메뉴 건너뛰기




Volumn 19, Issue 9, 2009, Pages 1519-1528

Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation

Author keywords

Blast furnace ironmaking; Identification; Missing value imputation; Outlier detection

Indexed keywords

BEFORE AND AFTER; BLAST FURNACE IRON-MAKING; COMPARATIVE STUDIES; CONTROL STRATEGIES; DATA SETS; DECISION-TREE ALGORITHM; IDENTIFICATION METHOD; MISSING VALUE IMPUTATION; MISSING VALUES; MULTIVARIATE OUTLIER DETECTION; NUMERICAL ALGORITHMS; OUTLIER DETECTION; PREDICTION ERROR METHOD; PROCESS DYNAMICS; STATE SPACE; STATISTICAL ANALYSIS; SUBSPACE SYSTEM IDENTIFICATION; WHOLE PROCESS;

EID: 72049098542     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2009.07.006     Document Type: Article
Times cited : (58)

References (42)
  • 1
    • 0032143195 scopus 로고    scopus 로고
    • Modeling and prediction of bending stiffness for paper board manufacturing
    • Gutman P.-O., and Nilsson B. Modeling and prediction of bending stiffness for paper board manufacturing. Journal of Process Control 8 (1998) 229-237
    • (1998) Journal of Process Control , vol.8 , pp. 229-237
    • Gutman, P.-O.1    Nilsson, B.2
  • 2
    • 0034551618 scopus 로고    scopus 로고
    • Neural networks for the identification and control of blast furnace hot metal quality
    • Radhakrishnan V.R., and Mohamed A.R. Neural networks for the identification and control of blast furnace hot metal quality. Journal of Process Control 10 (2000) 509-524
    • (2000) Journal of Process Control , vol.10 , pp. 509-524
    • Radhakrishnan, V.R.1    Mohamed, A.R.2
  • 4
    • 0343526733 scopus 로고    scopus 로고
    • MVC-a preprocessing method to deal with missing values
    • Ragel A., and Crémilleux B. MVC-a preprocessing method to deal with missing values. Knowledge-Based Systems 12 (1999) 285-291
    • (1999) Knowledge-Based Systems , vol.12 , pp. 285-291
    • Ragel, A.1    Crémilleux, B.2
  • 8
    • 0041324801 scopus 로고    scopus 로고
    • Variational Bayesian learning of ICA with missing data
    • Chan K., Lee T.W., and Sejnowski T.J. Variational Bayesian learning of ICA with missing data. Neural Computation 15 (2003) 1911-2011
    • (2003) Neural Computation , vol.15 , pp. 1911-2011
    • Chan, K.1    Lee, T.W.2    Sejnowski, T.J.3
  • 9
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quilan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quilan, J.R.1
  • 12
  • 14
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Batista G., and Monard M.C. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 17 (2003) 519-533
    • (2003) Applied Artificial Intelligence , vol.17 , pp. 519-533
    • Batista, G.1    Monard, M.C.2
  • 15
    • 33750963282 scopus 로고    scopus 로고
    • A genetic algorithm based multi-objective neural net applied to noisy blast furnace data
    • Pettersson F., Chakraborti N., and Saxén H. A genetic algorithm based multi-objective neural net applied to noisy blast furnace data. Applied Soft Computing 7 (2007) 387-397
    • (2007) Applied Soft Computing , vol.7 , pp. 387-397
    • Pettersson, F.1    Chakraborti, N.2    Saxén, H.3
  • 17
    • 0001268633 scopus 로고    scopus 로고
    • Outlier detection in multivariate analytical chemical data
    • Egan W.J., and Morgan S.L. Outlier detection in multivariate analytical chemical data. Analytical Chemistry 70 (1998) 2372-2379
    • (1998) Analytical Chemistry , vol.70 , pp. 2372-2379
    • Egan, W.J.1    Morgan, S.L.2
  • 18
    • 0024476062 scopus 로고
    • The chi-square plot: a tool for multivariate outlier recognition
    • Garrett R.G. The chi-square plot: a tool for multivariate outlier recognition. Journal of Geochemical Exploration 32 (1989) 319-341
    • (1989) Journal of Geochemical Exploration , vol.32 , pp. 319-341
    • Garrett, R.G.1
  • 19
    • 72049117987 scopus 로고    scopus 로고
    • P. Filzmoser, A multivariate outlier detection method, in: S. Aivazian, P. Filzmoser, Yu. Kharin (Ed.), Proceedings of the Seventh International Conference on Computer Data Analysis and Modeling, 1, Belarusian State University, Minsk, 2004, pp. 18-22.
    • P. Filzmoser, A multivariate outlier detection method, in: S. Aivazian, P. Filzmoser, Yu. Kharin (Ed.), Proceedings of the Seventh International Conference on Computer Data Analysis and Modeling, vol. 1, Belarusian State University, Minsk, 2004, pp. 18-22.
  • 20
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • Aggarwal C.C., and Yu P.S. Outlier detection for high dimensional data. ACM Sigmod Record 30 (2001) 37-46
    • (2001) ACM Sigmod Record , vol.30 , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 21
    • 18144430568 scopus 로고    scopus 로고
    • Multivariate outlier detection in exploration geochemistry
    • Filzmoser P., Garrett R.G., and Reimann C. Multivariate outlier detection in exploration geochemistry. Computers & Geosciences 31 (2005) 579-587
    • (2005) Computers & Geosciences , vol.31 , pp. 579-587
    • Filzmoser, P.1    Garrett, R.G.2    Reimann, C.3
  • 23
    • 0037411806 scopus 로고    scopus 로고
    • Exploring process data with the use of robust outlier detection algorithms
    • Chiang L.H., Pell R.J., and Seasholtz M.B. Exploring process data with the use of robust outlier detection algorithms. Journal of Process Control 13 (2002) 437-449
    • (2002) Journal of Process Control , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 26
    • 0034038455 scopus 로고    scopus 로고
    • On the development of predictive models with applications to a metallurgical process
    • Waller M., and Saxén H. On the development of predictive models with applications to a metallurgical process. Industrial Engineering Chemistry Research 39 (2000) 982-988
    • (2000) Industrial Engineering Chemistry Research , vol.39 , pp. 982-988
    • Waller, M.1    Saxén, H.2
  • 27
    • 0035253981 scopus 로고    scopus 로고
    • A predictive system for blast furnaces by integrating a neural network with qualitative analysis
    • Chen J. A predictive system for blast furnaces by integrating a neural network with qualitative analysis. Engineering Applications of Artificial Intelligence 14 (2001) 77-85
    • (2001) Engineering Applications of Artificial Intelligence , vol.14 , pp. 77-85
    • Chen, J.1
  • 28
    • 0036269935 scopus 로고    scopus 로고
    • Application of nonlinear time series analysis to the prediction of silicon content of pig iron
    • Waller M., and Saxén H. Application of nonlinear time series analysis to the prediction of silicon content of pig iron. ISIJ International 42 (2002) 316-318
    • (2002) ISIJ International , vol.42 , pp. 316-318
    • Waller, M.1    Saxén, H.2
  • 29
    • 0037425494 scopus 로고    scopus 로고
    • Time-varying event-internal trends in predictive modeling-methods with application to ladle wise analyses of hot metal silicon content
    • Waller M., and Saxén H. Time-varying event-internal trends in predictive modeling-methods with application to ladle wise analyses of hot metal silicon content. Industrial Engineering Chemistry Research 42 (2003) 85-90
    • (2003) Industrial Engineering Chemistry Research , vol.42 , pp. 85-90
    • Waller, M.1    Saxén, H.2
  • 30
    • 2442435706 scopus 로고    scopus 로고
    • Blast furnace hot metal temperature prediction through neural networks-based models
    • Jiménez J., Mochón J., de Ayalai J.S., and Obeso F. Blast furnace hot metal temperature prediction through neural networks-based models. ISIJ International 44 (2004) 573-580
    • (2004) ISIJ International , vol.44 , pp. 573-580
    • Jiménez, J.1    Mochón, J.2    de Ayalai, J.S.3    Obeso, F.4
  • 31
    • 33244454512 scopus 로고    scopus 로고
    • Prediction of silicon content in blast furnace hot metal using partial least squares (PLS)
    • Bhattacharya T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS). ISIJ International 45 (2005) 1943-1945
    • (2005) ISIJ International , vol.45 , pp. 1943-1945
    • Bhattacharya, T.1
  • 33
    • 27744530864 scopus 로고    scopus 로고
    • A blast furnace prediction model combining neural network with partial least square regression
    • Hao X.J., Shen F.M., Du G., Shen Y.S., and Xie Z. A blast furnace prediction model combining neural network with partial least square regression. Steel Research International 76 (2005) 694-699
    • (2005) Steel Research International , vol.76 , pp. 694-699
    • Hao, X.J.1    Shen, F.M.2    Du, G.3    Shen, Y.S.4    Xie, Z.5
  • 34
    • 39149117356 scopus 로고    scopus 로고
    • Nonlinear prediction of the hot metal silicon content in the blast furnace
    • Saxén H., and Pettersson F. Nonlinear prediction of the hot metal silicon content in the blast furnace. ISIJ International 47 (2007) 1732-1737
    • (2007) ISIJ International , vol.47 , pp. 1732-1737
    • Saxén, H.1    Pettersson, F.2
  • 35
    • 35348980189 scopus 로고    scopus 로고
    • Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools
    • Martín R.D., Obeso F., Mochón J., Barea R., and Jiménez J. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools. Ironmaking & Steelmaking 34 (2007) 241-247
    • (2007) Ironmaking & Steelmaking , vol.34 , pp. 241-247
    • Martín, R.D.1    Obeso, F.2    Mochón, J.3    Barea, R.4    Jiménez, J.5
  • 37
    • 60649098585 scopus 로고    scopus 로고
    • Using nonlinear GARCH model to predict silicon content in blast furnace hot metal
    • Zeng J.S., Gao C.H., Liu X.G., Yang K.P., and Luo S.H. Using nonlinear GARCH model to predict silicon content in blast furnace hot metal. Asian Journal of Control 10 (2008) 1-6
    • (2008) Asian Journal of Control , vol.10 , pp. 1-6
    • Zeng, J.S.1    Gao, C.H.2    Liu, X.G.3    Yang, K.P.4    Luo, S.H.5
  • 38
    • 0028330583 scopus 로고
    • N4SID: subspace algorithms for the identification of combined deterministic and stochastic systems
    • Van Overschee P., and De Moor B. N4SID: subspace algorithms for the identification of combined deterministic and stochastic systems. Automatica 30 (1994) 75-93
    • (1994) Automatica , vol.30 , pp. 75-93
    • Van Overschee, P.1    De Moor, B.2
  • 42


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.