메뉴 건너뛰기




Volumn 12, Issue 11, 2012, Pages 3379-3389

Nonlinear model identification and adaptive control of CO 2 sequestration process in saline aquifers using artificial neural networks

Author keywords

Carbon dioxide sequestration; Extended Kalman filter (EKF); GAP RBF neural network; Nonlinear model predictive control (NMPC); System identification; Unscented Kalman filter (UKF)

Indexed keywords

ADAPTIVE CONTROL; BLACK-OIL RESERVOIRS; CAP ROCK; CARBON DIOXIDE SEQUESTRATION; CONTROL METHODOLOGY; CONTROL SCHEMES; GROWING AND PRUNING RADIAL BASIS FUNCTIONS; INJECTION PROCESS; INTENSIVE RESEARCH; INTERFACE PROGRAM; MATLAB SOFTWARE PACKAGE; NEURAL NETWORK MODEL; NONLINEAR MODEL IDENTIFICATION; NONLINEAR MODEL PREDICTIVE CONTROL; PREDICTION OF RESERVOIR; PRESSURE PROFILES; PRIMARY OBJECTIVE; RESEARCH STUDIES; RESERVOIR PRESSURES; SALINE AQUIFERS; SEQUESTRATION PROCESS; TEST SCENARIO; TIME-DEPENDENT; UNSCENTED KALMAN FILTER;

EID: 84865851166     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.07.006     Document Type: Article
Times cited : (13)

References (22)
  • 2
    • 84865844830 scopus 로고    scopus 로고
    • US-EPA Program for Carbon Dioxide (CO2), Geologic Sequestration (GS) Wells, Federal Register, 73 (2008), No. 144, Proposed rules
    • US-EPA, Federal Requirements under the Underground Injection Control (UIC), Program for Carbon Dioxide (CO2), Geologic Sequestration (GS) Wells, Federal Register, 73 (2008), No. 144, Proposed rules.
    • Federal Requirements under the Underground Injection Control (UIC)
  • 7
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • E.J. Hartman, J.D. Keeler, and J.M. Kowalski Layered neural networks with Gaussian hidden units as universal approximations Neural Computation 2 1990 210 215
    • (1990) Neural Computation , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 9
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • J. Platt A resource-allocating network for function interpolation Neural Computation 3 1991 213 225
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 10
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan, and M. Niranjan A function estimation approach to sequential learning with neural networks Neural Computation 5 1993 954 975
    • (1993) Neural Computation , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 11
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • L. Yingwei, N. Sundararajan, and P. Saratchandran A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks Neural Computation 9 1997 461 478 (Pubitemid 127635401)
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 461-478
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 12
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • DOI 10.1109/TNN.2004.836241
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation IEEE Transactions on Neural Networks/A Publication of the IEEE Neural Networks Council. 16 2005 57 67 (Pubitemid 40241910)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 13
    • 60649099985 scopus 로고    scopus 로고
    • Affine modeling of nonlinear multivariable processes using a new adaptive neural network-based approach
    • A.S. Kamalabady, and K. Salahshoor Affine modeling of nonlinear multivariable processes using a new adaptive neural network-based approach Journal of Process Control 19 2009 380 393
    • (2009) Journal of Process Control , vol.19 , pp. 380-393
    • Kamalabady, A.S.1    Salahshoor, K.2
  • 19
    • 0012717712 scopus 로고    scopus 로고
    • A note on stability roubstness, and performance of output feedback nonlinear model predictive control
    • L. Imsland, R. Findeisen, E. Bullinger, F. Allgower, and B.A. Foss A note on stability roubstness, and performance of output feedback nonlinear model predictive control Journal of Process Control 13 2003 633 644
    • (2003) Journal of Process Control , vol.13 , pp. 633-644
    • Imsland, L.1    Findeisen, R.2    Bullinger, E.3    Allgower, F.4    Foss, B.A.5
  • 20
    • 3843074172 scopus 로고    scopus 로고
    • Examples when nonlinear model predictive control is nonrobust
    • G. Grimm, M.J. Messina, S. Tuna, and A. Teel Examples when nonlinear model predictive control is nonrobust Automatica 40 2004 523 533
    • (2004) Automatica , vol.40 , pp. 523-533
    • Grimm, G.1    Messina, M.J.2    Tuna, S.3    Teel, A.4
  • 22
    • 23144464299 scopus 로고    scopus 로고
    • Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities
    • D.E. Allen, B.R. Strazisar, Y. Soong, and S.W. Hedges Modeling carbon dioxide sequestration in saline aquifers: significance of elevated pressures and salinities Fuel Processing Technology 86 2005 1569 1580
    • (2005) Fuel Processing Technology , vol.86 , pp. 1569-1580
    • Allen, D.E.1    Strazisar, B.R.2    Soong, Y.3    Hedges, S.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.