메뉴 건너뛰기




Volumn 57, Issue 8, 2011, Pages 2109-2119

Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples

Author keywords

Bayesian regularization; Probabilistic; Semisupervised learning; Soft sensor modeling

Indexed keywords

BAYESIAN METHODS; BAYESIAN REGULARIZATION; CHEMICAL PROCESS; CONTROLLED VARIABLES; DATA SETS; INPUT AND OUTPUTS; INPUT DATAS; OUTPUT DATA; OUTPUT VARIABLES; PROBABILISTIC; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SEMI-SUPERVISED METHOD; SOFT SENSORS; SOFT-SENSOR MODELING; UNLABELED DATA;

EID: 79960245463     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.12422     Document Type: Article
Times cited : (87)

References (43)
  • 3
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry
    • Kano M, Nakagawa Y. Data-based process monitoring, process control and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008; 32: 12-24.
    • (2008) Comput Chem Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 4
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithm for adaptive data modeling
    • Qin SJ. Recursive PLS algorithm for adaptive data modeling. Comput Chem Eng. 1998; 22: 503-514.
    • (1998) Comput Chem Eng. , vol.22 , pp. 503-514
    • Qin, S.J.1
  • 5
    • 0035442469 scopus 로고    scopus 로고
    • Extended PLS approach for enhanced condition monitoring of industrial processes
    • Kruger U, Chen Q, Sandoz DJ, McFarlane RC. Extended PLS approach for enhanced condition monitoring of industrial processes. AIChE J. 2001; 47: 2076-2091.
    • (2001) AIChE J. , vol.47 , pp. 2076-2091
    • Kruger, U.1    Chen, Q.2    Sandoz, D.J.3    McFarlane, R.C.4
  • 6
    • 14944347949 scopus 로고    scopus 로고
    • A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling
    • Li CF, Ye H, Wang GZ, Zhang J. A recursive nonlinear PLS algorithm for adaptive nonlinear process modeling. Chem Eng Technol. 2005; 28: 141-152.
    • (2005) Chem Eng Technol. , vol.28 , pp. 141-152
    • Li, C.F.1    Ye, H.2    Wang, G.Z.3    Zhang, J.4
  • 7
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao CH, Wang FL, Mao ZZ, Lu NY, Jia MX. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008; 54: 693-705.
    • (2008) AIChE J. , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.Z.3    Lu, N.Y.4    Jia, M.X.5
  • 8
    • 69349083126 scopus 로고    scopus 로고
    • Complex process monitoring using modified partial least squares method of independent component regression
    • Zhang YW, Zhang Y. Complex process monitoring using modified partial least squares method of independent component regression. Chem Intell Lab Syst. 2009; 98: 143-148.
    • (2009) Chem Intell Lab Syst. , vol.98 , pp. 143-148
    • Zhang, Y.W.1    Zhang, Y.2
  • 10
    • 20344389745 scopus 로고    scopus 로고
    • Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process
    • Lee MW, Joung JY, Lee DS, Park JM, Woo SH. Application of a moving-window-adaptive neural network to the modeling of a full-scale anaerobic filter process. Ind Eng Chem Res. 2005; 44: 3973-3982.
    • (2005) Ind Eng Chem Res. , vol.44 , pp. 3973-3982
    • Lee, M.W.1    Joung, J.Y.2    Lee, D.S.3    Park, J.M.4    Woo, S.H.5
  • 11
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experience in the application of artificial neural networks in chemical engineering
    • Himmelblau DM. Accounts of experience in the application of artificial neural networks in chemical engineering. Ind Eng Chem Res. 2008; 47: 5782-5796.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 12
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • Gonzaga JCB, Meleiro LAC, Kiang C, Filho RM. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process. Comput Chem Eng. 2009; 33: 43-49.
    • (2009) Comput Chem Eng. , vol.33 , pp. 43-49
    • Gonzaga, J.C.B.1    Meleiro, L.A.C.2    Kiang, C.3    Filho, R.M.4
  • 15
    • 0037279908 scopus 로고    scopus 로고
    • Support vector machine: a useful tool for process engineering applications
    • Agrawal M, Jade AM, Jayaraman VK, Kulkarni BD. Support vector machine: a useful tool for process engineering applications. Chem Eng Prog. 2003; 98: 57-62.
    • (2003) Chem Eng Prog. , vol.98 , pp. 57-62
    • Agrawal, M.1    Jade, A.M.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 17
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan WW, Shao HH, Wang XF. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput Chem Eng. 2004; 28: 1489-1498.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3
  • 18
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: analysis, implementation and application
    • Laskov P, Gehl C, Kruger S, Muller KR. Incremental support vector learning: analysis, implementation and application. J Mach Learn Res. 2006; 7: 1909-1936.
    • (2006) J Mach Learn Res. , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.R.4
  • 19
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • Jain P, Rahman I, Kulkarni BD. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem Eng Res Des. 2007; 85: 283-287.
    • (2007) Chem Eng Res Des. , vol.85 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 20
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang YW. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem Eng Sci. 2009; 64: 801-811.
    • (2009) Chem Eng Sci. , vol.64 , pp. 801-811
    • Zhang, Y.W.1
  • 21
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009; 33: 795-814.
    • (2009) Comput Chem Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 22
    • 33746652212 scopus 로고    scopus 로고
    • A weighted-principal component regression method for the identification of physiologic systems
    • Xiao XS, Mukkamala R, Cohen RJ. A weighted-principal component regression method for the identification of physiologic systems. IEEE Trans Biomed Eng. 2006; 53: 1521-1530.
    • (2006) IEEE Trans Biomed Eng. , vol.53 , pp. 1521-1530
    • Xiao, X.S.1    Mukkamala, R.2    Cohen, R.J.3
  • 24
    • 70349396621 scopus 로고    scopus 로고
    • Multivariate concentration determination using principal component regression with residual analysis
    • Keithley RB, Heien ML, Wightman RM. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem. 2009; 28: 1127-1136.
    • (2009) Trends Anal Chem. , vol.28 , pp. 1127-1136
    • Keithley, R.B.1    Heien, M.L.2    Wightman, R.M.3
  • 25
    • 0002629270 scopus 로고
    • Maximum Likelihood from Incomplete Data via the EM Algorithm
    • Dempster A, Laird N, Rubin D. Maximum Likelihood from Incomplete Data via the EM Algorithm. J R Stat Soc Ser B. 1977; 39: 1-38.
    • (1977) J R Stat Soc Ser B. , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 28
    • 0010805362 scopus 로고    scopus 로고
    • Proceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA
    • Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. Proceedings of the 18th International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 2001: 19-26.
    • (2001) Learning from labeled and unlabeled data using graph mincuts , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 29
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer J, Graham J. Missing data: our view of the state of the art. Psychol Methods. 2002; 7: 147-177.
    • (2002) Psychol Methods. , vol.7 , pp. 147-177
    • Schafer, J.1    Graham, J.2
  • 30
    • 79960239607 scopus 로고    scopus 로고
    • Semi-supervised learning in literature survey. Technical report 1530, Computer Sciences, University of Wisconsin-Madison
    • Zhu X. Semi-supervised learning in literature survey. Technical report 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
    • (2005)
    • Zhu, X.1
  • 32
    • 35248840423 scopus 로고    scopus 로고
    • Semi-supervised single-label text categorization using centroid-based classifiers
    • Cardoso-Cachopo A, Oliveira AL. Semi-supervised single-label text categorization using centroid-based classifiers. Appl Comput. 2007; 1: 844-851.
    • (2007) Appl Comput. , vol.1 , pp. 844-851
    • Cardoso-Cachopo, A.1    Oliveira, A.L.2
  • 33
    • 34547313657 scopus 로고    scopus 로고
    • Graph laplacians and their convergence on random neighborhood graphs
    • Hein M, Audibert JY, Luxburg UV. Graph laplacians and their convergence on random neighborhood graphs. J Mach Learn Res. 2007; 8: 1325-1368.
    • (2007) J Mach Learn Res. , vol.8 , pp. 1325-1368
    • Hein, M.1    Audibert, J.Y.2    Luxburg, U.V.3
  • 34
    • 42249108432 scopus 로고    scopus 로고
    • Semi-supervised learning for classification of protein sequence data
    • King BR, Guda C. Semi-supervised learning for classification of protein sequence data. Sci Program. 2008; 16: 5-29.
    • (2008) Sci Program , vol.16 , pp. 5-29
    • King, B.R.1    Guda, C.2
  • 35
    • 70350627210 scopus 로고    scopus 로고
    • Active and semi-supervised data domain description
    • Gornitz N, Kloft M, Brefeld U. Active and semi-supervised data domain description. Lect Notes Artif Intell. 2009; 5781: 407-422.
    • (2009) Lect Notes Artif Intell. , vol.5781 , pp. 407-422
    • Gornitz, N.1    Kloft, M.2    Brefeld, U.3
  • 36
    • 70349952451 scopus 로고    scopus 로고
    • Semi-supervised multi-task regression
    • Zhang Y, Yeung DY. Semi-supervised multi-task regression. Lect Notes Artif Intell. 2009; 5782: 617-631.
    • (2009) Lect Notes Artif Intell. , vol.5782 , pp. 617-631
    • Zhang, Y.1    Yeung, D.Y.2
  • 37
    • 70349443426 scopus 로고    scopus 로고
    • A semi-supervised approach to space carving
    • Prakash S, Robles-Kelly A. A semi-supervised approach to space carving. Pattern Recognit. 2010; 43: 506-518.
    • (2010) Pattern Recognit. , vol.43 , pp. 506-518
    • Prakash, S.1    Robles-Kelly, A.2
  • 38
    • 33749566317 scopus 로고    scopus 로고
    • Supervised probabilistic principal component analysis. Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA
    • Yu SP, Yu K, Tresp V, Kriege HP, Wu MR. Supervised probabilistic principal component analysis. Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, 2006: 464-473.
    • (2006) , pp. 464-473
    • Yu, S.P.1    Yu, K.2    Tresp, V.3    Kriege, H.P.4    Wu, M.R.5
  • 43
    • 11144284581 scopus 로고    scopus 로고
    • Soft sensors for product quality monitoring in debutanizer distillation column
    • Fortuna L, Graziani S, Xibilia MG. Soft sensors for product quality monitoring in debutanizer distillation column. Control Eng Pract. 2005; 13: 499-508.
    • (2005) Control Eng Pract. , vol.13 , pp. 499-508
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.