-
1
-
-
59949098337
-
The electronic properties of graphene
-
10.1103/RevModPhys.81.109 0034-6861
-
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109-62
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109-162
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
2
-
-
77955231284
-
Graphene transistors
-
10.1038/nnano.2010.89 1748-3387
-
Schwierz F 2010 Graphene transistors Nature Nanotechnol. 5 487-96
-
(2010)
Nature Nanotechnol.
, vol.5
, pp. 487-496
-
-
Schwierz, F.1
-
3
-
-
84879879376
-
Graphene electronics: Materials, devices, and circuits
-
10.1109/JPROC.2013.2260311 0018-9219
-
Wu Y, Farmer D, Xia F and Avouris P 2013 Graphene electronics: materials, devices, and circuits Proc. IEEE 101 1620-37
-
(2013)
Proc. IEEE
, vol.101
, pp. 1620-1637
-
-
Wu, Y.1
Farmer, D.2
Xia, F.3
Avouris, P.4
-
4
-
-
43049170468
-
Ultrahigh electron mobility in suspended graphene
-
10.1016/j.ssc.2008.02.024 0038-1098
-
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Ultrahigh electron mobility in suspended graphene Solid State Commun. 146 351-5
-
(2008)
Solid State Commun.
, vol.146
, pp. 351-355
-
-
Bolotin, K.I.1
Sikes, K.J.2
Jiang, Z.3
Klima, M.4
Fudenberg, G.5
Hone, J.6
Kim, P.7
Stormer, H.L.8
-
5
-
-
83455172686
-
A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride
-
10.1063/1.3665405 232104
-
Zomer P J, Dash S P, Tombros N and van Wees B J 2011 A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride Appl. Phys. Lett. 99 232104
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Zomer, P.J.1
Dash, S.P.2
Tombros, N.3
Van Wees, B.J.4
-
6
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666-9 (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
7
-
-
84862277776
-
State-Of-The-Art graphene high-frequency electronics
-
10.1021/nl300904k
-
Wu Y et al 2012 State-of-the-art graphene high-frequency electronics Nano Lett. 12 3062-7
-
(2012)
Nano Lett.
, vol.12
, pp. 3062-3067
-
-
Wu, Y.1
-
8
-
-
84863927930
-
High-frequency self-aligned graphene transistors with transferred gate stacks
-
10.1073/pnas.1205696109 0027-8424
-
Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y-C, Jiang S, Huang Y and Duan X 2012 High-frequency self-aligned graphene transistors with transferred gate stacks Proc. Natl Acad. Sci. USA 109 11588-92
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 11588-11592
-
-
Cheng, R.1
Bai, J.2
Liao, L.3
Zhou, H.4
Chen, Y.5
Liu, L.6
Lin, Y.-C.7
Jiang, S.8
Huang, Y.9
Duan, X.10
-
9
-
-
84874970191
-
Record maximum oscillation frequency in C-face epitaxial graphene transistors
-
10.1021/nl303587r
-
Guo Z et al 2013 Record maximum oscillation frequency in C-face epitaxial graphene transistors Nano Lett. 13 942-7
-
(2013)
Nano Lett.
, vol.13
, pp. 942-947
-
-
Guo, Z.1
-
10
-
-
57349090160
-
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
-
10.1038/nnano.2008.268 1748-3387
-
Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Current saturation in zero-bandgap, top-gated graphene field-effect transistors Nature Nanotechnol. 3 654-9
-
(2008)
Nature Nanotechnol.
, vol.3
, pp. 654-659
-
-
Meric, I.1
Han, M.Y.2
Young, A.F.3
Ozyilmaz, B.4
Kim, P.5
Shepard, K.L.6
-
11
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
DOI 10.1103/PhysRevLett.98.206805
-
Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Energy band-gap engineering of graphene nanoribbons Phys. Rev. Lett. 98 206805 (Pubitemid 47139572)
-
(2007)
Physical Review Letters
, vol.98
, Issue.20
, pp. 206805
-
-
Han, M.Y.1
Ozyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
12
-
-
83655172567
-
Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate
-
10.1021/nl202725w
-
Kharche N and Nayak S K 2011 Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate Nano Lett. 11 5274-8
-
(2011)
Nano Lett.
, vol.11
, pp. 5274-5278
-
-
Kharche, N.1
Nayak, S.K.2
-
13
-
-
84876014564
-
Electronic and transport properties of unbalanced sublattice N-doping in graphene
-
Lherbier A, Botello-Mndez A R and Charlier J-C 2013 Electronic and transport properties of unbalanced sublattice N-doping in graphene Nano Lett. 13 1446-50
-
(2013)
Nano Lett.
, vol.13
, pp. 1446-1450
-
-
Lherbier, A.1
Botello-Mndez, A.R.2
Charlier, J.-C.3
-
14
-
-
77749323301
-
Graphene nanomesh
-
10.1038/nnano.2010.8 1748-3387
-
Bai J, Zhong X, Jiang S, Huang Y and Duan X 2010 Graphene nanomesh Nature Nanotechnol. 5 190-4
-
(2010)
Nature Nanotechnol.
, vol.5
, pp. 190-194
-
-
Bai, J.1
Zhong, X.2
Jiang, S.3
Huang, Y.4
Duan, X.5
-
15
-
-
67149121054
-
Direct observation of a widely tunable bandgap in bilayer graphene
-
10.1038/nature08105
-
Zhang Y, Tang T-T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 820-3
-
(2009)
Nature
, vol.459
, pp. 820-823
-
-
Zhang, Y.1
Tang, T.-T.2
Girit, C.3
Hao, Z.4
Martin, M.C.5
Zettl, A.6
Crommie, M.F.7
Shen, Y.R.8
Wang, F.9
-
16
-
-
38849130184
-
Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder
-
DOI 10.1063/1.2838354
-
Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S and Dollfus P 2008 Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder Appl. Phys. Lett. 92 042108 (Pubitemid 351198830)
-
(2008)
Applied Physics Letters
, vol.92
, Issue.4
, pp. 042108
-
-
Querlioz, D.1
Apertet, Y.2
Valentin, A.3
Huet, K.4
Bournel, A.5
Galdin-Retailleau, S.6
Dollfus, P.7
-
17
-
-
84872056164
-
Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures
-
10.1063/1.4772609 013702
-
Nguyen V H, Chung Nguyen M, Nguyen H-V and Dollfus P 2013 Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures J. Appl. Phys. 113 013702
-
(2013)
J. Appl. Phys.
, vol.113
-
-
Nguyen, V.H.1
Chung Nguyen, M.2
Nguyen, H.-V.3
Dollfus, P.4
-
18
-
-
62549134866
-
On the possibility of tunable-gap bilayer graphene FET
-
10.1109/LED.2008.2010629 0741-3106
-
Fiori G and Iannaccone G 2009 On the possibility of tunable-gap bilayer graphene FET IEEE Electron Device Lett. 30 261-4
-
(2009)
IEEE Electron Device Lett.
, vol.30
, pp. 261-264
-
-
Fiori, G.1
Iannaccone, G.2
-
19
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
DOI 10.1126/science.1157996
-
Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385-8 (Pubitemid 352029970)
-
(2008)
Science
, vol.321
, Issue.5887
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.W.3
Hone, J.4
-
20
-
-
84884666446
-
Graphene based field effect transistors: Efforts made towards flexible electronics
-
10.1016/j.sse.2013.08.007 0038-1101
-
Sharma B K and Ahn J-H 2013 Graphene based field effect transistors: efforts made towards flexible electronics Solid-State Electron. 89 177-88
-
(2013)
Solid-State Electron.
, vol.89
, pp. 177-188
-
-
Sharma, B.K.1
Ahn, J.-H.2
-
21
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
10.1038/nature07719
-
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y and Hong B H 2009 Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 706-10
-
(2009)
Nature
, vol.457
, pp. 706-710
-
-
Kim, K.S.1
Zhao, Y.2
Jang, H.3
Lee, S.Y.4
Kim, J.M.5
Kim, K.S.6
Ahn, J.-H.7
Kim, P.8
Choi, J.-Y.9
Hong, B.H.10
-
22
-
-
77953651476
-
Band gap of strained graphene nanoribbons
-
10.1007/s12274-010-1022-4
-
Lu Y and Guo J 2010 Band gap of strained graphene nanoribbons Nano Res. 3 189-99
-
(2010)
Nano Res.
, vol.3
, pp. 189-199
-
-
Lu, Y.1
Guo, J.2
-
23
-
-
77956309897
-
Gap opening in graphene by shear strain
-
10.1103/PhysRevB.81.241412 B 241412
-
Cocco G, Cadelano E and Colombo L 2010 Gap opening in graphene by shear strain Phys. Rev. B 81 241412
-
(2010)
Phys. Rev.
, vol.81
-
-
Cocco, G.1
Cadelano, E.2
Colombo, L.3
-
24
-
-
68649099010
-
Strain engineering of graphene's electronic structure
-
10.1103/PhysRevLett.103.046801 046801
-
Pereira V M and Castro Neto A H 2009 Strain engineering of graphene's electronic structure Phys. Rev. Lett. 103 046801
-
(2009)
Phys. Rev. Lett.
, vol.103
-
-
Pereira, V.M.1
Castro Neto, A.H.2
-
25
-
-
77958053789
-
Probing strain-induced electronic structure change in graphene by Raman spectroscopy
-
10.1021/nl102123c
-
Huang M, Yan H, Heinz T F and Hone J 2010 Probing strain-induced electronic structure change in graphene by Raman spectroscopy Nano Lett. 10 4074-9
-
(2010)
Nano Lett.
, vol.10
, pp. 4074-4079
-
-
Huang, M.1
Yan, H.2
Heinz, T.F.3
Hone, J.4
-
26
-
-
33846627756
-
Electromechanical resonators from graphene sheets
-
DOI 10.1126/science.1136836
-
Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and McEuen P L 2007 Electromechanical resonators from graphene sheets Science 315 490-3 (Pubitemid 46178391)
-
(2007)
Science
, vol.315
, Issue.5811
, pp. 490-493
-
-
Bunch, J.S.1
Van Der Zande, A.M.2
Verbridge, S.S.3
Frank, I.W.4
Tanenbaum, D.M.5
Parpia, J.M.6
Craighead, H.G.7
McEuen, P.L.8
-
27
-
-
84858234948
-
Strain-induced conductance modulation in graphene grain boundary
-
10.1021/nl203968j
-
Kumar S B and Guo J 2012 Strain-induced conductance modulation in graphene grain boundary Nano Lett. 12 1362-6
-
(2012)
Nano Lett.
, vol.12
, pp. 1362-1366
-
-
Kumar, S.B.1
Guo, J.2
-
28
-
-
77957593438
-
Geometry, mechanics, and electronics of singular structures and wrinkles in graphene
-
10.1103/PhysRevLett.105.156603 156603
-
Pereira V M, Castro Neto A H, Liang H Y and Mahadevan L 2010 Geometry, mechanics, and electronics of singular structures and wrinkles in graphene Phys. Rev. Lett. 105 156603
-
(2010)
Phys. Rev. Lett.
, vol.105
-
-
Pereira, V.M.1
Castro Neto, A.H.2
Liang, H.Y.3
Mahadevan, L.4
-
29
-
-
77954831972
-
Strain effect on the optical conductivity of graphene
-
10.1103/PhysRevB.81.035411 B 035411
-
Pellegrino F M D, Angilella G G N and Pucci R 2010 Strain effect on the optical conductivity of graphene Phys. Rev. B 81 035411
-
(2010)
Phys. Rev.
, vol.81
-
-
Pellegrino, F.M.D.1
Angilella, G.G.N.2
Pucci, R.3
-
30
-
-
73549103610
-
Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
-
10.1038/nphys1420
-
Guinea F, Katsnelson M I and Geim A K 2010 Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering Nature Phys. 6 30-3
-
(2010)
Nature Phys.
, vol.6
, pp. 30-33
-
-
Guinea, F.1
Katsnelson, M.I.2
Geim, A.K.3
-
31
-
-
77956422296
-
Strain-induced pseudomagnetic field for novel graphene electronics
-
10.1021/nl1018063
-
Low T and Guinea F 2010 Strain-induced pseudomagnetic field for novel graphene electronics Nano Lett. 10 3551-4
-
(2010)
Nano Lett.
, vol.10
, pp. 3551-3554
-
-
Low, T.1
Guinea, F.2
-
32
-
-
79951775570
-
Strain-tunable spin transport in ferromagnetic graphene junctions
-
10.1063/1.3552716 062101
-
Zhai F and Yang L 2011 Strain-tunable spin transport in ferromagnetic graphene junctions Appl. Phys. Lett. 98 062101
-
(2011)
Appl. Phys. Lett.
, vol.98
-
-
Zhai, F.1
Yang, L.2
-
33
-
-
52049113441
-
Impermeable atomic membranes from graphene sheets
-
10.1021/nl801457b
-
Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Impermeable atomic membranes from graphene sheets Nano Lett. 8 2458-62
-
(2008)
Nano Lett.
, vol.8
, pp. 2458-2462
-
-
Bunch, J.S.1
Verbridge, S.S.2
Alden, J.S.3
Van Der Zande, A.M.4
Parpia, J.M.5
Craighead, H.G.6
McEuen, P.L.7
-
34
-
-
70249094929
-
Controlled ripple texturing of suspended graphene and ultrathin graphite membranes
-
10.1038/nnano.2009.191 1748-3387
-
Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Controlled ripple texturing of suspended graphene and ultrathin graphite membranes Nature Nanotechnol. 4 562-6
-
(2009)
Nature Nanotechnol.
, vol.4
, pp. 562-566
-
-
Bao, W.1
Miao, F.2
Chen, Z.3
Zhang, H.4
Jang, W.5
Dames, C.6
Lau, C.N.7
-
35
-
-
79960226753
-
Introducing nonuniform strain to graphene using dielectric nanopillars
-
10.1143/APEX.4.075102 1882-0786 075102
-
Tomori H, Kanda A, Goto H, Ootuka Y, Tsukagoshi K, Moriyama S, Watanabe E and Tsuya D 2011 Introducing nonuniform strain to graphene using dielectric nanopillars Appl. Phys. Express 4 075102
-
(2011)
Appl. Phys. Express
, vol.4
, Issue.7
-
-
Tomori, H.1
Kanda, A.2
Goto, H.3
Ootuka, Y.4
Tsukagoshi, K.5
Moriyama, S.6
Watanabe, E.7
Tsuya, D.8
-
36
-
-
80052524063
-
Graphene bubbles with controllable curvature
-
10.1063/1.3631632 093103
-
Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C and Novoselov K S 2011 Graphene bubbles with controllable curvature Appl. Phys. Lett. 99 093103
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Georgiou, T.1
Britnell, L.2
Blake, P.3
Gorbachev, R.V.4
Gholinia, A.5
Geim, A.K.6
Casiraghi, C.7
Novoselov, K.S.8
-
37
-
-
84867348596
-
Transforming moire blisters into geometric graphene nano-bubbles
-
10.1038/ncomms1818
-
Lu J, Neto A C and Loh K P 2012 Transforming moire blisters into geometric graphene nano-bubbles Nature Commun. 3 823
-
(2012)
Nature Commun.
, vol.3
, pp. 823
-
-
Lu, J.1
Neto, A.C.2
Loh, K.P.3
-
38
-
-
84881450240
-
Strain in graphene sheets attached to a porous alumina membrane
-
10.1021/jp4013834 1932-7447 C
-
Kase T and Ogino T 2013 Strain in graphene sheets attached to a porous alumina membrane J. Phys. Chem. C 117 15991-5
-
(2013)
J. Phys. Chem.
, vol.117
, pp. 15991-15995
-
-
Kase, T.1
Ogino, T.2
-
39
-
-
77956015193
-
Local strain in tunneling transistors based on graphene nanoribbons
-
10.1063/1.3479915 073105
-
Lu Y and Guo J 2010 Local strain in tunneling transistors based on graphene nanoribbons Appl. Phys. Lett. 97 073105
-
(2010)
Appl. Phys. Lett.
, vol.97
-
-
Lu, Y.1
Guo, J.2
-
40
-
-
77955759037
-
Valley filter in strain engineered graphene
-
10.1063/1.3473725 043508
-
Fujita T, Jalil M B A and Tan S G 2010 Valley filter in strain engineered graphene Appl. Phys. Lett. 97 043508
-
(2010)
Appl. Phys. Lett.
, vol.97
-
-
Fujita, T.1
Jalil, M.B.A.2
Tan, S.G.3
-
41
-
-
80053602575
-
Aharonov-Bohm interferences from local deformations in graphene
-
10.1038/nphys2034
-
de Juan F, Cortijo A, Vozmediano M A H and Cano A 2011 Aharonov-Bohm interferences from local deformations in graphene Nature Phys. 7 810-5
-
(2011)
Nature Phys.
, vol.7
, pp. 810-815
-
-
De Juan, F.1
Cortijo, A.2
Vozmediano, M.A.H.3
Cano, A.4
-
42
-
-
84888379204
-
Conductance across strain junctions in graphene nanoribbons
-
10.1103/PhysRevB.88.195416 B 195416
-
Bahamon D A and Pereira V M 2013 Conductance across strain junctions in graphene nanoribbons Phys. Rev. B 88 195416
-
(2013)
Phys. Rev.
, vol.88
-
-
Bahamon, D.A.1
Pereira, V.M.2
-
43
-
-
68949135918
-
Tight-binding approach to uniaxial strain in graphene
-
10.1103/PhysRevB.80.045401 B 045401
-
Pereira V M, Castro Neto A H and Peres N M R 2009 Tight-binding approach to uniaxial strain in graphene Phys. Rev. B 80 045401
-
(2009)
Phys. Rev.
, vol.80
-
-
Pereira, V.M.1
Castro Neto, A.H.2
Peres, N.M.R.3
-
44
-
-
0014824142
-
Elastic constants of compression-annealed pyrolytic graphite
-
10.1063/1.1659428
-
Blakslee O L, Proctor D G, Seldin E J, Spence G B and Weng T 1970 Elastic constants of compression-annealed pyrolytic graphite J. Appl. Phys. 41 3373-82
-
(1970)
J. Appl. Phys.
, vol.41
, pp. 3373-3382
-
-
Blakslee, O.L.1
Proctor, D.G.2
Seldin, E.J.3
Spence, G.B.4
Weng, T.5
-
45
-
-
84864449193
-
Resonant tunnelling diodes based on graphene/h-BN heterostructure
-
10.1088/0022-3727/45/32/325104 0022-3727 325104
-
Nguyen V H, Mazzamuto F, Bournel A and Dollfus P 2012 Resonant tunnelling diodes based on graphene/h-BN heterostructure J. Phys. D: Appl. Phys. 45 325104
-
(2012)
J. Phys. D: Appl. Phys.
, vol.45
, Issue.32
-
-
Nguyen, V.H.1
Mazzamuto, F.2
Bournel, A.3
Dollfus, P.4
-
46
-
-
84874664728
-
Pseudosaturation and negative differential conductance in graphene field-effect transistors
-
10.1109/TED.2013.2241766 0018-9383
-
Alarcon A, Nguyen V H, Berrada S, Querlioz D, Saint-Martin J, Bournel A and Dollfus P 2013 Pseudosaturation and negative differential conductance in graphene field-effect transistors IEEE Trans. Electron Devices 60 985-91
-
(2013)
IEEE Trans. Electron Devices
, vol.60
, pp. 985-991
-
-
Alarcon, A.1
Nguyen, V.H.2
Berrada, S.3
Querlioz, D.4
Saint-Martin, J.5
Bournel, A.6
Dollfus, P.7
-
47
-
-
84889663732
-
Graphene nanomesh transistor with high on/off ratio and good saturation behavior
-
10.1063/1.4828496 183509
-
Berrada S, Nguyen V H, Querlioz D, Saint-Martin J, Alarcon A, Chassat C, Bournel A and Dollfus P 2013 Graphene nanomesh transistor with high on/off ratio and good saturation behavior Appl. Phys. Lett. 103 183509
-
(2013)
Appl. Phys. Lett.
, vol.103
-
-
Berrada, S.1
Nguyen, V.H.2
Querlioz, D.3
Saint-Martin, J.4
Alarcon, A.5
Chassat, C.6
Bournel, A.7
Dollfus, P.8
-
48
-
-
78650034452
-
Low-voltage tunnel transistors for beyond CMOS logic
-
10.1109/JPROC.2010.2070470 0018-9219
-
Seabaugh A C and Zhang Q 2010 Low-voltage tunnel transistors for beyond CMOS logic Proc. IEEE 98 2095-110
-
(2010)
Proc. IEEE
, vol.98
, pp. 2095-2110
-
-
Seabaugh, A.C.1
Zhang, Q.2
-
50
-
-
79952445612
-
The origins and limits of metal-graphene junction resistance
-
10.1038/nnano.2011.6 1748-3387
-
Xia F, Perebeinos V, Lin Y-M, Wu Y and Avouris P 2011 The origins and limits of metal-graphene junction resistance Nature Nanotechnol. 6 179-84
-
(2011)
Nature Nanotechnol.
, vol.6
, pp. 179-184
-
-
Xia, F.1
Perebeinos, V.2
Lin, Y.-M.3
Wu, Y.4
Avouris, P.5
-
51
-
-
84863022032
-
-
Wu Y Q, Farmer D, Valdes-Garcia A, Zhu W J, Jenkins K A, Dimitrakopoulos C, Avouris P and Lin Y M 2011 Record high RF performance for epitaxial graphene transistors IEDM Tech. Dig. p 528
-
-
-
Wu, Y.Q.1
Farmer, D.2
Valdes-Garcia, A.3
Zhu, W.J.4
Jenkins, K.A.5
Dimitrakopoulos, C.6
Avouris, P.7
Lin, Y.M.8
-
52
-
-
84866320563
-
Gate-controllable negative differential conductance in graphene tunneling transistors
-
10.1088/0268-1242/27/10/105018 0268-1242 105018
-
Nguyen V H, Niquet Y M and Dollfus P 2012 Gate-controllable negative differential conductance in graphene tunneling transistors Semicond. Sci. Technol. 27 105018
-
(2012)
Semicond. Sci. Technol.
, vol.27
, Issue.10
-
-
Nguyen, V.H.1
Niquet, Y.M.2
Dollfus, P.3
|