메뉴 건너뛰기




Volumn 47, Issue 5, 2009, Pages 485-495

Ascorbate and plasma membrane electron transport-Enzymes vs efflux

Author keywords

Ascorbate; Astrocytes; Dehydroascorbate; Ferricyanide; K562 cells; Non transferrin bound iron; Transplasma membrane electron transport; Vitamin C

Indexed keywords

ANION; ASCORBIC ACID; ASCORBIC ACID DERIVATIVE; CYTOCHROME B; CYTOCHROME B5 REDUCTASE; CYTOCHROME B561; DEHYDROASCORBIC ACID; FERRIC ION; FERRICYANIDE; GLUCOSE TRANSPORTER 1; GLUTAMIC ACID; PURINERGIC P2Y2 RECEPTOR; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; UNCLASSIFIED DRUG;

EID: 67650995439     PISSN: 08915849     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2009.06.003     Document Type: Review
Times cited : (70)

References (150)
  • 3
    • 0033042677 scopus 로고    scopus 로고
    • Is ascorbic acid an antioxidant for the plasma membrane?
    • May J.M. Is ascorbic acid an antioxidant for the plasma membrane?. FASEB J. 13 (1999) 995-1006
    • (1999) FASEB J. , vol.13 , pp. 995-1006
    • May, J.M.1
  • 4
    • 0033936606 scopus 로고    scopus 로고
    • Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data
    • Baker M.A., and Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid. Redox Signal. 2 (2000) 197-212
    • (2000) Antioxid. Redox Signal. , vol.2 , pp. 197-212
    • Baker, M.A.1    Lawen, A.2
  • 5
    • 0037278647 scopus 로고    scopus 로고
    • Transplasma membrane electron transport: enzymes involved and biological function
    • Ly J.D., and Lawen A. Transplasma membrane electron transport: enzymes involved and biological function. Redox Rep. 8 (2003) 3-21
    • (2003) Redox Rep. , vol.8 , pp. 3-21
    • Ly, J.D.1    Lawen, A.2
  • 6
    • 33746841803 scopus 로고    scopus 로고
    • Plasma membrane oxidoreductases: effects on erythrocyte metabolism and redox homeostasis
    • Kennett E.C., and Kuchel P.W. Plasma membrane oxidoreductases: effects on erythrocyte metabolism and redox homeostasis. Antioxid. Redox Signal. 8 (2006) 1241-1247
    • (2006) Antioxid. Redox Signal. , vol.8 , pp. 1241-1247
    • Kennett, E.C.1    Kuchel, P.W.2
  • 7
    • 0021745922 scopus 로고
    • Properties of a transplasma membrane electron transport system in HeLa cells
    • Sun I.L., Crane F.L., Grebing C., and Löw H. Properties of a transplasma membrane electron transport system in HeLa cells. J. Bioenerg. Biomembr. 16 (1984) 583-595
    • (1984) J. Bioenerg. Biomembr. , vol.16 , pp. 583-595
    • Sun, I.L.1    Crane, F.L.2    Grebing, C.3    Löw, H.4
  • 9
    • 0029845129 scopus 로고    scopus 로고
    • Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin
    • Wolvetang E.J., Larm J.A., Moutsoulas P., and Lawen A. Apoptosis induced by inhibitors of the plasma membrane NADH-oxidase involves Bcl-2 and calcineurin. Cell Growth Differ. 7 (1996) 1315-1325
    • (1996) Cell Growth Differ. , vol.7 , pp. 1315-1325
    • Wolvetang, E.J.1    Larm, J.A.2    Moutsoulas, P.3    Lawen, A.4
  • 11
    • 33845979527 scopus 로고    scopus 로고
    • 561 that may be involved in extracellular ascorbate recycling
    • 561 that may be involved in extracellular ascorbate recycling. J. Biol. Chem. 281 (2006) 39852-39859
    • (2006) J. Biol. Chem. , vol.281 , pp. 39852-39859
    • Su, D.1    May, J.M.2    Koury, M.J.3    Asard, H.4
  • 13
    • 44449159838 scopus 로고    scopus 로고
    • Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro
    • Wyman S., Simpson R.J., McKie A.T., and Sharp P.A. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582 (2008) 1901-1906
    • (2008) FEBS Lett. , vol.582 , pp. 1901-1906
    • Wyman, S.1    Simpson, R.J.2    McKie, A.T.3    Sharp, P.A.4
  • 14
    • 33845938278 scopus 로고    scopus 로고
    • Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging
    • Hyun D.-H., Emerson S.S., Jo D.-G., Mattson M.P., and de Cabo R. Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc. Natl. Acad. Sci. USA 103 (2006) 19908-19912
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 19908-19912
    • Hyun, D.-H.1    Emerson, S.S.2    Jo, D.-G.3    Mattson, M.P.4    de Cabo, R.5
  • 16
    • 0035408757 scopus 로고    scopus 로고
    • Trans-plasma membrane electron transport induces macrophage-mediated low density lipoprotein oxidation
    • Baoutina A., Dean R.T., and Jessup W. Trans-plasma membrane electron transport induces macrophage-mediated low density lipoprotein oxidation. FASEB J. 15 (2001) 1580-1582
    • (2001) FASEB J. , vol.15 , pp. 1580-1582
    • Baoutina, A.1    Dean, R.T.2    Jessup, W.3
  • 17
    • 0033911917 scopus 로고    scopus 로고
    • Transmembrane electron transfer in diabetic nephropathy
    • Matteucci E., and Giampietro O. Transmembrane electron transfer in diabetic nephropathy. Diabetes Care 23 (2000) 994-999
    • (2000) Diabetes Care , vol.23 , pp. 994-999
    • Matteucci, E.1    Giampietro, O.2
  • 18
    • 33845363797 scopus 로고    scopus 로고
    • Plasma membrane electron transport: a new target for cancer drug development
    • Herst P.M., and Berridge M.V. Plasma membrane electron transport: a new target for cancer drug development. Curr. Mol. Med. 6 (2006) 895-904
    • (2006) Curr. Mol. Med. , vol.6 , pp. 895-904
    • Herst, P.M.1    Berridge, M.V.2
  • 19
    • 33847127936 scopus 로고    scopus 로고
    • Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines
    • Herst P.M., and Berridge M.V. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim. Biophys. Acta 1767 (2007) 170-177
    • (2007) Biochim. Biophys. Acta , vol.1767 , pp. 170-177
    • Herst, P.M.1    Berridge, M.V.2
  • 20
    • 35348931655 scopus 로고    scopus 로고
    • The antiproliferative effects of phenoxodiol are associated with inhibition of plasma membrane electron transport in tumour cell lines and primary immune cells
    • Herst P.M., Petersen T., Jerram P., Baty J., and Berridge M.V. The antiproliferative effects of phenoxodiol are associated with inhibition of plasma membrane electron transport in tumour cell lines and primary immune cells. Biochem. Pharmacol. 74 (2007) 1587-1595
    • (2007) Biochem. Pharmacol. , vol.74 , pp. 1587-1595
    • Herst, P.M.1    Petersen, T.2    Jerram, P.3    Baty, J.4    Berridge, M.V.5
  • 21
    • 0026092089 scopus 로고
    • Electron and proton transport across the plasma membrane
    • Crane F.L., Sun I.L., Barr R., and Löw H. Electron and proton transport across the plasma membrane. J. Bioenerg. Biomembr. 23 (1991) 773-803
    • (1991) J. Bioenerg. Biomembr. , vol.23 , pp. 773-803
    • Crane, F.L.1    Sun, I.L.2    Barr, R.3    Löw, H.4
  • 22
    • 0029045698 scopus 로고
    • Ascorbate is the major electron donor for a transmembrane oxidoreductase of human erythrocytes
    • May J.M., Qu Z.-C., and Whitesell R.R. Ascorbate is the major electron donor for a transmembrane oxidoreductase of human erythrocytes. Biochim. Biophys. Acta 1238 (1995) 127-136
    • (1995) Biochim. Biophys. Acta , vol.1238 , pp. 127-136
    • May, J.M.1    Qu, Z.-C.2    Whitesell, R.R.3
  • 24
    • 37549069371 scopus 로고    scopus 로고
    • A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation
    • Lane D.J.R., and Lawen A. A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation. Anal. Biochem. 373 (2008) 287-295
    • (2008) Anal. Biochem. , vol.373 , pp. 287-295
    • Lane, D.J.R.1    Lawen, A.2
  • 25
    • 0035814732 scopus 로고    scopus 로고
    • New insights into the physiology and pharmacology of vitamin
    • Padayatty S.J., and Levine M. New insights into the physiology and pharmacology of vitamin. C. Can. Med. Assoc. J. 164 (2001) 353-355
    • (2001) C. Can. Med. Assoc. J. , vol.164 , pp. 353-355
    • Padayatty, S.J.1    Levine, M.2
  • 26
    • 67650945641 scopus 로고    scopus 로고
    • Ascorbate
    • Banerjee R. (Ed), Hoboken, A John Wiley & Sons, Inc.
    • Asard H. Ascorbate. In: Banerjee R. (Ed). Redox biochemistry (2008), Hoboken, A John Wiley & Sons, Inc. 22-27
    • (2008) Redox biochemistry , pp. 22-27
    • Asard, H.1
  • 27
    • 46249124511 scopus 로고    scopus 로고
    • Inflammation in the vascular bed: importance of vitamin C
    • Aguirre R., and May J.M. Inflammation in the vascular bed: importance of vitamin C. Pharmacol. Ther. 119 (2008) 96-103
    • (2008) Pharmacol. Ther. , vol.119 , pp. 96-103
    • Aguirre, R.1    May, J.M.2
  • 28
    • 0032518172 scopus 로고    scopus 로고
    • Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid
    • May J.M., Qu Z.-C., and Mendiratta S. Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch. Biochem. Biophys. 349 (1998) 281-289
    • (1998) Arch. Biochem. Biophys. , vol.349 , pp. 281-289
    • May, J.M.1    Qu, Z.-C.2    Mendiratta, S.3
  • 29
    • 0025885658 scopus 로고
    • Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis
    • Nishikimi M., and Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am. J. Clin. Nutr. 54 (1991) 1203S-1208S
    • (1991) Am. J. Clin. Nutr. , vol.54
    • Nishikimi, M.1    Yagi, K.2
  • 30
    • 0028228342 scopus 로고
    • Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man
    • Nishikimi M., Fukuyama R., Minoshima S., Shimizu N., and Yagi K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 269 (1994) 13685-13688
    • (1994) J. Biol. Chem. , vol.269 , pp. 13685-13688
    • Nishikimi, M.1    Fukuyama, R.2    Minoshima, S.3    Shimizu, N.4    Yagi, K.5
  • 31
    • 17744408229 scopus 로고    scopus 로고
    • Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens
    • Challem J.J., and Taylor E.W. Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radic. Biol. Med. 25 (1998) 130-132
    • (1998) Free Radic. Biol. Med. , vol.25 , pp. 130-132
    • Challem, J.J.1    Taylor, E.W.2
  • 32
    • 33845717875 scopus 로고    scopus 로고
    • Vitamin C: biosynthesis, recycling and degradation in mammals
    • Linster C.L., and Van Schaftingen E. Vitamin C: biosynthesis, recycling and degradation in mammals. FEBS J. 274 (2007) 1-22
    • (2007) FEBS J. , vol.274 , pp. 1-22
    • Linster, C.L.1    Van Schaftingen, E.2
  • 34
    • 0032031568 scopus 로고    scopus 로고
    • Absorption, transport and disposition of ascorbic acid in humans
    • Rumsey S.C., and Levine M. Absorption, transport and disposition of ascorbic acid in humans. J. Nutr. Biochem. 9 (1998) 116-130
    • (1998) J. Nutr. Biochem. , vol.9 , pp. 116-130
    • Rumsey, S.C.1    Levine, M.2
  • 35
    • 23944482400 scopus 로고    scopus 로고
    • Regulation of vitamin C transport
    • Wilson J.X. Regulation of vitamin C transport. Annu. Rev. Nutr. 25 (2005) 105-125
    • (2005) Annu. Rev. Nutr. , vol.25 , pp. 105-125
    • Wilson, J.X.1
  • 36
  • 37
    • 0027251053 scopus 로고
    • The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate
    • Buettner G.R. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300 (1993) 535-543
    • (1993) Arch. Biochem. Biophys. , vol.300 , pp. 535-543
    • Buettner, G.R.1
  • 38
    • 0030087797 scopus 로고    scopus 로고
    • α-Lipoic acid dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria
    • Xu D.P., and Wells W.W. α-Lipoic acid dependent regeneration of ascorbic acid from dehydroascorbic acid in rat liver mitochondria. J. Bioenerg. Biomembr. 28 (1996) 77-85
    • (1996) J. Bioenerg. Biomembr. , vol.28 , pp. 77-85
    • Xu, D.P.1    Wells, W.W.2
  • 40
    • 0036647216 scopus 로고    scopus 로고
    • Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain
    • Li X., Cobb C.E., and May J.M. Mitochondrial recycling of ascorbic acid from dehydroascorbic acid: dependence on the electron transport chain. Arch. Biochem. Biophys. 403 (2002) 103-110
    • (2002) Arch. Biochem. Biophys. , vol.403 , pp. 103-110
    • Li, X.1    Cobb, C.E.2    May, J.M.3
  • 41
    • 26444505495 scopus 로고    scopus 로고
    • Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury
    • Sagun K.C., Cárcamo J.M., and Golde D.W. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J. 19 (2005) 1657-1667
    • (2005) FASEB J. , vol.19 , pp. 1657-1667
    • Sagun, K.C.1    Cárcamo, J.M.2    Golde, D.W.3
  • 42
    • 38049057495 scopus 로고    scopus 로고
    • Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate
    • May J.M., Li L., Qu Z.-C., and Cobb C.E. Mitochondrial recycling of ascorbic acid as a mechanism for regenerating cellular ascorbate. BioFactors 30 (2007) 35-48
    • (2007) BioFactors , vol.30 , pp. 35-48
    • May, J.M.1    Li, L.2    Qu, Z.-C.3    Cobb, C.E.4
  • 43
    • 33845682100 scopus 로고    scopus 로고
    • Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain
    • Szarka A., Horemans N., Kovács Z., Gróf P., Mayer M., and Bánhegyi G. Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain. Physiol. Plant. 129 (2007) 225-232
    • (2007) Physiol. Plant. , vol.129 , pp. 225-232
    • Szarka, A.1    Horemans, N.2    Kovács, Z.3    Gróf, P.4    Mayer, M.5    Bánhegyi, G.6
  • 44
    • 0032126961 scopus 로고    scopus 로고
    • Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid
    • Jung C.-H., and Wells W.W. Spontaneous conversion of L-dehydroascorbic acid to L-ascorbic acid and L-erythroascorbic acid. Arch. Biochem. Biophys. 355 (1998) 9-14
    • (1998) Arch. Biochem. Biophys. , vol.355 , pp. 9-14
    • Jung, C.-H.1    Wells, W.W.2
  • 45
    • 0032472765 scopus 로고    scopus 로고
    • Bicarbonate promotes a cleavage of lactone ring of dehydroascorbate
    • Koshiishi I., Mamura Y., and Imanari T. Bicarbonate promotes a cleavage of lactone ring of dehydroascorbate. Biochim. Biophys. Acta 1379 (1998) 257-263
    • (1998) Biochim. Biophys. Acta , vol.1379 , pp. 257-263
    • Koshiishi, I.1    Mamura, Y.2    Imanari, T.3
  • 46
    • 0032538093 scopus 로고    scopus 로고
    • Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation
    • Koshiishi I., Mamura Y., Liu J., and Imanari T. Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation. Biochim. Biophys. Acta 1425 (1998) 209-214
    • (1998) Biochim. Biophys. Acta , vol.1425 , pp. 209-214
    • Koshiishi, I.1    Mamura, Y.2    Liu, J.3    Imanari, T.4
  • 47
    • 0028805076 scopus 로고
    • Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes
    • May J.M., Qu Z.-C., and Whitesell R.R. Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochemistry 34 (1995) 12721-12728
    • (1995) Biochemistry , vol.34 , pp. 12721-12728
    • May, J.M.1    Qu, Z.-C.2    Whitesell, R.R.3
  • 48
    • 2442561639 scopus 로고    scopus 로고
    • Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid
    • May J.M., Qu Z.-C., and Cobb C.E. Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid. J. Biol. Chem. 279 (2004) 14975-14982
    • (2004) J. Biol. Chem. , vol.279 , pp. 14975-14982
    • May, J.M.1    Qu, Z.-C.2    Cobb, C.E.3
  • 49
    • 0025718970 scopus 로고
    • Ascorbic acid and iron metabolism: alterations in lysosomal function
    • Hoffman K.E., Yanelli K., and Bridges K.R. Ascorbic acid and iron metabolism: alterations in lysosomal function. Am. J. Clin. Nutr. 54 (1991) 1188S-1192S
    • (1991) Am. J. Clin. Nutr. , vol.54
    • Hoffman, K.E.1    Yanelli, K.2    Bridges, K.R.3
  • 50
    • 0028858956 scopus 로고
    • Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells
    • Toth I., Rogers J.T., McPhee J.A., Elliott S.M., Abramson S.L., and Bridges K.R. Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells. J. Biol. Chem. 270 (1995) 2846-2852
    • (1995) J. Biol. Chem. , vol.270 , pp. 2846-2852
    • Toth, I.1    Rogers, J.T.2    McPhee, J.A.3    Elliott, S.M.4    Abramson, S.L.5    Bridges, K.R.6
  • 52
    • 0035859936 scopus 로고    scopus 로고
    • A new recommended dietary allowance of vitamin C for healthy young women
    • Levine M., Wang Y., Padayatty S.J., and Morrow J. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA 98 (2001) 9842-9846
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 9842-9846
    • Levine, M.1    Wang, Y.2    Padayatty, S.J.3    Morrow, J.4
  • 53
    • 0343131929 scopus 로고    scopus 로고
    • Differential compartmentalization of brain ascorbate and glutathione between neurons and glia
    • Rice M.E., and Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82 (1998) 1213-1223
    • (1998) Neuroscience , vol.82 , pp. 1213-1223
    • Rice, M.E.1    Russo-Menna, I.2
  • 54
    • 0034194081 scopus 로고    scopus 로고
    • Ascorbate regulation and its neuroprotective role in the brain
    • Rice M.E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23 (2000) 209-216
    • (2000) Trends Neurosci. , vol.23 , pp. 209-216
    • Rice, M.E.1
  • 55
    • 60449102448 scopus 로고    scopus 로고
    • Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2
    • Harrison F.E., and May J.M. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 46 (2009) 719-730
    • (2009) Free Radic. Biol. Med. , vol.46 , pp. 719-730
    • Harrison, F.E.1    May, J.M.2
  • 56
    • 0028122226 scopus 로고
    • Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid
    • Vera J.C., Rivas C.I., Zhang R.H., Farber C.M., and Golde D.W. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood 84 (1994) 1628-1634
    • (1994) Blood , vol.84 , pp. 1628-1634
    • Vera, J.C.1    Rivas, C.I.2    Zhang, R.H.3    Farber, C.M.4    Golde, D.W.5
  • 57
    • 0030953863 scopus 로고    scopus 로고
    • Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione
    • Guaiquil V.H., Farber C.M., Golde D.W., and Vera J.C. Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione. J. Biol. Chem. 272 (1997) 9915-9921
    • (1997) J. Biol. Chem. , vol.272 , pp. 9915-9921
    • Guaiquil, V.H.1    Farber, C.M.2    Golde, D.W.3    Vera, J.C.4
  • 60
    • 0030839797 scopus 로고    scopus 로고
    • Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid
    • Rumsey S.C., Kwon O., Xu G.W., Burant C.F., Simpson I., and Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J. Biol. Chem. 272 (1997) 18982-18989
    • (1997) J. Biol. Chem. , vol.272 , pp. 18982-18989
    • Rumsey, S.C.1    Kwon, O.2    Xu, G.W.3    Burant, C.F.4    Simpson, I.5    Levine, M.6
  • 61
    • 0032521135 scopus 로고    scopus 로고
    • Erythrocyte ascorbate recycling: antioxidant effects in blood
    • Mendiratta S., Qu Z.-C., and May J.M. Erythrocyte ascorbate recycling: antioxidant effects in blood. Free Radic. Biol. Med. 24 (1998) 789-797
    • (1998) Free Radic. Biol. Med. , vol.24 , pp. 789-797
    • Mendiratta, S.1    Qu, Z.-C.2    May, J.M.3
  • 63
    • 40749104613 scopus 로고    scopus 로고
    • Some vertebrates go with the GLO
    • Troadec M.-B., and Kaplan J. Some vertebrates go with the GLO. Cell 132 (2008) 921-922
    • (2008) Cell , vol.132 , pp. 921-922
    • Troadec, M.-B.1    Kaplan, J.2
  • 64
    • 64249109519 scopus 로고    scopus 로고
    • Altered GLUT1 substrate selectivity in human erythropoiesis?
    • Carruthers A., and Naftalin R.J. Altered GLUT1 substrate selectivity in human erythropoiesis?. Cell 137 (2009) 200-201
    • (2009) Cell , vol.137 , pp. 200-201
    • Carruthers, A.1    Naftalin, R.J.2
  • 69
    • 33746773041 scopus 로고    scopus 로고
    • 561 are ascorbate-dependent ferrireductases
    • 561 are ascorbate-dependent ferrireductases. FEBS J. 273 (2006) 3722-3734
    • (2006) FEBS J. , vol.273 , pp. 3722-3734
    • Su, D.1    Asard, H.2
  • 71
    • 39949083571 scopus 로고    scopus 로고
    • Functional characterization of human duodenal cytochrome b (Cybrd1): redox properties in relation to iron and ascorbate metabolism
    • Oakhill J.S., Marritt S.J., Gareta E.G., Cammack R., and McKie A.T. Functional characterization of human duodenal cytochrome b (Cybrd1): redox properties in relation to iron and ascorbate metabolism. Biochim. Biophys. Acta 1777 (2008) 260-268
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 260-268
    • Oakhill, J.S.1    Marritt, S.J.2    Gareta, E.G.3    Cammack, R.4    McKie, A.T.5
  • 72
    • 0343145079 scopus 로고
    • Spectroscopic study of the permeability and lysis of red blood corpuscles
    • Keilin D., and Hartree E.F. Spectroscopic study of the permeability and lysis of red blood corpuscles. Nature 157 (1946) 210-213
    • (1946) Nature , vol.157 , pp. 210-213
    • Keilin, D.1    Hartree, E.F.2
  • 73
    • 0000914140 scopus 로고
    • A sensitive and simple method for determination of ferrocyanide
    • Avron M., and Shavit N. A sensitive and simple method for determination of ferrocyanide. Anal. Biochem. 6 (1963) 549-554
    • (1963) Anal. Biochem. , vol.6 , pp. 549-554
    • Avron, M.1    Shavit, N.2
  • 74
    • 62149132083 scopus 로고    scopus 로고
    • Ascorbate recycling by erythrocytes during aging in humans
    • Rizvi S.I., Pandey K.B., Jha R., and Maurya P.K. Ascorbate recycling by erythrocytes during aging in humans. Rejuvenation Res. 12 (2009) 3-6
    • (2009) Rejuvenation Res. , vol.12 , pp. 3-6
    • Rizvi, S.I.1    Pandey, K.B.2    Jha, R.3    Maurya, P.K.4
  • 75
    • 0027131323 scopus 로고
    • Monodehydroascorbate reductase activity in the surface membrane of leukemic cells. Characterization by a ferricyanide-driven redox cycle
    • Schweinzer E., and Goldenberg H. Monodehydroascorbate reductase activity in the surface membrane of leukemic cells. Characterization by a ferricyanide-driven redox cycle. Eur. J. Biochem. 218 (1993) 1057-1062
    • (1993) Eur. J. Biochem. , vol.218 , pp. 1057-1062
    • Schweinzer, E.1    Goldenberg, H.2
  • 76
    • 0032577685 scopus 로고    scopus 로고
    • Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase
    • Van Duijn M.M., Van der Zee J., VanSteveninck J., and Van den Broek P.J.A. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J. Biol. Chem. 273 (1998) 13415-13420
    • (1998) J. Biol. Chem. , vol.273 , pp. 13415-13420
    • Van Duijn, M.M.1    Van der Zee, J.2    VanSteveninck, J.3    Van den Broek, P.J.A.4
  • 77
    • 0033151523 scopus 로고    scopus 로고
    • Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells
    • May J.M., Qu Z.-C., and Mendiratta S. Role of ascorbic acid in transferrin-independent reduction and uptake of iron by U-937 cells. Biochem. Pharmacol. 57 (1999) 1275-1282
    • (1999) Biochem. Pharmacol. , vol.57 , pp. 1275-1282
    • May, J.M.1    Qu, Z.-C.2    Mendiratta, S.3
  • 80
    • 0018426388 scopus 로고
    • An ascorbate-mediated transmembrane-reducing system of the human erythrocyte
    • Orringer E.P., and Roer M.E.S. An ascorbate-mediated transmembrane-reducing system of the human erythrocyte. J. Clin. Invest. 63 (1979) 53-58
    • (1979) J. Clin. Invest. , vol.63 , pp. 53-58
    • Orringer, E.P.1    Roer, M.E.S.2
  • 81
    • 0032411852 scopus 로고    scopus 로고
    • Electron spin resonance study on the formation of ascorbate free radical from ascorbate: the effect of dehydroascorbic acid and ferricyanide
    • Van Duijn M.M., Van der Zee J., and Van den Broek P.J.A. Electron spin resonance study on the formation of ascorbate free radical from ascorbate: the effect of dehydroascorbic acid and ferricyanide. Protoplasma 205 (1998) 122-128
    • (1998) Protoplasma , vol.205 , pp. 122-128
    • Van Duijn, M.M.1    Van der Zee, J.2    Van den Broek, P.J.A.3
  • 82
    • 0023720312 scopus 로고
    • Cell surface glycoconjugates control the activity of the NADH-ascorbate free radical reductase of rat liver plasma membrane
    • Navas P., Estévez A., Burón M.I., Villalba J.M., and Crane F.L. Cell surface glycoconjugates control the activity of the NADH-ascorbate free radical reductase of rat liver plasma membrane. Biochem. Biophys. Res. Commun. 154 (1988) 1029-1033
    • (1988) Biochem. Biophys. Res. Commun. , vol.154 , pp. 1029-1033
    • Navas, P.1    Estévez, A.2    Burón, M.I.3    Villalba, J.M.4    Crane, F.L.5
  • 83
    • 0034623120 scopus 로고    scopus 로고
    • Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor
    • VanDuijn M.M., Tijssen K., VanSteveninck J., Van den Broek P.J.A., and Van der Zee J. Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J. Biol. Chem. 275 (2000) 27720-27725
    • (2000) J. Biol. Chem. , vol.275 , pp. 27720-27725
    • VanDuijn, M.M.1    Tijssen, K.2    VanSteveninck, J.3    Van den Broek, P.J.A.4    Van der Zee, J.5
  • 84
    • 0035936812 scopus 로고    scopus 로고
    • The ascorbate-driven reduction of extracellular ascorbate free radical by the erythrocyte is an electrogenic process
    • VanDuijn M.M., Van der Zee J., and Van den Broek P.J.A. The ascorbate-driven reduction of extracellular ascorbate free radical by the erythrocyte is an electrogenic process. FEBS Lett. 491 (2001) 67-70
    • (2001) FEBS Lett. , vol.491 , pp. 67-70
    • VanDuijn, M.M.1    Van der Zee, J.2    Van den Broek, P.J.A.3
  • 85
    • 45149113881 scopus 로고    scopus 로고
    • Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells
    • Lane D.J.R., and Lawen A. Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells. J. Biol. Chem. 283 (2008) 12701-12708
    • (2008) J. Biol. Chem. , vol.283 , pp. 12701-12708
    • Lane, D.J.R.1    Lawen, A.2
  • 86
    • 0033567402 scopus 로고    scopus 로고
    • Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C
    • Upston J.M., Karjalainen A., Bygrave F.L., and Stocker R. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C. Biochem. J. 342 (1999) 49-56
    • (1999) Biochem. J. , vol.342 , pp. 49-56
    • Upston, J.M.1    Karjalainen, A.2    Bygrave, F.L.3    Stocker, R.4
  • 87
    • 0030610468 scopus 로고    scopus 로고
    • 13C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes
    • 13C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes. Eur. J. Biochem. 246 (1997) 638-645
    • (1997) Eur. J. Biochem. , vol.246 , pp. 638-645
    • Himmelreich, U.1    Kuchel, P.W.2
  • 88
    • 0032883883 scopus 로고    scopus 로고
    • Ascorbate-dependent electron transfer across the human erythrocyte membrane
    • May J.M., and Qu Z.-C. Ascorbate-dependent electron transfer across the human erythrocyte membrane. Biochim. Biophys. Acta 1421 (1999) 19-31
    • (1999) Biochim. Biophys. Acta , vol.1421 , pp. 19-31
    • May, J.M.1    Qu, Z.-C.2
  • 89
    • 27844441716 scopus 로고    scopus 로고
    • Cytochrome b561 protein family: expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses
    • Tsubaki M., Takeuchi F., and Nakanishi N. Cytochrome b561 protein family: expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses. Biochim. Biophys. Acta 1753 (2005) 174-190
    • (2005) Biochim. Biophys. Acta , vol.1753 , pp. 174-190
    • Tsubaki, M.1    Takeuchi, F.2    Nakanishi, N.3
  • 90
    • 0025885657 scopus 로고
    • Cytochrome b561, ascorbic acid, and transmembrane electron transfer
    • Fleming P.J., and Kent U.M. Cytochrome b561, ascorbic acid, and transmembrane electron transfer. Am. J. Clin. Nutr. 54 (1991) 1173S-1178S
    • (1991) Am. J. Clin. Nutr. , vol.54
    • Fleming, P.J.1    Kent, U.M.2
  • 91
    • 38849180048 scopus 로고    scopus 로고
    • 561: a unique machinery for the biological transmembrane electron transfer
    • 561: a unique machinery for the biological transmembrane electron transfer. J. Biochem. 142 (2007) 553-560
    • (2007) J. Biochem. , vol.142 , pp. 553-560
    • Nakanishi, N.1    Takeuchi, F.2    Tsubaki, M.3
  • 92
    • 33750620918 scopus 로고    scopus 로고
    • An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes
    • Zhang D.-l., Su D., Bérczi A., Vargas A., and Asard H. An ascorbate-reducible cytochrome b561 is localized in macrophage lysosomes. Biochim. Biophys. Acta 1760 (2006) 1903-1913
    • (2006) Biochim. Biophys. Acta , vol.1760 , pp. 1903-1913
    • Zhang, D.-l.1    Su, D.2    Bérczi, A.3    Vargas, A.4    Asard, H.5
  • 96
    • 58249136810 scopus 로고    scopus 로고
    • Differing expression of genes involved in non-transferrin iron transport across plasma membrane in various cell types under iron deficiency and excess
    • Balusikova K., Neubauerova J., Dostalikova-Cimburova M., Horak J., and Kovar J. Differing expression of genes involved in non-transferrin iron transport across plasma membrane in various cell types under iron deficiency and excess. Mol. Cell. Biochem. 321 (2009) 123-133
    • (2009) Mol. Cell. Biochem. , vol.321 , pp. 123-133
    • Balusikova, K.1    Neubauerova, J.2    Dostalikova-Cimburova, M.3    Horak, J.4    Kovar, J.5
  • 97
    • 0038711587 scopus 로고    scopus 로고
    • Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system
    • Jeong S.Y., and David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem. 278 (2003) 27144-27148
    • (2003) J. Biol. Chem. , vol.278 , pp. 27144-27148
    • Jeong, S.Y.1    David, S.2
  • 101
    • 59149096376 scopus 로고    scopus 로고
    • The role of Dcytb in iron metabolism: an update
    • McKie A.T. The role of Dcytb in iron metabolism: an update. Biochem. Soc. Trans. 36 (2008) 1239-1241
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 1239-1241
    • McKie, A.T.1
  • 104
    • 33746383473 scopus 로고    scopus 로고
    • Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity
    • May J.M., Li L., Hayslett K., and Qu Z.-C. Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity. Neurochem. Res. 31 (2006) 785-794
    • (2006) Neurochem. Res. , vol.31 , pp. 785-794
    • May, J.M.1    Li, L.2    Hayslett, K.3    Qu, Z.-C.4
  • 105
    • 0028902789 scopus 로고
    • Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells
    • Han O., Failla M.L., Hill A.D., Morris E.R., and Smith Jr. J.C. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J. Nutr. 125 (1995) 1291-1299
    • (1995) J. Nutr. , vol.125 , pp. 1291-1299
    • Han, O.1    Failla, M.L.2    Hill, A.D.3    Morris, E.R.4    Smith Jr., J.C.5
  • 106
    • 31444442655 scopus 로고    scopus 로고
    • Vitamin C: new role of the old vitamin in the cardiovascular system?
    • Kónya C., and Ferdinandy P. Vitamin C: new role of the old vitamin in the cardiovascular system?. Br. J. Pharmacol. 147 (2006) 125-127
    • (2006) Br. J. Pharmacol. , vol.147 , pp. 125-127
    • Kónya, C.1    Ferdinandy, P.2
  • 108
    • 0018882114 scopus 로고
    • Ascorbic acid transport by isolated bovine adrenal cortical cells
    • Finn F.M., and Johns P.A. Ascorbic acid transport by isolated bovine adrenal cortical cells. Endocrinology 106 (1980) 811-817
    • (1980) Endocrinology , vol.106 , pp. 811-817
    • Finn, F.M.1    Johns, P.A.2
  • 109
    • 0022976050 scopus 로고
    • Ascorbate transport in cultured cat retinal pigment epithelial cells
    • Khatami M., Stramm L.E., and Rockey J.H. Ascorbate transport in cultured cat retinal pigment epithelial cells. Exp. Eye Res. 43 (1986) 607-615
    • (1986) Exp. Eye Res. , vol.43 , pp. 607-615
    • Khatami, M.1    Stramm, L.E.2    Rockey, J.H.3
  • 110
    • 0036683707 scopus 로고    scopus 로고
    • Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions
    • Ahmad S., and Evans W.H. Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions. Biochem. J. 365 (2002) 693-699
    • (2002) Biochem. J. , vol.365 , pp. 693-699
    • Ahmad, S.1    Evans, W.H.2
  • 111
    • 12844265401 scopus 로고    scopus 로고
    • Permeability changes of connexin32 hemi channels reconstituted in liposomes induced by extremely low frequency, low amplitude magnetic fields
    • Ramundo-Orlando A., Serafino A., Schiavo R., Liberti M., and d Inzeo G. Permeability changes of connexin32 hemi channels reconstituted in liposomes induced by extremely low frequency, low amplitude magnetic fields. Biochim. Biophys. Acta 1668 (2005) 33-40
    • (2005) Biochim. Biophys. Acta , vol.1668 , pp. 33-40
    • Ramundo-Orlando, A.1    Serafino, A.2    Schiavo, R.3    Liberti, M.4    d Inzeo, G.5
  • 112
    • 0027483125 scopus 로고
    • Ascorbic acid in the brain
    • Grünewald R.A. Ascorbic acid in the brain. Brain Res. Rev. 18 (1993) 123-133
    • (1993) Brain Res. Rev. , vol.18 , pp. 123-133
    • Grünewald, R.A.1
  • 113
  • 115
    • 14944338732 scopus 로고    scopus 로고
    • Volume-sensitive organic osmolyte/anion channels in cancer. Novel approaches to studying channel modulation employing proteomics technologies
    • Davies A.R.L., Belsey M.J., and Kozlowski R.Z. Volume-sensitive organic osmolyte/anion channels in cancer. Novel approaches to studying channel modulation employing proteomics technologies. Ann. N.Y. Acad. Sci. 1028 (2004) 38-55
    • (2004) Ann. N.Y. Acad. Sci. , vol.1028 , pp. 38-55
    • Davies, A.R.L.1    Belsey, M.J.2    Kozlowski, R.Z.3
  • 116
    • 13344278005 scopus 로고    scopus 로고
    • Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes
    • Siushansian R., Dixon S.J., and Wilson J.X. Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J. Neurochem. 66 (1996) 1227-1233
    • (1996) J. Neurochem. , vol.66 , pp. 1227-1233
    • Siushansian, R.1    Dixon, S.J.2    Wilson, J.X.3
  • 118
    • 64249111126 scopus 로고    scopus 로고
    • Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate
    • May J.M., and Qu Z.-C. Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate. Mol. Cell. Biochem. 325 (2009) 79-88
    • (2009) Mol. Cell. Biochem. , vol.325 , pp. 79-88
    • May, J.M.1    Qu, Z.-C.2
  • 119
    • 33847687710 scopus 로고    scopus 로고
    • Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes
    • Rana S., and Dringen R. Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci. Lett. 415 (2007) 45-48
    • (2007) Neurosci. Lett. , vol.415 , pp. 45-48
    • Rana, S.1    Dringen, R.2
  • 121
    • 58149091691 scopus 로고    scopus 로고
    • Oxidative stress, lens gap junctions, and cataracts
    • Berthoud V.M., and Beyer E.C. Oxidative stress, lens gap junctions, and cataracts. Antioxid. Redox Signal. 11 (2009) 339-353
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 339-353
    • Berthoud, V.M.1    Beyer, E.C.2
  • 122
    • 0028142763 scopus 로고
    • A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission
    • Rebec G.V., and Pierce R.C. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog. Neurobiol. 43 (1994) 537-565
    • (1994) Prog. Neurobiol. , vol.43 , pp. 537-565
    • Rebec, G.V.1    Pierce, R.C.2
  • 123
    • 0021132712 scopus 로고
    • Identification of L-ascorbic acid in secretion granules of the rat parotid gland
    • von Zastrow M., Tritton T.R., and Castle J.D. Identification of L-ascorbic acid in secretion granules of the rat parotid gland. J. Biol. Chem. 259 (1984) 11746-11750
    • (1984) J. Biol. Chem. , vol.259 , pp. 11746-11750
    • von Zastrow, M.1    Tritton, T.R.2    Castle, J.D.3
  • 124
    • 0021993676 scopus 로고
    • Electron transfer across posterior pituitary neurosecretory vesicle membranes
    • Russell J.T., Levine M., and Njus D. Electron transfer across posterior pituitary neurosecretory vesicle membranes. J. Biol. Chem. 260 (1985) 226-231
    • (1985) J. Biol. Chem. , vol.260 , pp. 226-231
    • Russell, J.T.1    Levine, M.2    Njus, D.3
  • 125
    • 0020318561 scopus 로고
    • Secretion of newly taken-up ascorbic acid by adrenomedullary chromaffin cells
    • Daniels A.J., Dean G., Viveros O.H., and Diliberto Jr. E.J. Secretion of newly taken-up ascorbic acid by adrenomedullary chromaffin cells. Science 216 (1982) 737-739
    • (1982) Science , vol.216 , pp. 737-739
    • Daniels, A.J.1    Dean, G.2    Viveros, O.H.3    Diliberto Jr., E.J.4
  • 126
    • 0020586901 scopus 로고
    • Secretion of newly taken up ascorbic acid by adrenomedullary chromaffin cells originates from a compartment different from the catecholamine storage vesicle
    • Daniels A.J., Dean G., Viveros O.H., and Diliberto Jr. E.J. Secretion of newly taken up ascorbic acid by adrenomedullary chromaffin cells originates from a compartment different from the catecholamine storage vesicle. Mol. Pharmacol. 23 (1983) 437-444
    • (1983) Mol. Pharmacol. , vol.23 , pp. 437-444
    • Daniels, A.J.1    Dean, G.2    Viveros, O.H.3    Diliberto Jr., E.J.4
  • 129
    • 52049106127 scopus 로고    scopus 로고
    • Multiple roles of calcium ions in the regulation of neurotransmitter release
    • Neher E., and Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59 (2008) 861-872
    • (2008) Neuron , vol.59 , pp. 861-872
    • Neher, E.1    Sakaba, T.2
  • 130
    • 4344600465 scopus 로고    scopus 로고
    • Defining pathways of loss and secretion of chemical messengers from astrocytes
    • Evanko D.S., Zhang Q., Zorec R., and Haydon P.G. Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47 (2004) 233-240
    • (2004) Glia , vol.47 , pp. 233-240
    • Evanko, D.S.1    Zhang, Q.2    Zorec, R.3    Haydon, P.G.4
  • 132
    • 0031465419 scopus 로고    scopus 로고
    • Antioxidant defense of the brain: a role for astrocytes
    • Wilson J.X. Antioxidant defense of the brain: a role for astrocytes. Can. J. Physiol. Pharmacol. 75 (1997) 1149-1163
    • (1997) Can. J. Physiol. Pharmacol. , vol.75 , pp. 1149-1163
    • Wilson, J.X.1
  • 133
    • 0034722124 scopus 로고    scopus 로고
    • Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter
    • Korcok J., Yan R., Siushansian R., Dixon S.J., and Wilson J.X. Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter. Brain Res. 881 (2000) 144-151
    • (2000) Brain Res. , vol.881 , pp. 144-151
    • Korcok, J.1    Yan, R.2    Siushansian, R.3    Dixon, S.J.4    Wilson, J.X.5
  • 135
    • 1842587600 scopus 로고    scopus 로고
    • Astrocyte influences on ischemic neuronal death
    • Swanson R.A., Ying W., and Kauppinen T.M. Astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 4 (2004) 193-205
    • (2004) Curr. Mol. Med. , vol.4 , pp. 193-205
    • Swanson, R.A.1    Ying, W.2    Kauppinen, T.M.3
  • 136
    • 0034658572 scopus 로고    scopus 로고
    • The vitamin C transporter SVCT2 is expressed by astrocytes in culture but not in situ
    • Berger U.V., and Hediger M.A. The vitamin C transporter SVCT2 is expressed by astrocytes in culture but not in situ. NeuroReport 11 (2000) 1395-1399
    • (2000) NeuroReport , vol.11 , pp. 1395-1399
    • Berger, U.V.1    Hediger, M.A.2
  • 139
  • 140
    • 34147223962 scopus 로고    scopus 로고
    • Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity
    • Qiu S., Li L., Weeber E.J., and May J.M. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J. Neurosci. Res. 85 (2007) 1046-1056
    • (2007) J. Neurosci. Res. , vol.85 , pp. 1046-1056
    • Qiu, S.1    Li, L.2    Weeber, E.J.3    May, J.M.4
  • 141
    • 34547439281 scopus 로고    scopus 로고
    • Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury
    • Song L., Song W., and Schipper H.M. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. J. Neurosci. Res. 85 (2007) 2186-2195
    • (2007) J. Neurosci. Res. , vol.85 , pp. 2186-2195
    • Song, L.1    Song, W.2    Schipper, H.M.3
  • 142
    • 0035983275 scopus 로고    scopus 로고
    • Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol
    • Daskalopoulos R., Korcok J., Tao L., and Wilson J.X. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol. Glia 39 (2002) 124-132
    • (2002) Glia , vol.39 , pp. 124-132
    • Daskalopoulos, R.1    Korcok, J.2    Tao, L.3    Wilson, J.X.4
  • 143
    • 0035937432 scopus 로고    scopus 로고
    • Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system
    • Song J.H., Shin S.H., and Ross G.M. Oxidative stress induced by ascorbate causes neuronal damage in an in vitro system. Brain Res. 895 (2001) 66-72
    • (2001) Brain Res. , vol.895 , pp. 66-72
    • Song, J.H.1    Shin, S.H.2    Ross, G.M.3
  • 144
    • 16444368671 scopus 로고    scopus 로고
    • Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes
    • Kim E.J., Park Y.G., Baik E.J., Jung S.J., Won R., Nahm T.S., and Lee B.H. Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes. J. Neurosci. Res. 79 (2005) 670-679
    • (2005) J. Neurosci. Res. , vol.79 , pp. 670-679
    • Kim, E.J.1    Park, Y.G.2    Baik, E.J.3    Jung, S.J.4    Won, R.5    Nahm, T.S.6    Lee, B.H.7
  • 145
    • 0037063311 scopus 로고    scopus 로고
    • The physiological role of dehydroascorbic acid
    • Wilson J.X. The physiological role of dehydroascorbic acid. FEBS Lett. 527 (2002) 5-9
    • (2002) FEBS Lett. , vol.527 , pp. 5-9
    • Wilson, J.X.1
  • 146
    • 0034136447 scopus 로고    scopus 로고
    • Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma
    • Königsberger L.-C., Königsberger E., May P.M., and Hefter G.T. Complexation of iron(III) and iron(II) by citrate. Implications for iron speciation in blood plasma. J. Inorg. Biochem. 78 (2000) 175-184
    • (2000) J. Inorg. Biochem. , vol.78 , pp. 175-184
    • Königsberger, L.-C.1    Königsberger, E.2    May, P.M.3    Hefter, G.T.4
  • 147
    • 0024520326 scopus 로고
    • Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate
    • Hallberg L., Brune M., and Rossander L. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am. J. Clin. Nutr. 49 (1989) 140-144
    • (1989) Am. J. Clin. Nutr. , vol.49 , pp. 140-144
    • Hallberg, L.1    Brune, M.2    Rossander, L.3
  • 148
    • 30544452964 scopus 로고    scopus 로고
    • Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes
    • Engle-Stone R., Yeung A., Welch R., and Glahn R. Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. J. Agric. Food Chem. 53 (2005) 10276-10284
    • (2005) J. Agric. Food Chem. , vol.53 , pp. 10276-10284
    • Engle-Stone, R.1    Yeung, A.2    Welch, R.3    Glahn, R.4
  • 149
    • 0027512915 scopus 로고
    • Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake
    • Inman R.S., and Wessling-Resnick M. Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake. J. Biol. Chem. 268 (1993) 8521-8528
    • (1993) J. Biol. Chem. , vol.268 , pp. 8521-8528
    • Inman, R.S.1    Wessling-Resnick, M.2
  • 150
    • 0028109907 scopus 로고
    • Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport
    • Inman R.S., Coughlan M.M., and Wessling-Resnick M. Extracellular ferrireductase activity of K562 cells is coupled to transferrin-independent iron transport. Biochemistry 33 (1994) 11850-11857
    • (1994) Biochemistry , vol.33 , pp. 11850-11857
    • Inman, R.S.1    Coughlan, M.M.2    Wessling-Resnick, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.