메뉴 건너뛰기




Volumn 44, Issue 2, 2008, Pages 383-395

Regressor and structure selection in NARX models using a structured ANOVA approach

Author keywords

Analysis of variance; Nonlinear system identification; Structure identification

Indexed keywords

ANALYSIS OF VARIANCE (ANOVA); MATHEMATICAL MODELS; NONLINEAR SYSTEMS;

EID: 37849012165     PISSN: 00051098     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.automatica.2007.06.010     Document Type: Article
Times cited : (58)

References (26)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (1974) 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 85016840858 scopus 로고    scopus 로고
    • Autin, M., Biey, M., & Hasler, M. (1992). Order of discrete time nonlinear systems determined from input-output signals. In IEEE international symposium on circuits and systems, ISCAS '92 (Vol. 1, pp. 296-299).
  • 4
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman L. Better subset regression using the nonnegative garrote. Technometrics 37 4 (1995) 373-384
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 5
    • 0000354898 scopus 로고
    • Additivity tests for nonlinear autoregression
    • Chen R., Liu J.S., and Tsay R.S. Additivity tests for nonlinear autoregression. Biometrika 82 (1995) 369-383
    • (1995) Biometrika , vol.82 , pp. 369-383
    • Chen, R.1    Liu, J.S.2    Tsay, R.S.3
  • 6
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Annals of Statistics 19 1 (1991) 1-67
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 7
    • 0036643063 scopus 로고    scopus 로고
    • Structural modeling with sparse kernels
    • Gunn S.R., and Kandola J.S. Structural modeling with sparse kernels. Machine Learning 48 (2002) 137-163
    • (2002) Machine Learning , vol.48 , pp. 137-163
    • Gunn, S.R.1    Kandola, J.S.2
  • 8
    • 0025464263 scopus 로고
    • Structure identification of nonlinear dynamic systems-a survey on input/output approaches
    • Haber R., and Unbehauen H. Structure identification of nonlinear dynamic systems-a survey on input/output approaches. Automatica 26 (1990) 651-677
    • (1990) Automatica , vol.26 , pp. 651-677
    • Haber, R.1    Unbehauen, H.2
  • 10
    • 37849030266 scopus 로고    scopus 로고
    • Lind, I. (2000). Model order selection of N-FIR models by the analysis of variance method. In Proceedings of the 12th IFAC symposium on system identification (pp. 367-372). Santa Barbara, June 2000.
  • 11
    • 37849026846 scopus 로고    scopus 로고
    • Lind, I. (2006). Regressor and structure selection: Uses of ANOVA in system identification. Ph.D. thesis, Linköpings universitet, Linköping, Sweden, May 2006.
  • 12
    • 13944275303 scopus 로고    scopus 로고
    • Regressor selection with the analysis of variance method
    • Lind I., and Ljung L. Regressor selection with the analysis of variance method. Automatica 41 4 (2005) 693-700
    • (2005) Automatica , vol.41 , Issue.4 , pp. 693-700
    • Lind, I.1    Ljung, L.2
  • 13
    • 37849004771 scopus 로고    scopus 로고
    • Ljung, L., Zhang, Q., Lindskog, P., & Juditsky, A. (2004). Modeling a non-linear electric circuit with black box and grey box models. In Proceedings of NOLCOS 2004-IFAC symposium on nonlinear control systems (pp. 543-548). Stuttgart, Germany, September 2004.
  • 14
    • 37849029026 scopus 로고    scopus 로고
    • Mannale, R. (2006). Comparison of regressor selection methods in system identification. Technical report LiTH-ISY-R-2730, Department of Electrical Engineering, Linköping University, February 2006.
  • 17
    • 37849018819 scopus 로고    scopus 로고
    • NOLCOS (2004). Special session on identification of nonlinear systems: The silver box study. In Proceedings of the 6th IFAC-symposium on nonlinear control systems. Stuttgart, Germany, September 01-03, 2004.
  • 19
    • 0347592205 scopus 로고    scopus 로고
    • An identification algorithm for polynomial NARX models based on simulation error minimization
    • Piroddi L., and Spinelli W. An identification algorithm for polynomial NARX models based on simulation error minimization. International Journal of Control 76 (2003) 1767-1781
    • (2003) International Journal of Control , vol.76 , pp. 1767-1781
    • Piroddi, L.1    Spinelli, W.2
  • 21
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • Rissanen J. Modelling by shortest data description. Automatica 14 (1978) 465-471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 22
    • 0000318553 scopus 로고
    • Prediction minimum description length principles
    • Rissanen J. Prediction minimum description length principles. Annals of Statistics 14 (1986) 1080-1100
    • (1986) Annals of Statistics , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 23
    • 85128559057 scopus 로고    scopus 로고
    • Roll, J., Lind, I., & Ljung, L. (2006). Connections between optimisation-based regressor selection and analysis of variance. In The 45th IEEE conference on decision and control (pp. 4907-4914). San Diego, CA, December 2006.
  • 24
    • 34047192703 scopus 로고    scopus 로고
    • Spinelli,W., Piroddi, L., & Lovera, M. (2006). A two-stage algorithm for structure identification of polynomial NARX models. In Proceedings of the American control conference (pp. 2387-2392). Minneapolis, MN, USA, June 2006.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.