-
Cornacchia D., et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012, 31:3678-3690.
-
(2012)
EMBO J.
, vol.31
, pp. 3678-3690
-
-
Cornacchia, D.1
-
70
-
-
84855720100
-
Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation
-
Matsumoto S., et al. Multiple pathways can bypass the essential role of fission yeast Hsk1 kinase in DNA replication initiation. J. Cell Biol. 2011, 195:387-401.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 387-401
-
-
Matsumoto, S.1
-
71
-
-
44149084708
-
DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin
-
Goren A., et al. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 2008, 22:1319-1324.
-
(2008)
Genes Dev.
, vol.22
, pp. 1319-1324
-
-
Goren, A.1
-
72
-
-
75549090255
-
Mammalian Rif1 contributes to replication stress survival and homology-directed repair
-
Buonomo S.B., et al. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J. Cell Biol. 2009, 187:385-398.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 385-398
-
-
Buonomo, S.B.1
-
73
-
-
77956886919
-
Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication
-
Xu D., et al. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J. 2010, 29:3140-3155.
-
(2010)
EMBO J.
, vol.29
, pp. 3140-3155
-
-
Xu, D.1
-
74
-
-
84873488846
-
53BP1 regulates DSB repair using Rif1 to control 5' end resection
-
Zimmermann M., et al. 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science 2013, 339:700-704.
-
(2013)
Science
, vol.339
, pp. 700-704
-
-
Zimmermann, M.1
-
75
-
-
84873526612
-
Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching
-
Di Virgilio M., et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 2013, 339:711-715.
-
(2013)
Science
, vol.339
, pp. 711-715
-
-
Di Virgilio, M.1
-
76
-
-
84876855215
-
RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection
-
Chapman J.R., et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 2013, 49:858-871.
-
(2013)
Mol. Cell
, vol.49
, pp. 858-871
-
-
Chapman, J.R.1
-
77
-
-
84876877091
-
A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
-
Escribano-Diaz C., et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 2013, 49:872-883.
-
(2013)
Mol. Cell
, vol.49
, pp. 872-883
-
-
Escribano-Diaz, C.1
-
78
-
-
33645381936
-
The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells
-
Loh Y.H., et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 2006, 38:431-440.
-
(2006)
Nat. Genet.
, vol.38
, pp. 431-440
-
-
Loh, Y.H.1
-
79
-
-
33751092246
-
A protein interaction network for pluripotency of embryonic stem cells
-
Wang J., et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006, 444:364-368.
-
(2006)
Nature
, vol.444
, pp. 364-368
-
-
Wang, J.1
-
80
-
-
80052919408
-
Mutation rates across budding yeast chromosome VI are correlated with replication timing
-
Lang G.I., Murray A.W. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol. Evol. 2011, 3:799-811.
-
(2011)
Genome Biol. Evol.
, vol.3
, pp. 799-811
-
-
Lang, G.I.1
Murray, A.W.2
-
81
-
-
77953011587
-
MRC1-dependent scaling of the budding yeast DNA replication timing program
-
Koren A., et al. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 2010,20.
-
(2010)
Genome Res.
, pp. 20
-
-
Koren, A.1
-
82
-
-
0036791653
-
Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
-
Pasero P., et al. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 2002, 16:2479-2484.
-
(2002)
Genes Dev.
, vol.16
, pp. 2479-2484
-
-
Pasero, P.1
-
83
-
-
0037019025
-
Control of replication timing by a transcriptional silencer
-
Zappulla D.C., et al. Control of replication timing by a transcriptional silencer. Curr. Biol. 2002, 12:869-875.
-
(2002)
Curr. Biol.
, vol.12
, pp. 869-875
-
-
Zappulla, D.C.1
-
84
-
-
0032134456
-
CLB5-dependent activation of late replication origins in S. cerevisiae
-
Donaldson A.D., et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 1998, 2:173-182.
-
(1998)
Mol. Cell
, vol.2
, pp. 173-182
-
-
Donaldson, A.D.1
-
85
-
-
61849083545
-
The temporal program of chromosome replication: genomewide replication in clb5D Saccharomyces cerevisiae
-
McCune H.J., et al. The temporal program of chromosome replication: genomewide replication in clb5D Saccharomyces cerevisiae. Genetics 2008, 180:1833-1847.
-
(2008)
Genetics
, vol.180
, pp. 1833-1847
-
-
McCune, H.J.1
-
86
-
-
33750438774
-
Genome-wide characterization of fission yeast DNA replication origins
-
Heichinger C., et al. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 2006, 25:5171-5179.
-
(2006)
EMBO J.
, vol.25
, pp. 5171-5179
-
-
Heichinger, C.1
-
87
-
-
77953004689
-
Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome
-
Schwaiger M., et al. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res. 2010, 20:771-780.
-
(2010)
Genome Res.
, vol.20
, pp. 771-780
-
-
Schwaiger, M.1
-
88
-
-
62549132126
-
Cyclin A-Cdk1 regulates the origin firing program in mammalian cells
-
Katsuno Y., et al. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3184-3189.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 3184-3189
-
-
Katsuno, Y.1
-
89
-
-
39749176602
-
The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
-
Jorgensen H.F., et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 2007, 8:R169.
-
(2007)
Genome Biol.
, vol.8
-
-
Jorgensen, H.F.1
-
90
-
-
73349139918
-
G9a selectively represses a class of latereplicating genes at the nuclear periphery
-
Yokochi T., et al. G9a selectively represses a class of latereplicating genes at the nuclear periphery. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19363-19368.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 19363-19368
-
-
Yokochi, T.1
-
91
-
-
84864686940
-
Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1
-
Oda M., et al. Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1. PLoS ONE 2012, 7:e42375.
-
(2012)
PLoS ONE
, vol.7
-
-
Oda, M.1
-
92
-
-
74049163810
-
Decreased replication origin activity in temporal transition regions
-
Guan Z., et al. Decreased replication origin activity in temporal transition regions. J. Cell Biol. 2009, 187:623-635.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 623-635
-
-
Guan, Z.1
-
93
-
-
77649231571
-
Genome-wide analysis of the replication program in mammals
-
Farkash-Amar S., Simon I. Genome-wide analysis of the replication program in mammals. Chromosome Res. 2009, 18:115-125.
-
(2009)
Chromosome Res.
, vol.18
, pp. 115-125
-
-
Farkash-Amar, S.1
Simon, I.2
-
94
-
-
84855272663
-
Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
-
Guilbaud G., et al. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput. Biol. 2011, 7:e1002322.
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Guilbaud, G.1
-
95
-
-
33845976373
-
Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin
-
Masai H., et al. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J. Biol. Chem. 2006, 281:39249-39261.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 39249-39261
-
-
Masai, H.1
-
96
-
-
33749075373
-
Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression
-
Sheu Y.J., Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol. Cell 2006, 24:101-113.
-
(2006)
Mol. Cell
, vol.24
, pp. 101-113
-
-
Sheu, Y.J.1
Stillman, B.2
-
97
-
-
33745925880
-
Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
-
Moyer S.E., et al. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10236-10241.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10236-10241
-
-
Moyer, S.E.1
-
98
-
-
0036566328
-
Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death
-
Kim J.M., et al. Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death. EMBO J. 2002, 21:2168-2179.
-
(2002)
EMBO J.
, vol.21
, pp. 2168-2179
-
-
Kim, J.M.1
-
99
-
-
35648944221
-
Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae
-
Hoang M.L., et al. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae. Mol. Cell. Biol. 2007, 27:7594-7602.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 7594-7602
-
-
Hoang, M.L.1
-
100
-
-
73849129578
-
The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4
-
Sheu Y.J., Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 2010, 463:113-117.
-
(2010)
Nature
, vol.463
, pp. 113-117
-
-
Sheu, Y.J.1
Stillman, B.2
-
101
-
-
33745239698
-
Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories
-
Kitamura E., et al. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 2006, 125:1297-1308.
-
(2006)
Cell
, vol.125
, pp. 1297-1308
-
-
Kitamura, E.1
-
102
-
-
77957369058
-
Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
-
Yaffe E., et al. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 2010, 6:e1001011.
-
(2010)
PLoS Genet.
, vol.6
-
-
Yaffe, E.1
-
103
-
-
84868693520
-
Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization
-
Farkash-Amar S., et al. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization. PLoS ONE 2012, 7:e48986.
-
(2012)
PLoS ONE
, vol.7
-
-
Farkash-Amar, S.1
-
104
-
-
0344490333
-
Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype
-
State M.W., et al. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4684-4689.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4684-4689
-
-
State, M.W.1
-
105
-
-
2942596084
-
Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and velocardiofacial syndromes
-
D'Antoni S., et al. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and velocardiofacial syndromes. Gene 2004, 333:111-119.
-
(2004)
Gene
, vol.333
, pp. 111-119
-
-
D'Antoni, S.1
-
106
-
-
50849099769
-
Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions
-
Yehezkel S., et al. Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum. Mol. Genet. 2008, 17:2776-2789.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 2776-2789
-
-
Yehezkel, S.1
-
107
-
-
84866384009
-
Abnormal developmental control of replicationtiming domains in pediatric acute lymphoblastic leukemia
-
Ryba T., et al. Abnormal developmental control of replicationtiming domains in pediatric acute lymphoblastic leukemia. Genome Res. 2012, 22:1833-1844.
-
(2012)
Genome Res.
, vol.22
, pp. 1833-1844
-
-
Ryba, T.1
-
108
-
-
83255189766
-
DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes
-
De S., Michor F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol. 2011, 29:1103-1108.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 1103-1108
-
-
De, S.1
Michor, F.2
-
109
-
-
0036156599
-
Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: diseaserelated genes in timing-switch regions
-
Watanabe Y., et al. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: diseaserelated genes in timing-switch regions. Hum. Mol. Genet. 2002, 11:13-21.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 13-21
-
-
Watanabe, Y.1
-
110
-
-
63449141981
-
Human mutation rate associated with DNA replication timing
-
Stamatoyannopoulos J.A., et al. Human mutation rate associated with DNA replication timing. Nat. Genet. 2009, 41:393-395.
-
(2009)
Nat. Genet.
, vol.41
, pp. 393-395
-
-
Stamatoyannopoulos, J.A.1
-
111
-
-
84866067741
-
DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes
-
Woo Y.H., Li W.H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat. Commun. 2012, 3:781-790.
-
(2012)
Nat. Commun.
, vol.3
, pp. 781-790
-
-
Woo, Y.H.1
Li, W.H.2
|