메뉴 건너뛰기




Volumn 60, Issue 3, 2013, Pages 985-991

Pseudosaturation and negative differential conductance in graphene field-effect transistors

Author keywords

Dirac point; graphene field effect transistor (GFET); negative differential conductance (NDC); short channel effect

Indexed keywords

BALLISTIC TRANSPORTS; BAND TO BAND TUNNELING; CURRENT OSCILLATION; CURRENT SATURATION; DEVICE PARAMETERS; DIRAC POINT; ELECTRICAL CHARACTERISTIC; GATE INSULATOR; GATE LENGTH; GRAPHENE FIELD-EFFECT TRANSISTORS; GRAPHENE FIELDEFFECT TRANSISTORS (GFET); GREEN'S FUNCTION APPROACHES; KLEIN TUNNELING; NEGATIVE DIFFERENTIAL CONDUCTANCE; POISSON'S EQUATION; SHORT-CHANNEL EFFECT; SIMULATION MODEL; TIGHT-BINDING HAMILTONIANS; TRANSFER CHARACTERISTICS; TRANSPORT BEHAVIOR;

EID: 84874664728     PISSN: 00189383     EISSN: None     Source Type: Journal    
DOI: 10.1109/TED.2013.2241766     Document Type: Article
Times cited : (27)

References (44)
  • 3
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • F. Schwierz, "Graphene transistors," Nat. Nanotechnol., vol. 5, no. 7, pp. 487-496, 2010.
    • (2010) Nat. Nanotechnol. , vol.5 , Issue.7 , pp. 487-496
    • Schwierz, F.1
  • 5
    • 79953758358 scopus 로고    scopus 로고
    • High frequency, scaled graphene transistors on diamondlike carbon
    • Apr
    • Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, "High frequency, scaled graphene transistors on diamondlike carbon," Nature, vol. 472, no. 7341, pp. 74-78, Apr. 2011.
    • (2011) Nature , vol.472 , Issue.7341 , pp. 74-78
    • Wu, Y.1    Lin, Y.-M.2    Bol, A.A.3    Jenkins, K.A.4    Xia, F.5    Farmer, D.B.6    Zhu, Y.7    Avouris, P.8
  • 9
    • 79958778589 scopus 로고    scopus 로고
    • Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy
    • Jun
    • R. Decker, Y.Wang, V.W. Brar,W. Regan, H.-Z. Tsai, Q.Wu,W. Gannett, A. Zettl, and M. F. Crommie, "Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy," Nano Lett., vol. 11, no. 6, pp. 2291-2295, Jun. 2010.
    • (2010) Nano Lett. , vol.11 , Issue.6 , pp. 2291-2295
    • Decker, R.1    Wang, Y.2    Brar, V.W.3    Regan, W.4    Tsai, H.-Z.5    Wu, Q.6    Gannett, W.7    Zettl, A.8    Crommie, M.F.9
  • 11
    • 83455172686 scopus 로고    scopus 로고
    • A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride
    • P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, "A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride," Appl. Phys. Lett., vol. 99, no. 23, pp. 232104-1- 232104-3, Dec. 2011.
    • Appl. Phys. Lett. , vol.99 , Issue.23 , pp. 232104-232101
    • Zomer, P.J.1    Dash, S.P.2    Tombros, N.3    Van Wees, B.J.4
  • 12
    • 33748296088 scopus 로고    scopus 로고
    • Chiral tunnelling and the Klein paradox in graphene
    • DOI 10.1038/nphys384, PII NPHYS384
    • M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, "Chiral tunneling and the Klein paradox in graphene," Nat. Phys., vol. 2, no. 9, pp. 620-625, Sep. 2006. (Pubitemid 44328348)
    • (2006) Nature Physics , vol.2 , Issue.9 , pp. 620-625
    • Katsnelson, M.I.1    Novoselov, K.S.2    Geim, A.K.3
  • 13
    • 35548976235 scopus 로고    scopus 로고
    • Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
    • Aug
    • G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, "Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations," Phys. Rev. B., vol. 76, no. 7, pp. 073103-1-073103-4, Aug. 2007.
    • (2007) Phys. Rev. B. , vol.76 , Issue.7 , pp. 073103-073101
    • Giovannetti, G.1    Khomyakov, P.A.2    Brocks, G.3    Kelly, P.J.4    Brink Den J.Van5
  • 14
    • 83655172567 scopus 로고    scopus 로고
    • Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate
    • Dec
    • N. Kharche and S. K. Nayak, "Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate," Nano Lett., vol. 11, no. 12, pp. 5274-5278, Dec. 2011.
    • (2011) Nano Lett. , vol.11 , Issue.12 , pp. 5274-5278
    • Kharche, N.1    Nayak, S.K.2
  • 15
    • 57349090160 scopus 로고    scopus 로고
    • Current saturation in zero-bandgap, top-gated graphene field-effect transistors
    • Nov
    • I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, "Current saturation in zero-bandgap, top-gated graphene field-effect transistors," Nat. Nanotechnol., vol. 3, no. 11, pp. 654-659, Nov. 2008.
    • (2008) Nat. Nanotechnol. , vol.3 , Issue.11 , pp. 654-659
    • Meric, I.1    Han, M.Y.2    Young, A.F.3    Ozyilmaz, B.4    Kim, P.5    Shepard, K.L.6
  • 16
    • 84858233159 scopus 로고    scopus 로고
    • Current saturation and voltage gain in bilayer graphene field effect transistors
    • Mar.
    • B. N. Szafranek, G. Fiori, D. Schall, D. Neumaier, and H. Kurz, "Current saturation and voltage gain in bilayer graphene field effect transistors," Nano Lett., vol. 12, no. 3, pp. 1324-1328, Mar. 2012.
    • (2012) Nano Lett. , vol.12 , Issue.3 , pp. 1324-1328
    • Szafranek, B.N.1    Fiori, G.2    Schall, D.3    Neumaier, D.4    Kurz, H.5
  • 17
    • 41649111500 scopus 로고    scopus 로고
    • Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study
    • Mar
    • Z. F. Wang, Q. Li, Q. W. Shi, X. Wang, J. Yang, J. G. Hou, and J. Chen, "Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study," Appl. Phys. Lett., vol. 92, no. 13, pp. 133114-1-133114-3, Mar. 2008.
    • (2008) Appl. Phys. Lett. , vol.92 , Issue.13 , pp. 133114-133111
    • Wang, Z.F.1    Li, Q.2    Shi, Q.W.3    Wang, X.4    Yang, J.5    Hou, J.G.6    Chen, J.7
  • 18
    • 77950591040 scopus 로고    scopus 로고
    • Negative differential resistance in zigzagedge graphene nanoribbon junctions
    • V. N. Do and P. Dollfus, "Negative differential resistance in zigzagedge graphene nanoribbon junctions," J. Appl. Phys., vol. 107, no. 6, pp. 063705-1-063705-5, Mar. 2011.
    • J. Appl. Phys. , vol.107 , Issue.6 , pp. 063705-063701
    • Do, V.N.1    Dollfus, P.2
  • 19
    • 65449166838 scopus 로고    scopus 로고
    • Graphene nanoribbon as a negative differential resistance device
    • Apr
    • H. Ren, Q.-X. Li, Y. Luo, and J. Yang, "Graphene nanoribbon as a negative differential resistance device," Appl. Phys. Lett., vol. 94, no. 17, pp. 173110-1-173110-3, Apr. 2009.
    • (2009) Appl. Phys. Lett. , vol.94 , Issue.17 , pp. 173110-173111
    • Ren, H.1    Li, Q.-X.2    Luo, Y.3    Yang, J.4
  • 20
    • 79961037627 scopus 로고    scopus 로고
    • Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions
    • V. H. Nguyen, F. Mazzamuto, J. Saint-Martin, A. Bournel, and P. Dollfus, "Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions," Appl. Phys. Lett., vol. 99, no. 4, pp. 042105-1- 042105-3, Jul. 2011.
    • Appl. Phys. Lett. , vol.99 , Issue.4 , pp. 042105-042101
    • Nguyen, V.H.1    Mazzamuto, F.2    Saint-Martin, J.3    Bournel, A.4    Dollfus, P.5
  • 21
    • 80053566711 scopus 로고    scopus 로고
    • Negative differential resistance in mono and bilayer graphene p-n junctions
    • Oct
    • G. Fiori, "Negative differential resistance in mono and bilayer graphene p-n junctions," IEEE Electron Device Lett., vol. 32, no. 10, pp. 1334- 1336, Oct. 2011.
    • (2011) IEEE Electron Device Lett. , vol.32 , Issue.10 , pp. 1334-1336
    • Fiori, G.1
  • 22
    • 79959632567 scopus 로고    scopus 로고
    • Negative differential resistance in bilayer graphene nanoribbons
    • K. M. M. Habib, F. Zahid, and R. K. Lake, "Negative differential resistance in bilayer graphene nanoribbons," Appl. Phys. Lett., vol. 98, no. 19, pp. 192112-1-192112-3, May 2011.
    • Appl. Phys. Lett. , vol.98 , Issue.19 , pp. 192112-192111
    • Habib, K.M.M.1    Zahid, F.2    Lake, R.K.3
  • 23
    • 84855949231 scopus 로고    scopus 로고
    • Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect
    • Feb
    • V. H. Nguyen, F. Mazzamuto, J. Saint-Martin, A. Bournel, and P. Dollfus, "Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect," Nanotechnology, vol. 23, no. 6, p. 065201, Feb. 2012.
    • (2012) Nanotechnology , vol.23 , Issue.6 , pp. 065201
    • Nguyen, V.H.1    Mazzamuto, F.2    Saint-Martin, J.3    Bournel, A.4    Dollfus, P.5
  • 24
    • 80053896139 scopus 로고    scopus 로고
    • Lowbias negative differential resistance in graphene nanoribbon superlattices
    • G. J. Ferreira, M. N. Leuenberger, D. Loss, and J. C. Egues, "Lowbias negative differential resistance in graphene nanoribbon superlattices," Phys. Rev. B, vol. 84, no. 12, pp. 125453-1-125453-5, Sep. 2011.
    • Phys. Rev. B , vol.84 , Issue.12 , pp. 125453-125451
    • Ferreira, G.J.1    Leuenberger, M.N.2    Loss, D.3    Egues, J.C.4
  • 25
    • 65449178727 scopus 로고    scopus 로고
    • Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study
    • Apr
    • H. Teong, K.-T. Lam, S. B. Khalid, and G. Liang, "Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study," J. Appl. Phys., vol. 105, no. 8, pp. 084317-1-084317-6, Apr. 2009.
    • (2009) J. Appl. Phys. , vol.105 , Issue.8 , pp. 084317-084311
    • Teong, H.1    Lam, K.-T.2    Khalid, S.B.3    Liang, G.4
  • 26
    • 84864449193 scopus 로고    scopus 로고
    • Resonant tunneling diode based on graphene/h-BN heterostructure
    • Aug
    • V. H. Nguyen, F. Mazzamuto, A. Bournel, and P. Dollfus, "Resonant tunneling diode based on graphene/h-BN heterostructure," J. Phys. D., vol. 45, no. 32, p. 325104, Aug. 2012.
    • (2012) J. Phys. D. , vol.45 , Issue.32 , pp. 325104
    • Nguyen, V.H.1    Mazzamuto, F.2    Bournel, A.3    Dollfus, P.4
  • 27
    • 84871736715 scopus 로고    scopus 로고
    • Contact-induced negative differential resistance in short-channel graphene FETs
    • Jan
    • R. Grassi, T. Low, A. Gnudi, and G. Baccarani, "Contact-induced negative differential resistance in short-channel graphene FETs," IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 140-146, Jan. 2013.
    • (2013) IEEE Trans. Electron Devices , vol.60 , Issue.1 , pp. 140-146
    • Grassi, R.1    Low, T.2    Gnudi, A.3    Baccarani, G.4
  • 28
    • 84866320563 scopus 로고    scopus 로고
    • Gate-controllable negative differential conductance in graphene tunneling transistors
    • Oct
    • V. H. Nguyen, Y.-M. Niquet, and P. Dollfus, "Gate-controllable negative differential conductance in graphene tunneling transistors," Semicond. Sci. Technol., vol. 27, no. 10, p. 105018, Oct. 2012.
    • (2012) Semicond. Sci. Technol. , vol.27 , Issue.10 , pp. 105018
    • Nguyen, V.H.1    Niquet, Y.-M.2    Dollfus, P.3
  • 30
    • 70349313508 scopus 로고    scopus 로고
    • Controllable spin-dependent transport in armchair graphene nanoribbon structures
    • Sep.
    • V. H. Nguyen, V. Nam Do, A. Bournel, V. L. Nguyen, and P. Dollfus, "Controllable spin-dependent transport in armchair graphene nanoribbon structures," J. Appl. Phys., vol. 106, no. 5, pp. 053710-1-053710-7, Sep. 2009.
    • (2009) J. Appl. Phys. , vol.106 , Issue.5 , pp. 053710-053711
    • Nguyen, V.H.1    Nam Do, V.2    Bournel, A.3    Nguyen, V.L.4    Dollfus, P.5
  • 31
    • 4043108064 scopus 로고    scopus 로고
    • Tight-binding description of graphene
    • Jul
    • S. Reich, J. Maultzsch, and C. Thomsen, "Tight-binding description of graphene," Phys. Rev. B, vol. 66, no. 3, p. 035412, Jul. 2002.
    • (2002) Phys. Rev. B , vol.66 , Issue.3 , pp. 035412
    • Reich, S.1    Maultzsch, J.2    Thomsen, C.3
  • 32
    • 62549134866 scopus 로고    scopus 로고
    • On the possibility of tunable-gap bilayer graphene FET
    • Mar
    • G. Fiori and G. Iannaccone, "On the possibility of tunable-gap bilayer graphene FET," IEEE Electron Device Lett., vol. 30, no. 3, pp. 261-264, Mar. 2009.
    • (2009) IEEE Electron Device Lett. , vol.30 , Issue.3 , pp. 261-264
    • Fiori, G.1    Iannaccone, G.2
  • 34
    • 80054926743 scopus 로고    scopus 로고
    • Inelastic phonon scattering in graphene FETs
    • Nov
    • J. Chauhan and J. Guo, "Inelastic phonon scattering in graphene FETs," IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 3997-4003, Nov. 2012.
    • (2012) IEEE Trans. Electron Devices , vol.58 , Issue.11 , pp. 3997-4003
    • Chauhan, J.1    Guo, J.2
  • 36
    • 78249252115 scopus 로고    scopus 로고
    • Modeling of metal-graphene coupling and its influence on transport properties in graphene at the charge neutrality point
    • Oct
    • V. N. Do and P. Dollfus, "Modeling of metal-graphene coupling and its influence on transport properties in graphene at the charge neutrality point," J. Phys. Condens. Matter, vol. 22, no. 42, p. 425301, Oct. 2010.
    • (2010) J. Phys. Condens. Matter , vol.22 , Issue.42 , pp. 425301
    • Do, V.N.1    Dollfus, P.2
  • 37
    • 80052082856 scopus 로고    scopus 로고
    • Influence of metalgraphene contact on the operation and scalability of graphene field-effect transistors
    • Sep
    • P. Zhao, Q. Zhang, D. Jena, and S. O. Koswatta, "Influence of metalgraphene contact on the operation and scalability of graphene field-effect transistors," IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3170-3178, Sep. 2011.
    • (2011) IEEE Trans. Electron Devices , vol.58 , Issue.9 , pp. 3170-3178
    • Zhao, P.1    Zhang, Q.2    Jena, D.3    Koswatta, S.O.4
  • 40
    • 78649564705 scopus 로고    scopus 로고
    • Quantum transport of Dirac fermions in graphene field effect transistors
    • Sep.
    • V. H. Nguyen, A. Bournel, C. Chassat, and P. Dollfus, "Quantum transport of Dirac fermions in graphene field effect transistors," in Proc. SISPAD, Sep. 2010, pp. 9-12.
    • (2010) Proc. SISPAD , pp. 9-12
    • Nguyen, V.H.1    Bournel, A.2    Chassat, C.3    Dollfus, P.4
  • 41
    • 54749105473 scopus 로고    scopus 로고
    • Electronic transport and spin-olarization effects of relativistics like particles in mesoscopics graphene structures
    • Sep
    • V. N. Do, V. H. Nguyen, P. Dollfus, and A. Bournel, "Electronic transport and spin-olarization effects of relativistics like particles in mesoscopics graphene structures," J. Appl. Phys., vol. 104, no. 6, pp. 063708-1- 063708-7, Sep. 2008.
    • (2008) J. Appl. Phys. , vol.104 , Issue.6 , pp. 063708-063701
    • Do, V.N.1    Nguyen, V.H.2    Dollfus, P.3    Bournel, A.4
  • 42
    • 71949121196 scopus 로고    scopus 로고
    • Resonant tunneling and negative transconductance in single barrier bilayer graphene structure
    • Dec
    • V. H. Nguyen, A. Bournel, V. Lien Nguyen, and P. Dollfus, "Resonant tunneling and negative transconductance in single barrier bilayer graphene structure," Appl. Phys. Lett., vol. 95, no. 23, pp. 232115-1-232115-3, Dec. 2009.
    • (2009) Appl. Phys. Lett. , vol.95 , Issue.23 , pp. 232115-232111
    • Nguyen, V.H.1    Bournel, A.2    Lien Nguyen, V.3    Dollfus, P.4
  • 43
    • 79957614125 scopus 로고    scopus 로고
    • Channel-length-dependent transport behaviors of graphene field-effect transistors
    • Jun
    • S. J. Han, Z. Chen, A. A. Bol, and Y. Sun, "Channel-length-dependent transport behaviors of graphene field-effect transistors," IEEE Electron Device Lett., vol. 32, no. 6, pp. 812-814, Jun. 2011.
    • (2011) IEEE Electron Device Lett. , vol.32 , Issue.6 , pp. 812-814
    • Han, S.J.1    Chen, Z.2    Bol, A.A.3    Sun, Y.4
  • 44
    • 84861204486 scopus 로고    scopus 로고
    • Transport behaviors of graphene 2D field-effect transistors on boron nitride substrate
    • Mar.
    • A. Alarcón, V. H. Nguyen, J. Saint-Martin, A. Bournel, and P. Dollfus, "Transport behaviors of graphene 2D field-effect transistors on boron nitride substrate," in Proc. ULIS, Mar. 2012, pp. 57-60.
    • (2012) Proc. ULIS , pp. 57-60
    • Alarcón, A.1    Nguyen, V.H.2    Saint-Martin, J.3    Bournel, A.4    Dollfus, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.