메뉴 건너뛰기




Volumn 58, Issue 6, 2012, Pages 1829-1840

Erratum to "A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method" [58, 6, (2012) 1829-1840], DOI: 10.1002/aic.13814;A new process variable and dynamics selection method based on a genetic algorithm-based wavelength selection method

Author keywords

Maintenance; Process control; Process dynamics; Soft sensor; Variable selection

Indexed keywords

GENETIC ALGORITHMS; MAINTENANCE; PROCESS CONTROL; SPECTRUM ANALYSIS; TIME DELAY;

EID: 84860639429     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.14266     Document Type: Erratum
Times cited : (45)

References (25)
  • 1
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008; 32: 12-24.
    • (2008) Comput Chem Eng , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 2
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009; 33: 795-814.
    • (2009) Comput Chem Eng , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 3
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H, Arakawa M, Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J. 2009; 55: 87-98.
    • (2009) AIChE J , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 4
    • 79955611348 scopus 로고    scopus 로고
    • Applicability domains and accuracy of prediction of soft sensor models
    • Kaneko H, Arakawa M, Funatsu K. Applicability domains and accuracy of prediction of soft sensor models. AIChE J. 2011; 57: 1506-1513.
    • (2011) AIChE J , vol.57 , pp. 1506-1513
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 5
    • 45949123735 scopus 로고
    • Principal component analysis
    • Wold S. Principal component analysis. Chemom Intell Lab Syst. 1987; 2: 37-52.
    • (1987) Chemom Intell Lab Syst , vol.2 , pp. 37-52
    • Wold, S.1
  • 7
    • 21244436700 scopus 로고    scopus 로고
    • Performance of some variable selection methods when multicollinearity is present
    • Chong IG, Jun CH. Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst. 2005; 78: 103-112.
    • (2005) Chemom Intell Lab Syst , vol.78 , pp. 103-112
    • Chong, I.G.1    Jun, C.H.2
  • 8
    • 42149192690 scopus 로고    scopus 로고
    • Development of a new regression analysis method using independent component analysis
    • Kaneko H, Arakawa M, Funatsu K. Development of a new regression analysis method using independent component analysis. J Chem Inf Model. 2008; 48: 534-541.
    • (2008) J Chem Inf Model , vol.48 , pp. 534-541
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 9
    • 78650649260 scopus 로고    scopus 로고
    • Variable selection in regression-a tutorial
    • Andersen CM, Bro R. Variable selection in regression-a tutorial. J Chemom. 2010; 24: 728-737.
    • (2010) J Chemom , vol.24 , pp. 728-737
    • Andersen, C.M.1    Bro, R.2
  • 10
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc. 1996; 58: 267-288.
    • (1996) J R Stat Soc , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 11
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking RR. The analysis and selection of variables in linear regression. Biometrics. 1976; 32: 1-49.
    • (1976) Biometrics , vol.32 , pp. 1-49
    • Hocking, R.R.1
  • 12
    • 0031084988 scopus 로고    scopus 로고
    • GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists
    • Hasegawa K, Miyashita Y, Funatsu K. GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists. J Chem Inf Comput Sci. 1997; 37: 306-310.
    • (1997) J Chem Inf Comput Sci , vol.37 , pp. 306-310
    • Hasegawa, K.1    Miyashita, Y.2    Funatsu, K.3
  • 13
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • Kano M, Miyazaki K, Hasebe S, Hashimoto I. Inferential control system of distillation compositions using dynamic partial least squares regression. J Process Control. 2000; 10: 157-166.
    • (2000) J Process Control , vol.10 , pp. 157-166
    • Kano, M.1    Miyazaki, K.2    Hasebe, S.3    Hashimoto, I.4
  • 14
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variables
    • Rallo R, Ferre GJ, Arenas A, Giralt F. Neural virtual sensor for the inferential prediction of product quality from process variables. Comput Chem Eng. 2002; 26: 1735-1754.
    • (2002) Comput Chem Eng , vol.26 , pp. 1735-1754
    • Rallo, R.1    Ferre, G.J.2    Arenas, A.3    Giralt, F.4
  • 15
    • 4444289955 scopus 로고    scopus 로고
    • Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
    • Zamprogna E, Barolo M, Seborg DE. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. J Process Control. 2005; 15: 39-52.
    • (2005) J Process Control , vol.15 , pp. 39-52
    • Zamprogna, E.1    Barolo, M.2    Seborg, D.E.3
  • 16
    • 70350364485 scopus 로고    scopus 로고
    • Stacked partial least squares regression analysis for spectral calibration and prediction
    • Ni W, Brown SD, Man R. Stacked partial least squares regression analysis for spectral calibration and prediction. J Chemom. 2009; 23: 505-517.
    • (2009) J Chemom , vol.23 , pp. 505-517
    • Ni, W.1    Brown, S.D.2    Man, R.3
  • 17
    • 79251504310 scopus 로고    scopus 로고
    • Genetic algorithm-based wavelength selection method for spectral calibration
    • Arakawa M, Yamashita Y, Funatsu K, Genetic algorithm-based wavelength selection method for spectral calibration. J Chemom. 2011; 25: 10-19.
    • (2011) J Chemom. , vol.25 , pp. 10-19
    • Arakawa, M.1    Yamashita, Y.2    Funatsu, K.3
  • 18
    • 0000079353 scopus 로고    scopus 로고
    • Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares
    • Faber K, Kowalski BR. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J Chemom. 1997; 11: 181-238.
    • (1997) J Chemom , vol.11 , pp. 181-238
    • Faber, K.1    Kowalski, B.R.2
  • 19
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows CL. Some comments on Cp. Technometrics. 1973; 15: 661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 20
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike H. Factor analysis and AIC. Psychometrika. 1987; 52: 317-332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 21
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann Stat. 1978; 6: 461-464.
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 22
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • Whitley D. A genetic algorithm tutorial. Stat Comput. 1994; 4: 65-85.
    • (1994) Stat Comput. , vol.4 , pp. 65-85
    • Whitley, D.1
  • 23
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Kaneko H, Funatsu K. Maintenance-free soft sensor models with time difference of process variables. Chemom Intell Lab Syst. 2011; 107: 312-317.
    • (2011) Chemom Intell Lab Syst. , vol.107 , pp. 312-317
    • Kaneko, H.1    Funatsu, K.2
  • 24
    • 84860634728 scopus 로고
    • A Genetic Algorithm for Function Optimization: A Matlab Implementaion. NCSU-IE TR 95-09. Meta-heuristic Research and Applications Group: North Carolina State University, Raleigh, NC
    • Houck CR, Joines JA, Kay MG. A Genetic Algorithm for Function Optimization: A Matlab Implementaion. NCSU-IE TR 95-09. Meta-heuristic Research and Applications Group: North Carolina State University, Raleigh, NC, 1995.
    • (1995)
    • Houck, C.R.1    Joines, J.A.2    Kay, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.