메뉴 건너뛰기




Volumn 48, Issue 8, 2002, Pages 1775-1793

Process modeling by Bayesian latent variable regression

Author keywords

[No Author keywords available]

Indexed keywords

CONTROL SYSTEM ANALYSIS; DATA REDUCTION; LINEAR SYSTEMS; MATHEMATICAL MODELS; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 0036706987     PISSN: 00011541     EISSN: None     Source Type: Journal    
DOI: 10.1002/aic.690480818     Document Type: Article
Times cited : (33)

References (61)
  • 1
    • 0030270051 scopus 로고    scopus 로고
    • Data reconciliation and gross error detection in dynamic systems
    • Albuquerque, J. S., and L. T. Biegler, "Data Reconciliation and Gross Error Detection in Dynamic Systems," AIChE J., 42, 2841 (1996).
    • (1996) AIChE J. , vol.42 , pp. 2841
    • Albuquerque, J.S.1    Biegler, L.T.2
  • 2
    • 0028042615 scopus 로고
    • Representation of process trends Part III. Multi-scale extraction of trends from process data
    • Bakshi, B. R., and G. Stephanopoulos, "Representation of Process Trends Part III. Multi-Scale Extraction of Trends from Process Data," Comput. Chem. Eng., 18(4), 267 (1994).
    • (1994) Comput. Chem. Eng. , vol.18 , Issue.4 , pp. 267
    • Bakshi, B.R.1    Stephanopoulos, G.2
  • 3
    • 0035151098 scopus 로고    scopus 로고
    • Multiscale bayesian data rectification of linear steady-state and dynamic systems without accurate models
    • Bakshi, B. R., M. N. Nounou, P. K. Goel, and X. Shen, "Multiscale Bayesian Data Rectification of Linear Steady-State and Dynamic Systems Without Accurate Models," Ind. Eng. Chem. Res., 40(1) 261 (2001).
    • (2001) Ind. Eng. Chem. Res. , vol.40 , Issue.1 , pp. 261
    • Bakshi, B.R.1    Nounou, M.N.2    Goel, P.K.3    Shen, X.4
  • 5
    • 0003223151 scopus 로고    scopus 로고
    • Bayesian rectification of nonlinear dynamic processes by the weighted bootstrap
    • Reno, NV
    • Chen, W-S., S. Ungarala, B. R. Bakshi, and P. K. Goel, "Bayesian Rectification of Nonlinear Dynamic Processes by the Weighted Bootstrap," AIChE Annual Meeting, Reno, NV (2001).
    • (2001) AIChE Annual Meeting
    • Chen, W.-S.1    Ungarala, S.2    Bakshi, B.R.3    Goel, P.K.4
  • 8
    • 0000979403 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods to train neural network models
    • De Freitas, J. F. G., M. Niranjan, A. H. Gee, and A. Doucet, "Sequential Monte Carlo Methods to Train Neural Network Models," Neural Comput., 12, 995 (2000).
    • (2000) Neural Comput. , vol.12 , pp. 995
    • De Freitas, J.F.G.1    Niranjan, M.2    Gee, A.H.3    Doucet, A.4
  • 9
    • 0020089191 scopus 로고
    • Cross-validatory choice of the number of components from a principal component analysis
    • Eastment, H. T., and W. J. Krazanowski, "Cross-Validatory Choice of the Number of Components from a Principal Component Analysis," Technometrics, 24(1), 73 (1982).
    • (1982) Technometrics , vol.24 , Issue.1 , pp. 73
    • Eastment, H.T.1    Krazanowski, W.J.2
  • 10
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I. E., and J. H. Friedman, "A Statistical View of Some Chemometrics Regression Tools," Technometrics, 35(2), 109 (1993).
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109
    • Frank, I.E.1    Friedman, J.H.2
  • 11
    • 11144325691 scopus 로고
    • Partial least squares regression: A tutorial
    • Geladi, P., and B. Kowalski, "Partial Least Squares Regression: A Tutorial," Anal. Chem. Acta, 185, 1 (1986).
    • (1986) Anal. Chem. Acta , vol.185 , pp. 1
    • Geladi, P.1    Kowalski, B.2
  • 14
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub, G. H., M. Heath, and G. Wahba, "Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter," Technometrics, 21, 215 (1979).
    • (1979) Technometrics , vol.21 , pp. 215
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 16
    • 0001795946 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E., and R. W. Kennard, "Ridge Regression: Biased Estimation for Nonorthogonal Problems," Technometrics, 8, 27 (1970).
    • (1970) Technometrics , vol.8 , pp. 27
    • Hoerl, A.E.1    Kennard, R.W.2
  • 17
    • 0032026694 scopus 로고    scopus 로고
    • Estimating state probability distributions from noisy and corrupted data
    • Johnston, L. P. M., and M. A. Kramer, "Estimating State Probability Distributions from Noisy and Corrupted Data," AIChE J., 44, 591 (1998).
    • (1998) AIChE J. , vol.44 , pp. 591
    • Johnston, L.P.M.1    Kramer, M.A.2
  • 19
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • Kano, M., K. Miyazaki, S. Hasebe, and I. Hashimoto, "Inferential Control System of Distillation Compositions Using Dynamic Partial Least Squares Regression," J. Process Control, 10, 157 (2000).
    • (2000) J. Process Control , vol.10 , pp. 157
    • Kano, M.1    Miyazaki, K.2    Hasebe, S.3    Hashimoto, I.4
  • 20
    • 0027676119 scopus 로고
    • Dynamic PLS modeling for process control
    • Kaspar, M. H., and W. H. Ray, "Dynamic PLS Modeling for Process Control," Chem. Eng. Sci., 48, 3447 (1993).
    • (1993) Chem. Eng. Sci. , vol.48 , pp. 3447
    • Kaspar, M.H.1    Ray, W.H.2
  • 21
    • 0030717801 scopus 로고    scopus 로고
    • Robust data reconciliation and gross error detection: The modified MIMT using NLP
    • Kim, I. W., S. Kang, S. Park, and T. Edgar, "Robust Data Reconciliation and Gross Error Detection: The Modified MIMT using NLP," Comput. Chem. Eng., 21(7) 775 (1997).
    • (1997) Comput. Chem. Eng. , vol.21 , Issue.7 , pp. 775
    • Kim, I.W.1    Kang, S.2    Park, S.3    Edgar, T.4
  • 22
    • 0025464994 scopus 로고
    • Robust error-in-variables estimation using nonlinear programming techniques
    • Kim, I.-W., M. Liebman, and T. Edgar, "Robust Error-in-Variables Estimation Using Nonlinear Programming Techniques," AIChE J., 36, 7 (1990).
    • (1990) AIChE J. , vol.36 , pp. 7
    • Kim, I.-W.1    Liebman, M.2    Edgar, T.3
  • 23
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta, J. V., J. F. MacGregor, and T. E. Marlin, "Multivariate Statistical Monitoring of Process Operating Performance," Can. J. Chem. Eng., 69, 35 (1991).
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 24
    • 0028460607 scopus 로고
    • Development of inferential process models using PLS
    • Kresta, J. V., T. E. Marlin, and J. F. MacGregor, "Development of Inferential Process Models Using PLS," Comput. Chem. Eng., 18(7), 597 (1994).
    • (1994) Comput. Chem. Eng. , vol.18 , Issue.7 , pp. 597
    • Kresta, J.V.1    Marlin, T.E.2    MacGregor, J.F.3
  • 25
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W. F., R. Storer, and C. Georgakis, "Disturbance Detection and Isolation by Dynamic Principal Component Analysis," Chemomettics Intelligent Lab. Syst., 30, 179 (1995).
    • (1995) Chemomettics Intelligent Lab. Syst. , vol.30 , pp. 179
    • Ku, W.F.1    Storer, R.2    Georgakis, C.3
  • 26
    • 0031234736 scopus 로고    scopus 로고
    • Modeling and control of multivariate processes: Dynamic PLS approach
    • Lakshminarayanan, S., S. Shah, and K. Nandakumar, "Modeling and Control of Multivariate Processes: Dynamic PLS Approach," AIChE J., 43, 2307 (1997).
    • (1997) AIChE J. , vol.43 , pp. 2307
    • Lakshminarayanan, S.1    Shah, S.2    Nandakumar, K.3
  • 30
    • 0002816744 scopus 로고
    • Multivariate identification: A study of several methods
    • Toulouse, France
    • MacGregor, J. F., T. Kourti, and J. V. Kresta, "Multivariate Identification: A Study of Several Methods," IFAC Symp. ADCHEM-91, Toulouse, France (1991).
    • (1991) IFAC Symp. ADCHEM-91
    • MacGregor, J.F.1    Kourti, T.2    Kresta, J.V.3
  • 31
    • 0033585038 scopus 로고    scopus 로고
    • Bayes offers a 'new' way to make sense of numbers
    • Malakoff, D., "Bayes Offers a 'New' Way to Make Sense of Numbers," Science, 286, 1460 (1999).
    • (1999) Science , vol.286 , pp. 1460
    • Malakoff, D.1
  • 34
    • 0000957593 scopus 로고
    • Principal components regression in exploratory statistical research
    • Massy, W. F., "Principal Components Regression in Exploratory Statistical Research," J. Amer. Stat. Assoc., 60, 234 (1965).
    • (1965) J. Amer. Stat. Assoc. , vol.60 , pp. 234
    • Massy, W.F.1
  • 35
    • 84981454150 scopus 로고
    • Bayesian analysis of autoregressive time series via the gibbs sampler
    • McCulloch, R. E., and R. S. Tsay, "Bayesian Analysis of Autoregressive Time Series Via the Gibbs Sampler," J. Time Set. Anal., 15, 235 (1994).
    • (1994) J. Time Set. Anal. , vol.15 , pp. 235
    • McCulloch, R.E.1    Tsay, R.S.2
  • 36
    • 0026360534 scopus 로고
    • Estimation of distillation compositions from multiple temperature measurements using partialleast-squares regression
    • Mejdell, T., and S. Skogestad, "Estimation of Distillation Compositions from Multiple Temperature Measurements Using PartialLeast-Squares Regression," Ind. Eng. Chem. Res., 30, 2543 (1991).
    • (1991) Ind. Eng. Chem. Res. , vol.30 , pp. 2543
    • Mejdell, T.1    Skogestad, S.2
  • 38
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariable dynamic process with state-space models
    • Negiz, A., and A. Cinar, "Statistical Monitoring of Multivariable Dynamic Process with State-Space Models," AIChE J., 43, 2002 (1997).
    • (1997) AIChE J. , vol.43 , pp. 2002
    • Negiz, A.1    Cinar, A.2
  • 39
    • 0028483476 scopus 로고
    • Monitoring batch process using multiway principal component analysis
    • Nomikos, P., and J. F. MacGregor, "Monitoring Batch Process Using Multiway Principal Component Analysis," AIChE J., 40, 1361 (1994).
    • (1994) AIChE J. , vol.40 , pp. 1361
    • Nomikos, P.1    MacGregor, J.F.2
  • 44
    • 0029251896 scopus 로고
    • A syntactic pattern-recognition approach for process monitoring and fault-diagnosis
    • Rengaswamy, R., and V. Venkatasubramanian, "A Syntactic Pattern-Recognition Approach for Process Monitoring and Fault-Diagnosis," Eng. Appl. Artif. Intell., 8(1), 35 (1995).
    • (1995) Eng. Appl. Artif. Intell. , vol.8 , Issue.1 , pp. 35
    • Rengaswamy, R.1    Venkatasubramanian, V.2
  • 46
    • 0033652276 scopus 로고    scopus 로고
    • Modeling of dynamic systems using latent variable and subspace methods
    • Shi, R., and J. F. MacGregor, "Modeling of Dynamic Systems Using Latent Variable and Subspace Methods," J. Chemometrics, 14, 423 (2000).
    • (2000) J. Chemometrics , vol.14 , pp. 423
    • Shi, R.1    MacGregor, J.F.2
  • 48
    • 0000818474 scopus 로고
    • Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression
    • Stone, M., and R. J. Brooks, "Continuum Regression: Cross-Validated Sequentially Constructed Prediction Embracing Ordinary Least Squares, Partial Least Squares and Principal Components Regression," J. Roy. Stat. Soc. B, 52(2), 237 (1990).
    • (1990) J. Roy. Stat. Soc. B , vol.52 , Issue.2 , pp. 237
    • Stone, M.1    Brooks, R.J.2
  • 49
    • 0002222209 scopus 로고
    • A bayesian approach to gross error detection in chemical process data. Part I: Model development
    • Tamhane, A. C., C. Iordache, and R. S. H. Mah, "A Bayesian Approach to Gross Error Detection in Chemical Process Data. Part I: Model Development," Chemometrics Intelligence Lab. Syst., 4, 131 (1988).
    • (1988) Chemometrics Intelligence Lab. Syst. , vol.4 , pp. 131
    • Tamhane, A.C.1    Iordache, C.2    Mah, R.S.H.3
  • 50
    • 0023229708 scopus 로고
    • An extended marquardt-type procedure for fitting error-in-variables models
    • Valko, P. and S. Vajda, "An Extended Marquardt-Type Procedure for Fitting Error-in-Variables Models," Comput. Chem. Eng., 11, 37 (1987).
    • (1987) Comput. Chem. Eng. , vol.11 , pp. 37
    • Valko, P.1    Vajda, S.2
  • 51
    • 0003297912 scopus 로고
    • The total least squares problem: Computational aspects and analysis
    • Philadelphia
    • Van Huffel, S., and J. Vandewalle, "The Total Least Squares Problem: Computational Aspects and Analysis," Frontiers in Applied Mathematics, Philadelphia (1991).
    • (1991) Frontiers in Applied Mathematics
    • Van Huffel, S.1    Vandewalle, J.2
  • 53
    • 84949075045 scopus 로고
    • Subspace model identification .1. The output-error state-space model identification class of algorithms
    • Verhaegen, M., and P. DeWilde, "Subspace Model Identification .1. The Output-Error State-Space Model Identification Class of Algorithms," Int. J. Control, 56, 1187 (1992).
    • (1992) Int. J. Control , vol.56 , pp. 1187
    • Verhaegen, M.1    DeWilde, P.2
  • 55
    • 0026849114 scopus 로고
    • Knowledge-based interpretation of sensor patterns
    • Whiteley, J. R., and J. F. Davis, "Knowledge-Based Interpretation of Sensor Patterns," Comput. Chem. Eng., 16(4), 329 (1992).
    • (1992) Comput. Chem. Eng. , vol.16 , Issue.4 , pp. 329
    • Whiteley, J.R.1    Davis, J.F.2
  • 56
    • 0002539433 scopus 로고
    • Identification of finite impulse response models by principal components regression: Frequency response properties
    • Wise, B. M., and N. L. Ricker, "Identification of Finite Impulse Response Models by Principal Components Regression: Frequency Response Properties," Process Control and Quality, 4, 77 (1992).
    • (1992) Process Control and Quality , vol.4 , pp. 77
    • Wise, B.M.1    Ricker, N.L.2
  • 57
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold, S., "Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models," Technometrics, 20(4), 397 (1978).
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397
    • Wold, S.1
  • 58
    • 0026578543 scopus 로고
    • Nonlinear PLS modeling II: Spline inner relations
    • Wold, S., "Nonlinear PLS Modeling II: Spline Inner Relations," Chemometrics Intelligent Lab. Syst., 14, 71 (1992).
    • (1992) Chemometrics Intelligent Lab. Syst. , vol.14 , pp. 71
    • Wold, S.1
  • 59
    • 0001877951 scopus 로고
    • Soft modeling. The basic design and some extensions
    • K. Joreskog and H. Wold, eds., Elsevier, Amsterdam
    • Wold, S., "Soft Modeling. The Basic Design and Some Extensions," Systems Under Indirect Observations, K. Joreskog and H. Wold, eds., Elsevier, Amsterdam (1982).
    • (1982) Systems Under Indirect Observations
    • Wold, S.1
  • 60
    • 0032187520 scopus 로고    scopus 로고
    • Classification of process trends based on fuzzified symbolic representation and hidden markov models
    • Wong, J. C., K. A. McDonald, and A. Palazoglu, "Classification of Process Trends Based on Fuzzified Symbolic Representation and Hidden Markov Models," J. Process Control, 8(5-6), 395 (1998).
    • (1998) J. Process Control , vol.8 , Issue.5-6 , pp. 395
    • Wong, J.C.1    McDonald, K.A.2    Palazoglu, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.