메뉴 건너뛰기




Volumn 57, Issue 6, 2011, Pages 1514-1525

Bayesian method for multirate data synthesis and model calibration

Author keywords

Bayesian fusion; Model calibration; Oil sands; Particle filter; Soft sensor

Indexed keywords

BAYESIAN APPROACHES; BAYESIAN FUSION; BAYESIAN METHODS; DATA-DRIVEN; DATA-DRIVEN MODEL; IN-PROCESS; MODEL CALIBRATION; MODEL UPDATES; MONITORING AND CONTROL; MULTI-RATE DATA; NONSYSTEMATIC ERRORS; OBSERVATION INFORMATION; PARTICLE FILTER; PROCESS CONSTRAINTS; SEQUENTIAL MONTE CARLO SAMPLING; SIMULATION EXAMPLE; SOFT SENSOR; SOFT SENSORS; TIME-VARYING VARIANCE; TREATMENT PROCESS;

EID: 79955578057     PISSN: 00011541     EISSN: 15475905     Source Type: Journal    
DOI: 10.1002/aic.12358     Document Type: Article
Times cited : (29)

References (53)
  • 2
    • 0027803573 scopus 로고
    • Soft sensors for quality prediction in batch chemical pulping processes. In Proceedings of the IEEE International Symposium on Intelligent Control. Chicago, IL
    • Rao M, Corbin J, Wang Q. Soft sensors for quality prediction in batch chemical pulping processes. In Proceedings of the IEEE International Symposium on Intelligent Control. Chicago, IL, 1993.
    • (1993)
    • Rao, M.1    Corbin, J.2    Wang, Q.3
  • 3
    • 0031139929 scopus 로고    scopus 로고
    • Self-validating inferential sensors with application to air emission monitoring
    • Qin SJ, Yue H, Dunia R. Self-validating inferential sensors with application to air emission monitoring. Ind Eng Chem Res. 1997; 36: 1675-1685.
    • (1997) Ind Eng Chem Res. , vol.36 , pp. 1675-1685
    • Qin, S.J.1    Yue, H.2    Dunia, R.3
  • 4
    • 0034661658 scopus 로고    scopus 로고
    • Soft sensors development for on-line bioreactor state estimation
    • Jos de Assis A, Filho R. Soft sensors development for on-line bioreactor state estimation. Comput Chem Eng. 2000; 24: 1099-1103.
    • (2000) Comput Chem Eng. , vol.24 , pp. 1099-1103
    • Jos de Assis, A.1    Filho, R.2
  • 6
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W, Shao H, Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput Chem Eng. 2004; 28: 1489-1498.
    • (2004) Comput Chem Eng. , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 8
    • 57249097849 scopus 로고    scopus 로고
    • Dealing with irregular data in soft sensors: Bayesian method and comparative study
    • Khatibisepehr S, Huang B. Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind Eng Chem Res. 2008; 47: 8713-8723.
    • (2008) Ind Eng Chem Res. , vol.47 , pp. 8713-8723
    • Khatibisepehr, S.1    Huang, B.2
  • 9
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadleca P, Gabrys B, Strandtb S. Data-driven soft sensors in the process industry. Comput Chem Eng. 2009; 33: 795-814.
    • (2009) Comput Chem Eng. , vol.33 , pp. 795-814
    • Kadleca, P.1    Gabrys, B.2    Strandtb, S.3
  • 10
    • 0025460071 scopus 로고
    • A first principles approach to automated troubleshooting of chemical plants
    • Grantham SD, Ungar LH. A first principles approach to automated troubleshooting of chemical plants. Comput Chem Eng. 1990; 14: 783-798.
    • (1990) Comput Chem Eng. , vol.14 , pp. 783-798
    • Grantham, S.D.1    Ungar, L.H.2
  • 11
    • 0036462523 scopus 로고    scopus 로고
    • First principles distillation inference models for product quality prediction
    • Friedman YZ, Neto EA, Porfirio CR. First principles distillation inference models for product quality prediction. Hydrocarbon Process. 2002; 81: 53-58.
    • (2002) Hydrocarbon Process. , vol.81 , pp. 53-58
    • Friedman, Y.Z.1    Neto, E.A.2    Porfirio, C.R.3
  • 12
    • 77955636441 scopus 로고    scopus 로고
    • Data-based latent variable methods for process analysis, monitoring and control
    • MacGregor J. Data-based latent variable methods for process analysis, monitoring and control. Comput Aided Chem Eng. 2004; 18: 87-98.
    • (2004) Comput Aided Chem Eng. , vol.18 , pp. 87-98
    • MacGregor, J.1
  • 13
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput Chem Eng. 2008; 32: 12-24.
    • (2008) Comput Chem Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 14
    • 52049095060 scopus 로고    scopus 로고
    • Bayesian methods for control loop monitoring and diagnosis
    • Huang B. Bayesian methods for control loop monitoring and diagnosis. J Process Control. 2008; 10: 829-838.
    • (2008) J Process Control. , vol.10 , pp. 829-838
    • Huang, B.1
  • 15
    • 79955627959 scopus 로고    scopus 로고
    • On sequential simulation-based methods for Bayesian filtering. Technical Report
    • Doucet A, Godsill S. On sequential simulation-based methods for Bayesian filtering. Technical Report, 1998.
    • (1998)
    • Doucet, A.1    Godsill, S.2
  • 16
    • 0141754117 scopus 로고    scopus 로고
    • Multirate sampled-data systems: computing fast-rate models
    • Wang J, Chen T, Huang B. Multirate sampled-data systems: computing fast-rate models. J Process Control. 2004; 4: 79-88.
    • (2004) J Process Control. , vol.4 , pp. 79-88
    • Wang, J.1    Chen, T.2    Huang, B.3
  • 18
    • 21144474543 scopus 로고
    • Nonlinear additive ARX models
    • Chen R, Tsay R. Nonlinear additive ARX models. J Am Stat Assoc. 1993; 88: 955-967.
    • (1993) J Am Stat Assoc. , vol.88 , pp. 955-967
    • Chen, R.1    Tsay, R.2
  • 19
    • 0032022209 scopus 로고    scopus 로고
    • An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    • Bai E. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica. 1998; 34: 333-338.
    • (1998) Automatica. , vol.34 , pp. 333-338
    • Bai, E.1
  • 21
    • 0030296884 scopus 로고    scopus 로고
    • Missing data methods in PCA and PLS: score calculations with incomplete observations
    • Nelson P, Taylor P, MacGregor J. Missing data methods in PCA and PLS: score calculations with incomplete observations. Chemom Intell Lab Syst. 1996; 35: 45-65.
    • (1996) Chemom Intell Lab Syst. , vol.35 , pp. 45-65
    • Nelson, P.1    Taylor, P.2    MacGregor, J.3
  • 22
    • 0002815256 scopus 로고    scopus 로고
    • Improved PLS algorithms
    • Dayal B, MacGregor J. Improved PLS algorithms. J Chemom. 1997; 11: 73-85.
    • (1997) J Chemom. , vol.11 , pp. 73-85
    • Dayal, B.1    MacGregor, J.2
  • 23
    • 0028460607 scopus 로고
    • Development of inferential process models using PLS
    • Kresta J, Marlin T, MacGregor J. Development of inferential process models using PLS. Comput Chem Eng. 1994; 18: 597-611.
    • (1994) Comput Chem Eng. , vol.18 , pp. 597-611
    • Kresta, J.1    Marlin, T.2    MacGregor, J.3
  • 25
    • 79960737630 scopus 로고    scopus 로고
    • Soft sensor based on fuzzy model identification. 16th IFAC World Congres., Prague, Czech Republic
    • Nagai E, Arruda L. Soft sensor based on fuzzy model identification. 16th IFAC World Congres., Prague, Czech Republic, 2005.
    • (2005)
    • Nagai, E.1    Arruda, L.2
  • 26
    • 57349142962 scopus 로고    scopus 로고
    • System identification using slow and irregular output samples
    • Zhu Y, Telkamp H, Wang J, Fu Q. System identification using slow and irregular output samples. Journal Process Control. 2009; 19: 58-67.
    • (2009) Journal Process Control. , vol.19 , pp. 58-67
    • Zhu, Y.1    Telkamp, H.2    Wang, J.3    Fu, Q.4
  • 27
    • 0024047751 scopus 로고
    • Output estimation with multi-rate sampling
    • Lu W, Fisher D. Output estimation with multi-rate sampling. Int J Control. 1988; 48: 149-160.
    • (1988) Int J Control. , vol.48 , pp. 149-160
    • Lu, W.1    Fisher, D.2
  • 28
    • 0024684209 scopus 로고
    • Least-squares output estimation with multirate sampling
    • Lu W, Fisher D. Least-squares output estimation with multirate sampling. IEEE Trans Auto Cont. 1989; 34: 669-672.
    • (1989) IEEE Trans Auto Cont. , vol.34 , pp. 669-672
    • Lu, W.1    Fisher, D.2
  • 29
    • 0035837930 scopus 로고    scopus 로고
    • Identification of fast-rate models from multirate data
    • Li D, Shah SL, Chen T. Identification of fast-rate models from multirate data. Int J Control. 2001; 74: 680-689.
    • (2001) Int J Control. , vol.74 , pp. 680-689
    • Li, D.1    Shah, S.L.2    Chen, T.3
  • 30
    • 3843084127 scopus 로고    scopus 로고
    • Identification of dual-rate systems based on finite impulse response model
    • Ding F, Chen T. Identification of dual-rate systems based on finite impulse response model. Int J Adaptive Control Signal Process. 2004; 18: 589-598.
    • (2004) Int J Adaptive Control Signal Process. , vol.18 , pp. 589-598
    • Ding, F.1    Chen, T.2
  • 32
    • 61849124672 scopus 로고    scopus 로고
    • A Two-stage method for identification of dual-rate systems with fast input and very slow output
    • Mo S, Chen X, Zhao J, Qian J, Shao ZA. A Two-stage method for identification of dual-rate systems with fast input and very slow output. Ind Eng Chem Res. 2009; 48: 1980-1988.
    • (2009) Ind Eng Chem Res. , vol.48 , pp. 1980-1988
    • Mo, S.1    Chen, X.2    Zhao, J.3    Qian, J.4    Shao, Z.A.5
  • 33
    • 1642313098 scopus 로고    scopus 로고
    • Multirate dynamic inferential modeling for multivariable processes
    • Lu N, Yang Y, Guao F, Wang W. Multirate dynamic inferential modeling for multivariable processes. Chem Eng Sci. 2004; 59: 855-864.
    • (2004) Chem Eng Sci. , vol.59 , pp. 855-864
    • Lu, N.1    Yang, Y.2    Guao, F.3    Wang, W.4
  • 34
    • 45749129089 scopus 로고    scopus 로고
    • Data selection and regression method and its application to softsensing using multirate industrial data
    • Tun M, Lakshminarayanan S, Emoto G. Data selection and regression method and its application to softsensing using multirate industrial data. J Chem Eng Japan. 2008; 41: 374-383.
    • (2008) J Chem Eng Japan. , vol.41 , pp. 374-383
    • Tun, M.1    Lakshminarayanan, S.2    Emoto, G.3
  • 35
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Trans Auto Cont. 1974; 19: 716-723.
    • (1974) IEEE Trans Auto Cont. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 36
    • 60849133001 scopus 로고    scopus 로고
    • A better understanding of model updating strategies in validating engineering models
    • Xiong Y, Chen W, Tsui K-L, Apley DW. A better understanding of model updating strategies in validating engineering models. Comput Methods Appl Mech Eng. 2009; 198: 1327-1337.
    • (2009) Comput Methods Appl Mech Eng. , vol.198 , pp. 1327-1337
    • Xiong, Y.1    Chen, W.2    Tsui, K.-L.3    Apley, D.W.4
  • 37
    • 79955572859 scopus 로고    scopus 로고
    • Modeling and Model Updating in the Real-Time Optimization of Gasoline Blending, M.Sc. thesis, University of Toronto
    • Singh A. Modeling and Model Updating in the Real-Time Optimization of Gasoline Blending, M.Sc. thesis, University of Toronto, 1997.
    • (1997)
    • Singh, A.1
  • 38
    • 33645417998 scopus 로고    scopus 로고
    • Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process
    • Mu S, Zeng Y, Liu R, Wu P, Su H, Chu J. Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process. J Process Control. 2006; 16: 557-566.
    • (2006) J Process Control. , vol.16 , pp. 557-566
    • Mu, S.1    Zeng, Y.2    Liu, R.3    Wu, P.4    Su, H.5    Chu, J.6
  • 39
    • 79955587777 scopus 로고
    • Notes on the use of Dempster-Shafer and Fuzzy Reasoning to fuse identity attribute data. Technical Report
    • Kewley D. Notes on the use of Dempster-Shafer and Fuzzy Reasoning to fuse identity attribute data. Technical Report, 1992.
    • (1992)
    • Kewley, D.1
  • 40
    • 0033729602 scopus 로고    scopus 로고
    • Dempster-Shafer theory and Bayesian reasoning in multisensor data fusion. Sensor Fusion: Architectures, Algorithms and Applications IV; Proceedings of SPIE 4051. Orlando, FL
    • Braun J. Dempster-Shafer theory and Bayesian reasoning in multisensor data fusion. Sensor Fusion: Architectures, Algorithms and Applications IV; Proceedings of SPIE 4051. Orlando, FL, 2000.
    • (2000)
    • Braun, J.1
  • 41
    • 79955628748 scopus 로고    scopus 로고
    • An introduction to Bayesian and Dempster-Shafer data fusion. Technical Report
    • Koks D, Challa S. An introduction to Bayesian and Dempster-Shafer data fusion. Technical Report, 2003.
    • (2003)
    • Koks, D.1    Challa, S.2
  • 43
    • 0035030095 scopus 로고    scopus 로고
    • Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion
    • Gan Q, Harris CJ. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Trans Aerospace Electron Syst. 2001; 37: 273-279.
    • (2001) IEEE Trans Aerospace Electron Syst. , vol.37 , pp. 273-279
    • Gan, Q.1    Harris, C.J.2
  • 44
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon N, Salmond D, Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F Radar Signal Process. 1993; 140: 107-113.
    • (1993) IEE Proc F Radar Signal Process. , vol.140 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.3
  • 45
    • 79955588134 scopus 로고    scopus 로고
    • Bayesian Approaches to Multi-Sensor Data Fusion, M.Sc. thesis, Department of Engineering, University of Cambridge
    • Punska O. Bayesian Approaches to Multi-Sensor Data Fusion, M.Sc. thesis, Department of Engineering, University of Cambridge, 1999.
    • (1999)
    • Punska, O.1
  • 46
    • 33845596936 scopus 로고    scopus 로고
    • Measurement integration under inconsistency for robust tracking. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York
    • Hua G, Wu Y. Measurement integration under inconsistency for robust tracking. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, 2006.
    • (2006)
    • Hua, G.1    Wu, Y.2
  • 47
    • 73649124170 scopus 로고    scopus 로고
    • Constrained Bayesian State Estimation - a Comparative Study and a New Particle Filter Based Approach
    • Shao X, Huang B, Lee JM. Constrained Bayesian State Estimation - a Comparative Study and a New Particle Filter Based Approach. J Process Control. 2010; 20: 143-157.
    • (2010) J Process Control. , vol.20 , pp. 143-157
    • Shao, X.1    Huang, B.2    Lee, J.M.3
  • 48
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking
    • Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans Signal Process. 2002; 50: 174-188.
    • (2002) IEEE Trans Signal Process. , vol.50 , pp. 174-188
    • Arulampalam, M.S.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 49
    • 34547583106 scopus 로고    scopus 로고
    • Bayesian estimation via sequential Monte Carlo sampling-Constrained dynamic systems
    • Lang L, Chen W, Bakshi B, Goel P, Ungarala S. Bayesian estimation via sequential Monte Carlo sampling-Constrained dynamic systems. Aotomatica. 2007; 43: 1615-1622.
    • (2007) Aotomatica. , vol.43 , pp. 1615-1622
    • Lang, L.1    Chen, W.2    Bakshi, B.3    Goel, P.4    Ungarala, S.5
  • 51
    • 11844302910 scopus 로고    scopus 로고
    • Resampling algorithms for particle filters: a computational complexity perspective
    • Boloc M, Djuric P, Hong S. Resampling algorithms for particle filters: a computational complexity perspective. EURASIP J Applied Signal Process. 2004; 15: 2267-2277.
    • (2004) EURASIP J Applied Signal Process. , vol.15 , pp. 2267-2277
    • Boloc, M.1    Djuric, P.2    Hong, S.3
  • 52
    • 0029395216 scopus 로고
    • Adaptive multirate state and parameter estimation strategies with application to a bioreactor
    • Gudi R, Shah S, Gray M. Adaptive multirate state and parameter estimation strategies with application to a bioreactor. AIChE. 1995; 41: 2451.
    • (1995) AIChE. , vol.41 , pp. 2451
    • Gudi, R.1    Shah, S.2    Gray, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.