메뉴 건너뛰기




Volumn 59, Issue 3, 2013, Pages 845-859

A Bayesian approach to robust process identification with ARX models

Author keywords

Bayesian inference; Outliers; Process identification

Indexed keywords

ARX MODEL; BAYESIAN APPROACHES; BAYESIAN FRAMEWORKS; BAYESIAN INFERENCE; CONTINUOUS FERMENTATION; CONTINUOUS STIRRED TANKS; DATA QUALITY; GENERAL SOLUTIONS; HYPERPARAMETERS; MAXIMUM A POSTERIORI ESTIMATES; MODEL PARAMETERS; OUTLIER IDENTIFICATION; OUTLIERS; OUTLYING OBSERVATION; PILOT SCALE; PRIOR DISTRIBUTION; PROCESS DATA; PROCESS DISTURBANCES; PROCESS IDENTIFICATION; PROCESS INDUSTRIES; SOLUTION STRATEGY; TRANSMISSION PROBLEM;

EID: 84874514744     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.13887     Document Type: Article
Times cited : (25)

References (35)
  • 2
    • 0036532920 scopus 로고    scopus 로고
    • Product property and production rate control of styrene polymerization
    • Prasad V, Schley M, Russo LP, Bequette BW. Product property and production rate control of styrene polymerization. J Process Control. 2002;12:353-372.
    • (2002) J Process Control. , vol.12 , pp. 353-372
    • Prasad, V.1    Schley, M.2    Russo, L.P.3    Bequette, B.W.4
  • 3
    • 79958110335 scopus 로고    scopus 로고
    • Modelling, validation, and control of an industrial fuel gas blending system
    • Muller CJ, Craig IK, Ricker NL. Modelling, validation, and control of an industrial fuel gas blending system. J Process Control. 2011;21:852-860.
    • (2011) J Process Control. , vol.21 , pp. 852-860
    • Muller, C.J.1    Craig, I.K.2    Ricker, N.L.3
  • 4
    • 78650991429 scopus 로고    scopus 로고
    • First principle-based simulation of ethane steam cracking
    • Sabbe MK, Geem KMV, Reyniers MF, Marin GB. First principle-based simulation of ethane steam cracking. AIChE J. 2011;57:482-496.
    • (2011) AIChE J. , vol.57 , pp. 482-496
    • Sabbe, M.K.1    Geem, K.M.V.2    Reyniers, M.F.3    Marin, G.B.4
  • 5
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry
    • Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Comput Chem Eng. 2008;32:12-24.
    • (2008) Comput Chem Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 6
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009;33:795-814.
    • (2009) Comput Chem Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 7
    • 0037411806 scopus 로고    scopus 로고
    • Exploring process data with the use of robust outlier detection algorithms
    • Chiang LH, Pell RJ, Seasholtz MB. Exploring process data with the use of robust outlier detection algorithms. J Process Control. 2003;13:437-449.
    • (2003) J Process Control. , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 8
    • 2442589699 scopus 로고    scopus 로고
    • Online outlier detection and data cleaning
    • Liu H, Shah SL, Jiang W. Online outlier detection and data cleaning. Comput Chem Eng. 2004;28:1635-1647.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1635-1647
    • Liu, H.1    Shah, S.L.2    Jiang, W.3
  • 9
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • Khatibisepehr S, Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind Eng Chem Res. 2008;47:8713-8723.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 8713-8723
    • Khatibisepehr, S.1    Huang, B.2
  • 10
    • 84946031884 scopus 로고
    • Procedures for detecting outlying observations in samples
    • Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11:1-21.
    • (1969) Technometrics. , vol.11 , pp. 1-21
    • Grubbs, F.E.1
  • 11
    • 72049098542 scopus 로고    scopus 로고
    • Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation
    • Zeng J, Gao C. Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation. J Process Control. 2009;19:1519-1528.
    • (2009) J Process Control. , vol.19 , pp. 1519-1528
    • Zeng, J.1    Gao, C.2
  • 12
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee J, Kang B, Kang S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. J Process Control. 2011;21:1519-1528.
    • (2011) J Process Control. , vol.21 , pp. 1519-1528
    • Lee, J.1    Kang, B.2    Kang, S.3
  • 13
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge VJ, Austin J. A survey of outlier detection methodologies. Artifi Intelli Rev. 2004;22:85-126.
    • (2004) Artifi Intelli Rev. , vol.22 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 17
    • 84859392648 scopus 로고    scopus 로고
    • A bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng. 2012;41:134-144.
    • (2012) Comput Chem Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 18
    • 33845323774 scopus 로고    scopus 로고
    • Detecting anomalies in cross-classified streams: A Bayesian approach
    • Agarwal D. Detecting anomalies in cross-classified streams: A Bayesian approach. Knowl Inform Syst. 2006;11:29-44.
    • (2006) Knowl Inform Syst. , vol.11 , pp. 29-44
    • Agarwal, D.1
  • 19
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • Ritter G, Gallegos MT. Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recogn Lett. 1997;18:525-539.
    • (1997) Pattern Recogn Lett. , vol.18 , pp. 525-539
    • Ritter, G.1    Gallegos, M.T.2
  • 21
    • 0346245747 scopus 로고    scopus 로고
    • Bayesian approach to outlier detection in multivariate normal samples and linear models
    • Varbanov A. Bayesian approach to outlier detection in multivariate normal samples and linear models. Communi Stat Theory Methods. 1998;27:547-557.
    • (1998) Communi Stat Theory Methods. , vol.27 , pp. 547-557
    • Varbanov, A.1
  • 22
    • 85053486234 scopus 로고    scopus 로고
    • Outlier detection and editing procedures for continuous multivariate data
    • Ghosh-Dastidar B, Schafer JL. Outlier detection and editing procedures for continuous multivariate data. J Offic Stat. 2006;22:487-506.
    • (2006) J Offic Stat. , vol.22 , pp. 487-506
    • Ghosh-Dastidar, B.1    Schafer, J.L.2
  • 24
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay DJC. Bayesian interpolation. Neural Comput. 1992;4:415-447.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 25
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - a review of practical bayesian methods for supervised neural networks
    • MacKay DJC. Probable networks and plausible predictions - a review of practical bayesian methods for supervised neural networks. Netw Comput Neural Syst. 1995;6:469-505.
    • (1995) Netw Comput Neural Syst. , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 26
    • 39149097848 scopus 로고    scopus 로고
    • Variational posterior distribution approximation in Bayesian super resolution reconstruction of multispectral images
    • Molina R, Vega M, Mateos J, Katsaggelos AK. Variational posterior distribution approximation in Bayesian super resolution reconstruction of multispectral images. Appl Comput Harmonic Anal. 2008;24:251-267.
    • (2008) Appl Comput Harmonic Anal. , vol.24 , pp. 251-267
    • Molina, R.1    Vega, M.2    Mateos, J.3    Katsaggelos, A.K.4
  • 28
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • Kwok JT. The evidence framework applied to support vector machines. IEEE Trans Neural Network. 2000;11:1162-1173.
    • (2000) IEEE Trans Neural Network. , vol.11 , pp. 1162-1173
    • Kwok, J.T.1
  • 32
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • MacKay DJC. Comparison of approximate methods for handling hyperparameters. Neural Comput. 1999;11:1035-1068.
    • (1999) Neural Comput. , vol.11 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 34
    • 40749117689 scopus 로고    scopus 로고
    • A continuous stirred tank heater simulation model with applications
    • Thornhill NF, Patwardhan SC, Shah SL. A continuous stirred tank heater simulation model with applications. J Process Control. 2008;18:347-360.
    • (2008) J Process Control. , vol.18 , pp. 347-360
    • Thornhill, N.F.1    Patwardhan, S.C.2    Shah, S.L.3
  • 35
    • 84874540798 scopus 로고    scopus 로고
    • Multiple ARX model based identification for switching/nonlinear systems with EM algorithm. Master's thesis, University of Alberta; Edmonton, Canada
    • Jin X. Multiple ARX model based identification for switching/nonlinear systems with EM algorithm. Master's thesis, University of Alberta; Edmonton, Canada, 2010.
    • (2010)
    • Jin, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.