-
3
-
-
35548968908
-
Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry
-
Kano M, Nakagawa Y. Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008; 32: 12-24.
-
(2008)
Comput Chem Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
4
-
-
0032044750
-
Recursive PLS algorithm for adaptive data modeling
-
Qin SJ. Recursive PLS algorithm for adaptive data modeling. Comput Chem Eng. 1998; 22: 503-514.
-
(1998)
Comput Chem Eng.
, vol.22
, pp. 503-514
-
-
Qin, S.J.1
-
5
-
-
0035442469
-
Extended PLS approach for enhanced condition monitoring of industrial processes
-
Kruger U, Chen Q, Sandoz DJ, McFarlane RC. Extended PLS approach for enhanced condition monitoring of industrial processes. AIChE J. 2001; 47: 2076-2091.
-
(2001)
AIChE J.
, vol.47
, pp. 2076-2091
-
-
Kruger, U.1
Chen, Q.2
Sandoz, D.J.3
McFarlane, R.C.4
-
6
-
-
14944347949
-
A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
-
Li CF, Ye H, Wang GZ, Zhang J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling. Chem Eng Technol. 2005; 28: 141-152.
-
(2005)
Chem Eng Technol.
, vol.28
, pp. 141-152
-
-
Li, C.F.1
Ye, H.2
Wang, G.Z.3
Zhang, J.4
-
7
-
-
42149134815
-
Quality prediction based on phase-specific average trajectory for batch processes
-
Zhao CH, Wang FL, Mao ZZ, Lu NY, Jia MX. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008; 54: 693-705.
-
(2008)
AIChE J.
, vol.54
, pp. 693-705
-
-
Zhao, C.H.1
Wang, F.L.2
Mao, Z.Z.3
Lu, N.Y.4
Jia, M.X.5
-
8
-
-
69349083126
-
Complex process monitoring using modified partial least squares method of independent component regression
-
Zhang YW, Zhang Y. Complex process monitoring using modified partial least squares method of independent component regression. Chem Intell Lab Syst. 2009; 98: 143-148.
-
(2009)
Chem Intell Lab Syst.
, vol.98
, pp. 143-148
-
-
Zhang, Y.W.1
Zhang, Y.2
-
10
-
-
20344389745
-
Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
-
Lee MW, Joung JY, Lee DS, Park JM, Woo SH. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process. Ind Eng Chem Res. 2005; 44: 3973-3982.
-
(2005)
Ind Eng Chem Res.
, vol.44
, pp. 3973-3982
-
-
Lee, M.W.1
Joung, J.Y.2
Lee, D.S.3
Park, J.M.4
Woo, S.H.5
-
11
-
-
50849083804
-
Accounts of experience in the application of artificial neural networks in chemical engineering
-
Himmelblau DM. Accounts of experience in the application of artificial neural networks in chemical engineering. Ind Eng Chem Res. 2008; 47: 5782-5796.
-
(2008)
Ind Eng Chem Res.
, vol.47
, pp. 5782-5796
-
-
Himmelblau, D.M.1
-
12
-
-
57049112694
-
ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
-
Gonzaga JCB, Meleiro LAC, Kiang C, Filho RM. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput Chem Eng. 2009; 33: 43-49.
-
(2009)
Comput Chem Eng.
, vol.33
, pp. 43-49
-
-
Gonzaga, J.C.B.1
Meleiro, L.A.C.2
Kiang, C.3
Filho, R.M.4
-
14
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
Scholkopf B, Smola AJ. Learning with Kernels: Support Vector Machine, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machine, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
15
-
-
0037279908
-
Support vector machine: a useful tool for process engineering applications
-
Agrawal M, Jade AM, Jayaraman VK, Kulkarni BD. Support vector machine: a useful tool for process engineering applications. Chem Eng Prog. 2003; 98: 57-62.
-
(2003)
Chem Eng Prog.
, vol.98
, pp. 57-62
-
-
Agrawal, M.1
Jade, A.M.2
Jayaraman, V.K.3
Kulkarni, B.D.4
-
17
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan WW, Shao HH, Wang XF. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput Chem Eng. 2004; 28: 1489-1498.
-
(2004)
Comput Chem Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.W.1
Shao, H.H.2
Wang, X.F.3
-
18
-
-
33745777639
-
Incremental support vector learning: analysis, implementation and application
-
Laskov P, Gehl C, Kruger S, Muller KR. Incremental support vector learning: analysis, implementation and application. J Mach Learn Res. 2006; 7: 1909-1936.
-
(2006)
J Mach Learn Res.
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Kruger, S.3
Muller, K.R.4
-
19
-
-
33947266512
-
Development of a soft sensor for a batch distillation column using support vector regression techniques
-
Jain P, Rahman I, Kulkarni BD. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem Eng Res Des. 2007; 85: 283-287.
-
(2007)
Chem Eng Res Des.
, vol.85
, pp. 283-287
-
-
Jain, P.1
Rahman, I.2
Kulkarni, B.D.3
-
20
-
-
58749115727
-
Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
-
Zhang YW. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem Eng Sci. 2009; 64: 801-811.
-
(2009)
Chem Eng Sci.
, vol.64
, pp. 801-811
-
-
Zhang, Y.W.1
-
21
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009; 33: 795-814.
-
(2009)
Comput Chem Eng.
, vol.33
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
22
-
-
33746652212
-
A weighted-principal component regression method for the identification of physiologic systems
-
Xiao XS, Mukkamala R, Cohen RJ. A weighted-principal component regression method for the identification of physiologic systems. IEEE Trans Biomed Eng. 2006; 53: 1521-1530.
-
(2006)
IEEE Trans Biomed Eng.
, vol.53
, pp. 1521-1530
-
-
Xiao, X.S.1
Mukkamala, R.2
Cohen, R.J.3
-
24
-
-
70349396621
-
Multivariate concentration determination using principal component regression with residual analysis
-
Keithley RB, Heien ML, Wightman RM. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem. 2009; 28: 1127-1136.
-
(2009)
Trends Anal Chem.
, vol.28
, pp. 1127-1136
-
-
Keithley, R.B.1
Heien, M.L.2
Wightman, R.M.3
-
25
-
-
0002629270
-
Maximum Likelihood from Incomplete Data via the EM Algorithm
-
Dempster A, Laird N, Rubin D. Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Ser B. 1977; 39: 1-38.
-
(1977)
J R Stat Soc Ser B.
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
28
-
-
0010805362
-
-
Proceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA
-
Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. Proceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 2001: 19-26.
-
(2001)
Learning from labeled and unlabeled data using graph mincuts
, pp. 19-26
-
-
Blum, A.1
Chawla, S.2
-
29
-
-
85047673373
-
Missing data: our view of the state of the art
-
Schafer J, Graham J. Missing data: our view of the state of the art. Psychol Methods. 2002; 7: 147-177.
-
(2002)
Psychol Methods.
, vol.7
, pp. 147-177
-
-
Schafer, J.1
Graham, J.2
-
30
-
-
79960239607
-
-
Semi-supervised learning in literature survey. Technical report 1530, Computer Sciences, University of Wisconsin-Madison
-
Zhu X. Semi-supervised learning in literature survey. Technical report 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
-
(2005)
-
-
Zhu, X.1
-
32
-
-
35248840423
-
Semi-supervised single-label text categorization using centroid-based classifiers
-
Cardoso-Cachopo A, Oliveira AL. Semi-supervised single-label text categorization using centroid-based classifiers. Appl Comput. 2007; 1: 844-851.
-
(2007)
Appl Comput.
, vol.1
, pp. 844-851
-
-
Cardoso-Cachopo, A.1
Oliveira, A.L.2
-
33
-
-
34547313657
-
Graph laplacians and their convergence on random neighborhood graphs
-
Hein M, Audibert JY, Luxburg UV. Graph laplacians and their convergence on random neighborhood graphs. J Mach Learn Res. 2007; 8: 1325-1368.
-
(2007)
J Mach Learn Res.
, vol.8
, pp. 1325-1368
-
-
Hein, M.1
Audibert, J.Y.2
Luxburg, U.V.3
-
34
-
-
42249108432
-
Semi-supervised learning for classification of protein sequence data
-
King BR, Guda C. Semi-supervised learning for classification of protein sequence data. Sci Program. 2008; 16: 5-29.
-
(2008)
Sci Program
, vol.16
, pp. 5-29
-
-
King, B.R.1
Guda, C.2
-
36
-
-
70349952451
-
Semi-supervised multi-task regression
-
Zhang Y, Yeung DY. Semi-supervised multi-task regression. Lect Notes Artif Intell. 2009; 5782: 617-631.
-
(2009)
Lect Notes Artif Intell.
, vol.5782
, pp. 617-631
-
-
Zhang, Y.1
Yeung, D.Y.2
-
37
-
-
70349443426
-
A semi-supervised approach to space carving
-
Prakash S, Robles-Kelly A. A semi-supervised approach to space carving. Pattern Recognit. 2010; 43: 506-518.
-
(2010)
Pattern Recognit.
, vol.43
, pp. 506-518
-
-
Prakash, S.1
Robles-Kelly, A.2
-
38
-
-
33749566317
-
-
Supervised probabilistic principal component analysis. Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA
-
Yu SP, Yu K, Tresp V, Kriege HP, Wu MR. Supervised probabilistic principal component analysis. Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, 2006: 464-473.
-
(2006)
, pp. 464-473
-
-
Yu, S.P.1
Yu, K.2
Tresp, V.3
Kriege, H.P.4
Wu, M.R.5
-
43
-
-
11144284581
-
Soft sensors for product quality monitoring in debutanizer distillation column
-
Fortuna L, Graziani S, Xibilia MG. Soft sensors for product quality monitoring in debutanizer distillation column. Control Eng Pract. 2005; 13: 499-508.
-
(2005)
Control Eng Pract.
, vol.13
, pp. 499-508
-
-
Fortuna, L.1
Graziani, S.2
Xibilia, M.G.3
|