메뉴 건너뛰기




Volumn 25, Issue 16, 2014, Pages

Improved performance of graphene transistors by strain engineering

Author keywords

fieldeffecttransistor; grapheme; simulation; strain

Indexed keywords

FIELD EFFECT TRANSISTORS; HETEROJUNCTIONS; STRAIN;

EID: 84897409740     PISSN: 09574484     EISSN: 13616528     Source Type: Journal    
DOI: 10.1088/0957-4484/25/16/165201     Document Type: Article
Times cited : (20)

References (54)
  • 2
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • 10.1038/nnano.2010.89 1748-3387
    • Schwierz F 2010 Graphene transistors Nature Nanotechnol. 5 487-96
    • (2010) Nature Nanotechnol. , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 3
    • 84879879376 scopus 로고    scopus 로고
    • Graphene electronics: Materials, devices, and circuits
    • 10.1109/JPROC.2013.2260311 0018-9219
    • Wu Y, Farmer D, Xia F and Avouris P 2013 Graphene electronics: materials, devices, and circuits Proc. IEEE 101 1620-37
    • (2013) Proc. IEEE , vol.101 , pp. 1620-1637
    • Wu, Y.1    Farmer, D.2    Xia, F.3    Avouris, P.4
  • 5
    • 83455172686 scopus 로고    scopus 로고
    • A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride
    • 10.1063/1.3665405 232104
    • Zomer P J, Dash S P, Tombros N and van Wees B J 2011 A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride Appl. Phys. Lett. 99 232104
    • (2011) Appl. Phys. Lett. , vol.99
    • Zomer, P.J.1    Dash, S.P.2    Tombros, N.3    Van Wees, B.J.4
  • 7
    • 84862277776 scopus 로고    scopus 로고
    • State-Of-The-Art graphene high-frequency electronics
    • 10.1021/nl300904k
    • Wu Y et al 2012 State-of-the-art graphene high-frequency electronics Nano Lett. 12 3062-7
    • (2012) Nano Lett. , vol.12 , pp. 3062-3067
    • Wu, Y.1
  • 9
    • 84874970191 scopus 로고    scopus 로고
    • Record maximum oscillation frequency in C-face epitaxial graphene transistors
    • 10.1021/nl303587r
    • Guo Z et al 2013 Record maximum oscillation frequency in C-face epitaxial graphene transistors Nano Lett. 13 942-7
    • (2013) Nano Lett. , vol.13 , pp. 942-947
    • Guo, Z.1
  • 10
    • 57349090160 scopus 로고    scopus 로고
    • Current saturation in zero-bandgap, top-gated graphene field-effect transistors
    • 10.1038/nnano.2008.268 1748-3387
    • Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Current saturation in zero-bandgap, top-gated graphene field-effect transistors Nature Nanotechnol. 3 654-9
    • (2008) Nature Nanotechnol. , vol.3 , pp. 654-659
    • Meric, I.1    Han, M.Y.2    Young, A.F.3    Ozyilmaz, B.4    Kim, P.5    Shepard, K.L.6
  • 11
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • DOI 10.1103/PhysRevLett.98.206805
    • Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Energy band-gap engineering of graphene nanoribbons Phys. Rev. Lett. 98 206805 (Pubitemid 47139572)
    • (2007) Physical Review Letters , vol.98 , Issue.20 , pp. 206805
    • Han, M.Y.1    Ozyilmaz, B.2    Zhang, Y.3    Kim, P.4
  • 12
    • 83655172567 scopus 로고    scopus 로고
    • Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate
    • 10.1021/nl202725w
    • Kharche N and Nayak S K 2011 Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate Nano Lett. 11 5274-8
    • (2011) Nano Lett. , vol.11 , pp. 5274-5278
    • Kharche, N.1    Nayak, S.K.2
  • 13
    • 84876014564 scopus 로고    scopus 로고
    • Electronic and transport properties of unbalanced sublattice N-doping in graphene
    • Lherbier A, Botello-Mndez A R and Charlier J-C 2013 Electronic and transport properties of unbalanced sublattice N-doping in graphene Nano Lett. 13 1446-50
    • (2013) Nano Lett. , vol.13 , pp. 1446-1450
    • Lherbier, A.1    Botello-Mndez, A.R.2    Charlier, J.-C.3
  • 16
    • 38849130184 scopus 로고    scopus 로고
    • Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder
    • DOI 10.1063/1.2838354
    • Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S and Dollfus P 2008 Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder Appl. Phys. Lett. 92 042108 (Pubitemid 351198830)
    • (2008) Applied Physics Letters , vol.92 , Issue.4 , pp. 042108
    • Querlioz, D.1    Apertet, Y.2    Valentin, A.3    Huet, K.4    Bournel, A.5    Galdin-Retailleau, S.6    Dollfus, P.7
  • 17
    • 84872056164 scopus 로고    scopus 로고
    • Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures
    • 10.1063/1.4772609 013702
    • Nguyen V H, Chung Nguyen M, Nguyen H-V and Dollfus P 2013 Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures J. Appl. Phys. 113 013702
    • (2013) J. Appl. Phys. , vol.113
    • Nguyen, V.H.1    Chung Nguyen, M.2    Nguyen, H.-V.3    Dollfus, P.4
  • 18
    • 62549134866 scopus 로고    scopus 로고
    • On the possibility of tunable-gap bilayer graphene FET
    • 10.1109/LED.2008.2010629 0741-3106
    • Fiori G and Iannaccone G 2009 On the possibility of tunable-gap bilayer graphene FET IEEE Electron Device Lett. 30 261-4
    • (2009) IEEE Electron Device Lett. , vol.30 , pp. 261-264
    • Fiori, G.1    Iannaccone, G.2
  • 19
    • 47749150628 scopus 로고    scopus 로고
    • Measurement of the elastic properties and intrinsic strength of monolayer graphene
    • DOI 10.1126/science.1157996
    • Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385-8 (Pubitemid 352029970)
    • (2008) Science , vol.321 , Issue.5887 , pp. 385-388
    • Lee, C.1    Wei, X.2    Kysar, J.W.3    Hone, J.4
  • 20
    • 84884666446 scopus 로고    scopus 로고
    • Graphene based field effect transistors: Efforts made towards flexible electronics
    • 10.1016/j.sse.2013.08.007 0038-1101
    • Sharma B K and Ahn J-H 2013 Graphene based field effect transistors: efforts made towards flexible electronics Solid-State Electron. 89 177-88
    • (2013) Solid-State Electron. , vol.89 , pp. 177-188
    • Sharma, B.K.1    Ahn, J.-H.2
  • 22
    • 77953651476 scopus 로고    scopus 로고
    • Band gap of strained graphene nanoribbons
    • 10.1007/s12274-010-1022-4
    • Lu Y and Guo J 2010 Band gap of strained graphene nanoribbons Nano Res. 3 189-99
    • (2010) Nano Res. , vol.3 , pp. 189-199
    • Lu, Y.1    Guo, J.2
  • 23
    • 77956309897 scopus 로고    scopus 로고
    • Gap opening in graphene by shear strain
    • 10.1103/PhysRevB.81.241412 B 241412
    • Cocco G, Cadelano E and Colombo L 2010 Gap opening in graphene by shear strain Phys. Rev. B 81 241412
    • (2010) Phys. Rev. , vol.81
    • Cocco, G.1    Cadelano, E.2    Colombo, L.3
  • 24
    • 68649099010 scopus 로고    scopus 로고
    • Strain engineering of graphene's electronic structure
    • 10.1103/PhysRevLett.103.046801 046801
    • Pereira V M and Castro Neto A H 2009 Strain engineering of graphene's electronic structure Phys. Rev. Lett. 103 046801
    • (2009) Phys. Rev. Lett. , vol.103
    • Pereira, V.M.1    Castro Neto, A.H.2
  • 25
    • 77958053789 scopus 로고    scopus 로고
    • Probing strain-induced electronic structure change in graphene by Raman spectroscopy
    • 10.1021/nl102123c
    • Huang M, Yan H, Heinz T F and Hone J 2010 Probing strain-induced electronic structure change in graphene by Raman spectroscopy Nano Lett. 10 4074-9
    • (2010) Nano Lett. , vol.10 , pp. 4074-4079
    • Huang, M.1    Yan, H.2    Heinz, T.F.3    Hone, J.4
  • 27
    • 84858234948 scopus 로고    scopus 로고
    • Strain-induced conductance modulation in graphene grain boundary
    • 10.1021/nl203968j
    • Kumar S B and Guo J 2012 Strain-induced conductance modulation in graphene grain boundary Nano Lett. 12 1362-6
    • (2012) Nano Lett. , vol.12 , pp. 1362-1366
    • Kumar, S.B.1    Guo, J.2
  • 28
    • 77957593438 scopus 로고    scopus 로고
    • Geometry, mechanics, and electronics of singular structures and wrinkles in graphene
    • 10.1103/PhysRevLett.105.156603 156603
    • Pereira V M, Castro Neto A H, Liang H Y and Mahadevan L 2010 Geometry, mechanics, and electronics of singular structures and wrinkles in graphene Phys. Rev. Lett. 105 156603
    • (2010) Phys. Rev. Lett. , vol.105
    • Pereira, V.M.1    Castro Neto, A.H.2    Liang, H.Y.3    Mahadevan, L.4
  • 29
    • 77954831972 scopus 로고    scopus 로고
    • Strain effect on the optical conductivity of graphene
    • 10.1103/PhysRevB.81.035411 B 035411
    • Pellegrino F M D, Angilella G G N and Pucci R 2010 Strain effect on the optical conductivity of graphene Phys. Rev. B 81 035411
    • (2010) Phys. Rev. , vol.81
    • Pellegrino, F.M.D.1    Angilella, G.G.N.2    Pucci, R.3
  • 30
    • 73549103610 scopus 로고    scopus 로고
    • Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
    • 10.1038/nphys1420
    • Guinea F, Katsnelson M I and Geim A K 2010 Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering Nature Phys. 6 30-3
    • (2010) Nature Phys. , vol.6 , pp. 30-33
    • Guinea, F.1    Katsnelson, M.I.2    Geim, A.K.3
  • 31
    • 77956422296 scopus 로고    scopus 로고
    • Strain-induced pseudomagnetic field for novel graphene electronics
    • 10.1021/nl1018063
    • Low T and Guinea F 2010 Strain-induced pseudomagnetic field for novel graphene electronics Nano Lett. 10 3551-4
    • (2010) Nano Lett. , vol.10 , pp. 3551-3554
    • Low, T.1    Guinea, F.2
  • 32
    • 79951775570 scopus 로고    scopus 로고
    • Strain-tunable spin transport in ferromagnetic graphene junctions
    • 10.1063/1.3552716 062101
    • Zhai F and Yang L 2011 Strain-tunable spin transport in ferromagnetic graphene junctions Appl. Phys. Lett. 98 062101
    • (2011) Appl. Phys. Lett. , vol.98
    • Zhai, F.1    Yang, L.2
  • 34
    • 70249094929 scopus 로고    scopus 로고
    • Controlled ripple texturing of suspended graphene and ultrathin graphite membranes
    • 10.1038/nnano.2009.191 1748-3387
    • Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Controlled ripple texturing of suspended graphene and ultrathin graphite membranes Nature Nanotechnol. 4 562-6
    • (2009) Nature Nanotechnol. , vol.4 , pp. 562-566
    • Bao, W.1    Miao, F.2    Chen, Z.3    Zhang, H.4    Jang, W.5    Dames, C.6    Lau, C.N.7
  • 37
    • 84867348596 scopus 로고    scopus 로고
    • Transforming moire blisters into geometric graphene nano-bubbles
    • 10.1038/ncomms1818
    • Lu J, Neto A C and Loh K P 2012 Transforming moire blisters into geometric graphene nano-bubbles Nature Commun. 3 823
    • (2012) Nature Commun. , vol.3 , pp. 823
    • Lu, J.1    Neto, A.C.2    Loh, K.P.3
  • 38
    • 84881450240 scopus 로고    scopus 로고
    • Strain in graphene sheets attached to a porous alumina membrane
    • 10.1021/jp4013834 1932-7447 C
    • Kase T and Ogino T 2013 Strain in graphene sheets attached to a porous alumina membrane J. Phys. Chem. C 117 15991-5
    • (2013) J. Phys. Chem. , vol.117 , pp. 15991-15995
    • Kase, T.1    Ogino, T.2
  • 39
    • 77956015193 scopus 로고    scopus 로고
    • Local strain in tunneling transistors based on graphene nanoribbons
    • 10.1063/1.3479915 073105
    • Lu Y and Guo J 2010 Local strain in tunneling transistors based on graphene nanoribbons Appl. Phys. Lett. 97 073105
    • (2010) Appl. Phys. Lett. , vol.97
    • Lu, Y.1    Guo, J.2
  • 40
    • 77955759037 scopus 로고    scopus 로고
    • Valley filter in strain engineered graphene
    • 10.1063/1.3473725 043508
    • Fujita T, Jalil M B A and Tan S G 2010 Valley filter in strain engineered graphene Appl. Phys. Lett. 97 043508
    • (2010) Appl. Phys. Lett. , vol.97
    • Fujita, T.1    Jalil, M.B.A.2    Tan, S.G.3
  • 41
    • 80053602575 scopus 로고    scopus 로고
    • Aharonov-Bohm interferences from local deformations in graphene
    • 10.1038/nphys2034
    • de Juan F, Cortijo A, Vozmediano M A H and Cano A 2011 Aharonov-Bohm interferences from local deformations in graphene Nature Phys. 7 810-5
    • (2011) Nature Phys. , vol.7 , pp. 810-815
    • De Juan, F.1    Cortijo, A.2    Vozmediano, M.A.H.3    Cano, A.4
  • 42
    • 84888379204 scopus 로고    scopus 로고
    • Conductance across strain junctions in graphene nanoribbons
    • 10.1103/PhysRevB.88.195416 B 195416
    • Bahamon D A and Pereira V M 2013 Conductance across strain junctions in graphene nanoribbons Phys. Rev. B 88 195416
    • (2013) Phys. Rev. , vol.88
    • Bahamon, D.A.1    Pereira, V.M.2
  • 43
    • 68949135918 scopus 로고    scopus 로고
    • Tight-binding approach to uniaxial strain in graphene
    • 10.1103/PhysRevB.80.045401 B 045401
    • Pereira V M, Castro Neto A H and Peres N M R 2009 Tight-binding approach to uniaxial strain in graphene Phys. Rev. B 80 045401
    • (2009) Phys. Rev. , vol.80
    • Pereira, V.M.1    Castro Neto, A.H.2    Peres, N.M.R.3
  • 45
    • 84864449193 scopus 로고    scopus 로고
    • Resonant tunnelling diodes based on graphene/h-BN heterostructure
    • 10.1088/0022-3727/45/32/325104 0022-3727 325104
    • Nguyen V H, Mazzamuto F, Bournel A and Dollfus P 2012 Resonant tunnelling diodes based on graphene/h-BN heterostructure J. Phys. D: Appl. Phys. 45 325104
    • (2012) J. Phys. D: Appl. Phys. , vol.45 , Issue.32
    • Nguyen, V.H.1    Mazzamuto, F.2    Bournel, A.3    Dollfus, P.4
  • 48
    • 78650034452 scopus 로고    scopus 로고
    • Low-voltage tunnel transistors for beyond CMOS logic
    • 10.1109/JPROC.2010.2070470 0018-9219
    • Seabaugh A C and Zhang Q 2010 Low-voltage tunnel transistors for beyond CMOS logic Proc. IEEE 98 2095-110
    • (2010) Proc. IEEE , vol.98 , pp. 2095-2110
    • Seabaugh, A.C.1    Zhang, Q.2
  • 50
    • 79952445612 scopus 로고    scopus 로고
    • The origins and limits of metal-graphene junction resistance
    • 10.1038/nnano.2011.6 1748-3387
    • Xia F, Perebeinos V, Lin Y-M, Wu Y and Avouris P 2011 The origins and limits of metal-graphene junction resistance Nature Nanotechnol. 6 179-84
    • (2011) Nature Nanotechnol. , vol.6 , pp. 179-184
    • Xia, F.1    Perebeinos, V.2    Lin, Y.-M.3    Wu, Y.4    Avouris, P.5
  • 52
    • 84866320563 scopus 로고    scopus 로고
    • Gate-controllable negative differential conductance in graphene tunneling transistors
    • 10.1088/0268-1242/27/10/105018 0268-1242 105018
    • Nguyen V H, Niquet Y M and Dollfus P 2012 Gate-controllable negative differential conductance in graphene tunneling transistors Semicond. Sci. Technol. 27 105018
    • (2012) Semicond. Sci. Technol. , vol.27 , Issue.10
    • Nguyen, V.H.1    Niquet, Y.M.2    Dollfus, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.