-
2
-
-
0027803573
-
-
Soft sensors for quality prediction in batch chemical pulping processes. In Proceedings of the IEEE International Symposium on Intelligent Control. Chicago, IL
-
Rao M, Corbin J, Wang Q. Soft sensors for quality prediction in batch chemical pulping processes. In Proceedings of the IEEE International Symposium on Intelligent Control. Chicago, IL, 1993.
-
(1993)
-
-
Rao, M.1
Corbin, J.2
Wang, Q.3
-
3
-
-
0031139929
-
Self-validating inferential sensors with application to air emission monitoring
-
Qin SJ, Yue H, Dunia R. Self-validating inferential sensors with application to air emission monitoring. Ind Eng Chem Res. 1997; 36: 1675-1685.
-
(1997)
Ind Eng Chem Res.
, vol.36
, pp. 1675-1685
-
-
Qin, S.J.1
Yue, H.2
Dunia, R.3
-
4
-
-
0034661658
-
Soft sensors development for on-line bioreactor state estimation
-
Jos de Assis A, Filho R. Soft sensors development for on-line bioreactor state estimation. Comput Chem Eng. 2000; 24: 1099-1103.
-
(2000)
Comput Chem Eng.
, vol.24
, pp. 1099-1103
-
-
Jos de Assis, A.1
Filho, R.2
-
6
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan W, Shao H, Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput Chem Eng. 2004; 28: 1489-1498.
-
(2004)
Comput Chem Eng.
, vol.28
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
8
-
-
57249097849
-
Dealing with irregular data in soft sensors: Bayesian method and comparative study
-
Khatibisepehr S, Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind Eng Chem Res. 2008; 47: 8713-8723.
-
(2008)
Ind Eng Chem Res.
, vol.47
, pp. 8713-8723
-
-
Khatibisepehr, S.1
Huang, B.2
-
9
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadleca P, Gabrys B, Strandtb S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009; 33: 795-814.
-
(2009)
Comput Chem Eng.
, vol.33
, pp. 795-814
-
-
Kadleca, P.1
Gabrys, B.2
Strandtb, S.3
-
10
-
-
0025460071
-
A first principles approach to automated troubleshooting of chemical plants
-
Grantham SD, Ungar LH. A first principles approach to automated troubleshooting of chemical plants. Comput Chem Eng. 1990; 14: 783-798.
-
(1990)
Comput Chem Eng.
, vol.14
, pp. 783-798
-
-
Grantham, S.D.1
Ungar, L.H.2
-
11
-
-
0036462523
-
First principles distillation inference models for product quality prediction
-
Friedman YZ, Neto EA, Porfirio CR. First principles distillation inference models for product quality prediction. Hydrocarbon Process. 2002; 81: 53-58.
-
(2002)
Hydrocarbon Process.
, vol.81
, pp. 53-58
-
-
Friedman, Y.Z.1
Neto, E.A.2
Porfirio, C.R.3
-
12
-
-
77955636441
-
Data-based latent variable methods for process analysis, monitoring and control
-
MacGregor J. Data-based latent variable methods for process analysis, monitoring and control. Comput Aided Chem Eng. 2004; 18: 87-98.
-
(2004)
Comput Aided Chem Eng.
, vol.18
, pp. 87-98
-
-
MacGregor, J.1
-
13
-
-
35548968908
-
Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
-
Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008; 32: 12-24.
-
(2008)
Comput Chem Eng.
, vol.32
, pp. 12-24
-
-
Kano, M.1
Nakagawa, Y.2
-
14
-
-
52049095060
-
Bayesian methods for control loop monitoring and diagnosis
-
Huang B. Bayesian methods for control loop monitoring and diagnosis. J Process Control. 2008; 10: 829-838.
-
(2008)
J Process Control.
, vol.10
, pp. 829-838
-
-
Huang, B.1
-
15
-
-
79955627959
-
-
On sequential simulation-based methods for Bayesian filtering. Technical Report
-
Doucet A, Godsill S. On sequential simulation-based methods for Bayesian filtering. Technical Report, 1998.
-
(1998)
-
-
Doucet, A.1
Godsill, S.2
-
16
-
-
0141754117
-
Multirate sampled-data systems: computing fast-rate models
-
Wang J, Chen T, Huang B. Multirate sampled-data systems: computing fast-rate models. J Process Control. 2004; 4: 79-88.
-
(2004)
J Process Control.
, vol.4
, pp. 79-88
-
-
Wang, J.1
Chen, T.2
Huang, B.3
-
18
-
-
21144474543
-
Nonlinear additive ARX models
-
Chen R, Tsay R. Nonlinear additive ARX models. J Am Stat Assoc. 1993; 88: 955-967.
-
(1993)
J Am Stat Assoc.
, vol.88
, pp. 955-967
-
-
Chen, R.1
Tsay, R.2
-
19
-
-
0032022209
-
An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
-
Bai E. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica. 1998; 34: 333-338.
-
(1998)
Automatica.
, vol.34
, pp. 333-338
-
-
Bai, E.1
-
21
-
-
0030296884
-
Missing data methods in PCA and PLS: score calculations with incomplete observations
-
Nelson P, Taylor P, MacGregor J. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemom Intell Lab Syst. 1996; 35: 45-65.
-
(1996)
Chemom Intell Lab Syst.
, vol.35
, pp. 45-65
-
-
Nelson, P.1
Taylor, P.2
MacGregor, J.3
-
22
-
-
0002815256
-
Improved PLS algorithms
-
Dayal B, MacGregor J. Improved PLS algorithms. J Chemom. 1997; 11: 73-85.
-
(1997)
J Chemom.
, vol.11
, pp. 73-85
-
-
Dayal, B.1
MacGregor, J.2
-
23
-
-
0028460607
-
Development of inferential process models using PLS
-
Kresta J, Marlin T, MacGregor J. Development of inferential process models using PLS. Comput Chem Eng. 1994; 18: 597-611.
-
(1994)
Comput Chem Eng.
, vol.18
, pp. 597-611
-
-
Kresta, J.1
Marlin, T.2
MacGregor, J.3
-
25
-
-
79960737630
-
-
Soft sensor based on fuzzy model identification. 16th IFAC World Congres., Prague, Czech Republic
-
Nagai E, Arruda L. Soft sensor based on fuzzy model identification. 16th IFAC World Congres., Prague, Czech Republic, 2005.
-
(2005)
-
-
Nagai, E.1
Arruda, L.2
-
26
-
-
57349142962
-
System identification using slow and irregular output samples
-
Zhu Y, Telkamp H, Wang J, Fu Q. System identification using slow and irregular output samples. Journal Process Control. 2009; 19: 58-67.
-
(2009)
Journal Process Control.
, vol.19
, pp. 58-67
-
-
Zhu, Y.1
Telkamp, H.2
Wang, J.3
Fu, Q.4
-
27
-
-
0024047751
-
Output estimation with multi-rate sampling
-
Lu W, Fisher D. Output estimation with multi-rate sampling. Int J Control. 1988; 48: 149-160.
-
(1988)
Int J Control.
, vol.48
, pp. 149-160
-
-
Lu, W.1
Fisher, D.2
-
28
-
-
0024684209
-
Least-squares output estimation with multirate sampling
-
Lu W, Fisher D. Least-squares output estimation with multirate sampling. IEEE Trans Auto Cont. 1989; 34: 669-672.
-
(1989)
IEEE Trans Auto Cont.
, vol.34
, pp. 669-672
-
-
Lu, W.1
Fisher, D.2
-
29
-
-
0035837930
-
Identification of fast-rate models from multirate data
-
Li D, Shah SL, Chen T. Identification of fast-rate models from multirate data. Int J Control. 2001; 74: 680-689.
-
(2001)
Int J Control.
, vol.74
, pp. 680-689
-
-
Li, D.1
Shah, S.L.2
Chen, T.3
-
30
-
-
3843084127
-
Identification of dual-rate systems based on finite impulse response model
-
Ding F, Chen T. Identification of dual-rate systems based on finite impulse response model. Int J Adaptive Control Signal Process. 2004; 18: 589-598.
-
(2004)
Int J Adaptive Control Signal Process.
, vol.18
, pp. 589-598
-
-
Ding, F.1
Chen, T.2
-
32
-
-
61849124672
-
A Two-stage method for identification of dual-rate systems with fast input and very slow output
-
Mo S, Chen X, Zhao J, Qian J, Shao ZA. A Two-stage method for identification of dual-rate systems with fast input and very slow output. Ind Eng Chem Res. 2009; 48: 1980-1988.
-
(2009)
Ind Eng Chem Res.
, vol.48
, pp. 1980-1988
-
-
Mo, S.1
Chen, X.2
Zhao, J.3
Qian, J.4
Shao, Z.A.5
-
33
-
-
1642313098
-
Multirate dynamic inferential modeling for multivariable processes
-
Lu N, Yang Y, Guao F, Wang W. Multirate dynamic inferential modeling for multivariable processes. Chem Eng Sci. 2004; 59: 855-864.
-
(2004)
Chem Eng Sci.
, vol.59
, pp. 855-864
-
-
Lu, N.1
Yang, Y.2
Guao, F.3
Wang, W.4
-
34
-
-
45749129089
-
Data selection and regression method and its application to softsensing using multirate industrial data
-
Tun M, Lakshminarayanan S, Emoto G. Data selection and regression method and its application to softsensing using multirate industrial data. J Chem Eng Japan. 2008; 41: 374-383.
-
(2008)
J Chem Eng Japan.
, vol.41
, pp. 374-383
-
-
Tun, M.1
Lakshminarayanan, S.2
Emoto, G.3
-
35
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Trans Auto Cont. 1974; 19: 716-723.
-
(1974)
IEEE Trans Auto Cont.
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
36
-
-
60849133001
-
A better understanding of model updating strategies in validating engineering models
-
Xiong Y, Chen W, Tsui K-L, Apley DW. A better understanding of model updating strategies in validating engineering models. Comput Methods Appl Mech Eng. 2009; 198: 1327-1337.
-
(2009)
Comput Methods Appl Mech Eng.
, vol.198
, pp. 1327-1337
-
-
Xiong, Y.1
Chen, W.2
Tsui, K.-L.3
Apley, D.W.4
-
37
-
-
79955572859
-
-
Modeling and Model Updating in the Real-Time Optimization of Gasoline Blending, M.Sc. thesis, University of Toronto
-
Singh A. Modeling and Model Updating in the Real-Time Optimization of Gasoline Blending, M.Sc. thesis, University of Toronto, 1997.
-
(1997)
-
-
Singh, A.1
-
38
-
-
33645417998
-
Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
-
Mu S, Zeng Y, Liu R, Wu P, Su H, Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J Process Control. 2006; 16: 557-566.
-
(2006)
J Process Control.
, vol.16
, pp. 557-566
-
-
Mu, S.1
Zeng, Y.2
Liu, R.3
Wu, P.4
Su, H.5
Chu, J.6
-
39
-
-
79955587777
-
-
Notes on the use of Dempster-Shafer and Fuzzy Reasoning to fuse identity attribute data. Technical Report
-
Kewley D. Notes on the use of Dempster-Shafer and Fuzzy Reasoning to fuse identity attribute data. Technical Report, 1992.
-
(1992)
-
-
Kewley, D.1
-
40
-
-
0033729602
-
-
Dempster-Shafer theory and Bayesian reasoning in multisensor data fusion. Sensor Fusion: Architectures, Algorithms and Applications IV; Proceedings of SPIE 4051. Orlando, FL
-
Braun J. Dempster-Shafer theory and Bayesian reasoning in multisensor data fusion. Sensor Fusion: Architectures, Algorithms and Applications IV; Proceedings of SPIE 4051. Orlando, FL, 2000.
-
(2000)
-
-
Braun, J.1
-
41
-
-
79955628748
-
-
An introduction to Bayesian and Dempster-Shafer data fusion. Technical Report
-
Koks D, Challa S. An introduction to Bayesian and Dempster-Shafer data fusion. Technical Report, 2003.
-
(2003)
-
-
Koks, D.1
Challa, S.2
-
43
-
-
0035030095
-
Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion
-
Gan Q, Harris CJ. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Trans Aerospace Electron Syst. 2001; 37: 273-279.
-
(2001)
IEEE Trans Aerospace Electron Syst.
, vol.37
, pp. 273-279
-
-
Gan, Q.1
Harris, C.J.2
-
44
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
Gordon N, Salmond D, Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F Radar Signal Process. 1993; 140: 107-113.
-
(1993)
IEE Proc F Radar Signal Process.
, vol.140
, pp. 107-113
-
-
Gordon, N.1
Salmond, D.2
Smith, A.3
-
45
-
-
79955588134
-
-
Bayesian Approaches to Multi-Sensor Data Fusion, M.Sc. thesis, Department of Engineering, University of Cambridge
-
Punska O. Bayesian Approaches to Multi-Sensor Data Fusion, M.Sc. thesis, Department of Engineering, University of Cambridge, 1999.
-
(1999)
-
-
Punska, O.1
-
46
-
-
33845596936
-
-
Measurement integration under inconsistency for robust tracking. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York
-
Hua G, Wu Y. Measurement integration under inconsistency for robust tracking. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, 2006.
-
(2006)
-
-
Hua, G.1
Wu, Y.2
-
47
-
-
73649124170
-
Constrained Bayesian State Estimation - a Comparative Study and a New Particle Filter Based Approach
-
Shao X, Huang B, Lee JM. Constrained Bayesian State Estimation - a Comparative Study and a New Particle Filter Based Approach. J Process Control. 2010; 20: 143-157.
-
(2010)
J Process Control.
, vol.20
, pp. 143-157
-
-
Shao, X.1
Huang, B.2
Lee, J.M.3
-
49
-
-
34547583106
-
Bayesian estimation via sequential Monte Carlo sampling-Constrained dynamic systems
-
Lang L, Chen W, Bakshi B, Goel P, Ungarala S. Bayesian estimation via sequential Monte Carlo sampling-Constrained dynamic systems. Aotomatica. 2007; 43: 1615-1622.
-
(2007)
Aotomatica.
, vol.43
, pp. 1615-1622
-
-
Lang, L.1
Chen, W.2
Bakshi, B.3
Goel, P.4
Ungarala, S.5
-
51
-
-
11844302910
-
Resampling algorithms for particle filters: a computational complexity perspective
-
Boloc M, Djuric P, Hong S. Resampling algorithms for particle filters: a computational complexity perspective. EURASIP J Applied Signal Process. 2004; 15: 2267-2277.
-
(2004)
EURASIP J Applied Signal Process.
, vol.15
, pp. 2267-2277
-
-
Boloc, M.1
Djuric, P.2
Hong, S.3
-
52
-
-
0029395216
-
Adaptive multirate state and parameter estimation strategies with application to a bioreactor
-
Gudi R, Shah S, Gray M. Adaptive multirate state and parameter estimation strategies with application to a bioreactor. AIChE. 1995; 41: 2451.
-
(1995)
AIChE.
, vol.41
, pp. 2451
-
-
Gudi, R.1
Shah, S.2
Gray, M.3
|