메뉴 건너뛰기




Volumn 118, Issue , 2012, Pages 109-119

Input variable selection for PLS modeling using nearest correlation spectral clustering

Author keywords

Graph theory; Modeling; Regression; Soft senor; Spectral clustering; Variable selection

Indexed keywords

ALGORITHM; ARTICLE; CHEMICAL INDUSTRY; CONTROLLED STUDY; EXPLANATORY VARIABLE; INPUT VARIABLE; MATHEMATICAL VARIABLE; METHODOLOGY; NEAREST CORRELATION SPECTRAL CLUSTERING; PARTIAL LEAST SQUARES REGRESSION; PRIORITY JOURNAL; SENSOR; SOFT SENSOR; STATISTICAL ANALYSIS; VARIABLE SELECTION;

EID: 84866268194     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2012.08.007     Document Type: Article
Times cited : (41)

References (27)
  • 1
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement. recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement. recent developments and applications in steel industry. Computers and Chemical Engineering 2008, 32:12-24.
    • (2008) Computers and Chemical Engineering , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 2
    • 0026360534 scopus 로고
    • Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression
    • Mejdell T., Skogestad S. Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Industrial and Engineering Chemistry Research 1991, 30:2543-2555.
    • (1991) Industrial and Engineering Chemistry Research , vol.30 , pp. 2543-2555
    • Mejdell, T.1    Skogestad, S.2
  • 4
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S.J. Recursive PLS algorithms for adaptive data modeling. Computers and Chemical Engineering 1998, 22:503-514.
    • (1998) Computers and Chemical Engineering , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 7
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng C., Chiu M.S. A new data-based methodology for nonlinear process modeling. Chemical Engineering Science 2004, 59:2801-2810.
    • (2004) Chemical Engineering Science , vol.59 , pp. 2801-2810
    • Cheng, C.1    Chiu, M.S.2
  • 8
    • 81755166220 scopus 로고    scopus 로고
    • Estimation of Active Pharmaceutical Ingredients Content Using Locally Weighted Partial Least Squares and Statistical Wavelength Selection
    • Kim S., Kano M., Nakagawa H., Hasebe S. Estimation of Active Pharmaceutical Ingredients Content Using Locally Weighted Partial Least Squares and Statistical Wavelength Selection. International Journal of Pharmaceutics 2011, 421:269-274. 10.1016/j.ijpharm.2011.10.007.
    • (2011) International Journal of Pharmaceutics , vol.421 , pp. 269-274
    • Kim, S.1    Kano, M.2    Nakagawa, H.3    Hasebe, S.4
  • 9
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K., Kano M., Hasebe S. Soft-sensor development using correlation-based just-in-time modeling. AICHE Journal 2009, 55:1754-1765.
    • (2009) AICHE Journal , vol.55 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 10
    • 77956444702 scopus 로고    scopus 로고
    • The state of the art in chemical process control in Japan: good practice and questionnaire survey
    • Kano M., Ogawa M. The state of the art in chemical process control in Japan: good practice and questionnaire survey. Journal of Process Control 2010, 20:969-982.
    • (2010) Journal of Process Control , vol.20 , pp. 969-982
    • Kano, M.1    Ogawa, M.2
  • 11
    • 79251504310 scopus 로고    scopus 로고
    • Genetic algorithm-based wavelength selection method for spectral calibration
    • Arakawa M., Yamashita Y., Funatsu K. Genetic algorithm-based wavelength selection method for spectral calibration. Journal of Chemometrics 2010, 25:10-19.
    • (2010) Journal of Chemometrics , vol.25 , pp. 10-19
    • Arakawa, M.1    Yamashita, Y.2    Funatsu, K.3
  • 12
    • 21244436700 scopus 로고    scopus 로고
    • Performance of some variable selection methods when multicollinearity is present
    • Chong I.G., Jun C.H. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems 2005, 78:103-112.
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.78 , pp. 103-112
    • Chong, I.G.1    Jun, C.H.2
  • 14
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking R.R. The analysis and selection of variables in linear regression. Biometrics 1976, 32:1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 16
    • 77951091017 scopus 로고    scopus 로고
    • Development of correlation-based clustering method and its application to software sensing
    • Fujiwara K., Kano M., Hasebe S. Development of correlation-based clustering method and its application to software sensing. Chemometrics and Intelligent Laboratory Systems 2010, 44:130-138.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.44 , pp. 130-138
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 17
    • 80054758420 scopus 로고    scopus 로고
    • Correlation-based spectral clustering for flexible process monitoring
    • Fujiwara K., Kano M., Hasebe S. Correlation-based spectral clustering for flexible process monitoring. Journal of Process Control 2011, 21:1438-1448.
    • (2011) Journal of Process Control , vol.21 , pp. 1438-1448
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 19
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • Kano M., Miyazaki K., Hasebe S., Hashimoto I. Inferential control system of distillation compositions using dynamic partial least squares regression. Journal of Process Control 2000, 10:157-166.
    • (2000) Journal of Process Control , vol.10 , pp. 157-166
    • Kano, M.1    Miyazaki, K.2    Hasebe, S.3    Hashimoto, I.4
  • 20
    • 0023952731 scopus 로고    scopus 로고
    • Use of biased least-squares estimators for parameters in discrete-time pulse response models
    • Ricker N.L. Use of biased least-squares estimators for parameters in discrete-time pulse response models. Industrial and Engineering Chemistry Research 1998, 27:343-350.
    • (1998) Industrial and Engineering Chemistry Research , vol.27 , pp. 343-350
    • Ricker, N.L.1
  • 22
    • 37549068158 scopus 로고    scopus 로고
    • A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools
    • Ward E.J. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecological Modelling 2008, 211:1-10.
    • (2008) Ecological Modelling , vol.211 , pp. 1-10
    • Ward, E.J.1
  • 23
    • 70349102828 scopus 로고    scopus 로고
    • Performance of several variable-selection methods applied to real ecological data
    • Murtaugh P.A. Performance of several variable-selection methods applied to real ecological data. Ecology Letters 2009, 12:1061-1068.
    • (2009) Ecology Letters , vol.12 , pp. 1061-1068
    • Murtaugh, P.A.1
  • 24
    • 80054758420 scopus 로고    scopus 로고
    • Development of Correlation-Based Pattern Recognition Algorithm and Adaptive soft-sensor Design
    • Fujiwara K., Kano M., Hasebe S. Development of Correlation-Based Pattern Recognition Algorithm and Adaptive soft-sensor Design. Control Engineering Practice 2011, 21:1438-1448. 10.1016/j.conengprac.2010.11.013.
    • (2011) Control Engineering Practice , vol.21 , pp. 1438-1448
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.