-
4
-
-
24344504109
-
-
C. J. O'Brien E. A. B. Kantchev G. A. Chass N. Hadei A. C. Hopkinson M. G. Organ D. H. Setiadi T.-H. Tang D.-C. Fang Tetrahedron 2005 61 9723 9735
-
(2005)
Tetrahedron
, vol.61
, pp. 9723-9735
-
-
O'Brien, C.J.1
Kantchev, E.A.B.2
Chass, G.A.3
Hadei, N.4
Hopkinson, A.C.5
Organ, M.G.6
Setiadi, D.H.7
Tang, T.-H.8
Fang, D.-C.9
-
15
-
-
79959262427
-
-
E. M. Broderick N. Guo C. S. Vogel C. Xu J. Sutter J. T. Miller K. Meyer P. Mehrkhodavandi P. L. Diaconescu J. Am. Chem. Soc. 2011 133 9278 9281
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 9278-9281
-
-
Broderick, E.M.1
Guo, N.2
Vogel, C.S.3
Xu, C.4
Sutter, J.5
Miller, J.T.6
Meyer, K.7
Mehrkhodavandi, P.8
Diaconescu, P.L.9
-
16
-
-
80052099336
-
-
E. M. Broderick N. Guo T. Wu C. S. Vogel C. Xu J. Sutter J. T. Miller K. Meyer T. Cantat P. L. Diaconescu Chem. Commun. 2011 47 9897 9899
-
(2011)
Chem. Commun.
, vol.47
, pp. 9897-9899
-
-
Broderick, E.M.1
Guo, N.2
Wu, T.3
Vogel, C.S.4
Xu, C.5
Sutter, J.6
Miller, J.T.7
Meyer, K.8
Cantat, T.9
Diaconescu, P.L.10
-
19
-
-
0000609674
-
-
Angew. Chem. Int. Ed. 1998 37 1174 1196
-
D. P. Curran Angew. Chem. 1998 110 1230 1255 Angew. Chem. Int. Ed. 1998 37 1174 1196
-
(1998)
Angew. Chem.
, vol.110
, pp. 1230-1255
-
-
Curran, D.P.1
-
35
-
-
0000375789
-
-
Although metallocenes are commonly utilized, other types of redox-active ligands have been used to modulate catalytic reactions. For example, Rauchfuss reported 5d that an Ir complex containing 2-(2-trifluoromethyl)anilino-4,6-di- tert-butylphenol activated H2 upon oxidation; likewise, oxidation also increased the electrophilicity of a Pt complex containing the same ligand. 5g We reported that Ni complexes containing 1,3- dimesitylnaphthoquinimidazolylidene (NQMes) 23 modulate Kumada coupling reactions as a function of the ligand's oxidation state. 21
-
C. A. Sassano C. A. Mirkin J. Am. Chem. Soc. 1995 117 11379 11380
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 11379-11380
-
-
Sassano, C.A.1
Mirkin, C.A.2
-
39
-
-
53049091364
-
-
For reviews of catalytically-active transition metal complexes containing NHCs, see
-
F. E. Hahn M. C. Jahnke Angew. Chem., Int. Ed. 2008 47 3122 3172
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 3122-3172
-
-
Hahn, F.E.1
Jahnke, M.C.2
-
49
-
-
33750109251
-
-
in, Springer, Berlin, Heidelberg, 47-82
-
S. Díez-González and S. Nolan, in N-Heterocyclic Carbenes in Transition Metal Catalysis, Springer, Berlin, Heidelberg, 2007, vol. 21, pp. 47-82
-
(2007)
N-Heterocyclic Carbenes in Transition Metal Catalysis
, vol.21
-
-
Díez-González, S.1
Nolan, S.2
-
56
-
-
33745472389
-
-
C. J. O'Brien E. A. B. Kantchev C. Valente N. Hadei G. A. Chass A. Lough A. C. Hopkinson M. G. Organ Chem.-Eur. J. 2006 12 4743 4748
-
(2006)
Chem.-Eur. J.
, vol.12
, pp. 4743-4748
-
-
O'Brien, C.J.1
Kantchev, E.A.B.2
Valente, C.3
Hadei, N.4
Chass, G.A.5
Lough, A.6
Hopkinson, A.C.7
Organ, M.G.8
-
58
-
-
71949124011
-
-
E. L. Rosen C. D. Varnado Jr. A. G. Tennyson D. M. Khramov J. W. Kamplain D. H. Sung P. T. Cresswell V. M. Lynch C. W. Bielawski Organometallics 2009 28 6695 6706
-
(2009)
Organometallics
, vol.28
, pp. 6695-6706
-
-
Rosen, E.L.1
Varnado Jr., C.D.2
Tennyson, A.G.3
Khramov, D.M.4
Kamplain, J.W.5
Sung, D.H.6
Cresswell, P.T.7
Lynch, V.M.8
Bielawski, C.W.9
-
64
-
-
72149103256
-
-
U. Siemeling C. Färber M. Leibold C. Bruhn P. Mücke R. F. Winter B. Sarkar M. V. Hopffgarten G. Frenking Eur. J. Inorg. Chem. 2009 4607 4612
-
(2009)
Eur. J. Inorg. Chem.
, pp. 4607-4612
-
-
Siemeling, U.1
Färber, C.2
Leibold, M.3
Bruhn, C.4
Mücke, P.5
Winter, R.F.6
Sarkar, B.7
Hopffgarten, M.V.8
Frenking, G.9
-
69
-
-
38949179137
-
-
R. A. Kelly III H. Clavier S. Giudice N. M. Scott E. D. Stevens J. Bordner I. Samardjiev C. D. Hoff L. Cavallo S. P. Nolan Organometallics 2008 27 202 210
-
(2008)
Organometallics
, vol.27
, pp. 202-210
-
-
Kelly III, R.A.1
Clavier, H.2
Giudice, S.3
Scott, N.M.4
Stevens, E.D.5
Bordner, J.6
Samardjiev, I.7
Hoff, C.D.8
Cavallo, L.9
Nolan, S.P.10
-
72
-
-
0003985187
-
-
Academic Press, San Diego, CA, 1st edn
-
K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1st edn, 1997
-
(1997)
Olefin Metathesis and Metathesis Polymerization
-
-
Ivin, K.J.1
Mol, J.C.2
-
92
-
-
84943009992
-
-
PhD Thesis, University of Texas at Austin, The deprotonation of the respective hydrogen tetrafluoroborate salts of and 2 was studied under a variety of conditions. Although the formation of 2 was not observed in solution by 1H NMR spectroscopy, 1 was characterized by 1H and 13C NMR spectroscopy despite undergoing decomposition upon concentration. See ref. 19 for additional details Although a variety of purification techniques including precipitation, trituration, and column chromatography (neutral or basic Al2O3, and SiO 2) were investigated, the isolated product appeared to readily decompose in all cases; as such, more stable derivatives were pursued
-
E. L. Rosen, PhD Thesis, University of Texas at Austin, 2009
-
(2009)
, vol.1
-
-
Rosen, E.L.1
-
109
-
-
84869070835
-
-
X. Bantreil A. Poater C. A. Urbina-Blanco Y. D. Bidal L. Falivene R. A. M. Randall L. Cavallo A. M. Z. Slawin C. S. J. Cazin Organometallics 2012 31 7415 7426
-
(2012)
Organometallics
, vol.31
, pp. 7415-7426
-
-
Bantreil, X.1
Poater, A.2
Urbina-Blanco, C.A.3
Bidal, Y.D.4
Falivene, L.5
Randall, R.A.M.6
Cavallo, L.7
Slawin, A.M.Z.8
Cazin, C.S.J.9
-
110
-
-
84863090221
-
-
The complex (10)(PCy3)Cl2Ru(2-phenylindenylid-1- ene) was found to decompose on silica gel and crystallization attempts were unsuccessful. The synthesis of (1)(PCy3)Cl2Ru(2- phenylindenylid-1-ene) has not yet been pursued in our laboratories
-
C. Luján S. P. Nolan Catal. Sci. Technol. 2012 2 1027 1032
-
(2012)
Catal. Sci. Technol.
, vol.2
, pp. 1027-1032
-
-
Luján, C.1
Nolan, S.P.2
-
112
-
-
0037420362
-
-
T. M. Trnka J. P. Morgan M. S. Sanford T. E. Wilhelm M. Scholl T.-L. Choi S. Ding M. W. Day R. H. Grubbs J. Am. Chem. Soc. 2003 125 2546 2558
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 2546-2558
-
-
Trnka, T.M.1
Morgan, J.P.2
Sanford, M.S.3
Wilhelm, T.E.4
Scholl, M.5
Choi, T.-L.6
Ding, S.7
Day, M.W.8
Grubbs, R.H.9
-
123
-
-
24344508137
-
-
Angew. Chem., Int. Ed. 2004 43 5896 5911
-
R. W. Alder M. E. Blake L. Chaker J. N. Harvey F. Paolini J. Schötz Angew. Chem. 2004 116 6020 6036 Angew. Chem., Int. Ed. 2004 43 5896 5911
-
(2004)
Angew. Chem.
, vol.116
, pp. 6020-6036
-
-
Alder, R.W.1
Blake, M.E.2
Chaker, L.3
Harvey, J.N.4
Paolini, F.5
Schötz, J.6
-
127
-
-
34748830314
-
-
Parameters used for the calculation of %VBur were as follows: 3.5 Å sphere radius, 2.10 Å distance from the center of the sphere, and Bondii radii scaled by 1.17. In addition to removing the coordinates of the ligands and the coordinated Ir from the cif file prior to the calculation of the %VBur, we found it necessary to remove the coordinates of the Fe atom. See
-
M. Iglesias D. J. Beetstra A. Stasch P. N. Horton M. B. Hursthouse S. J. Coles K. J. Cavell A. Dervisi I. A. Fallis Organometallics 2007 26 4800 4809
-
(2007)
Organometallics
, vol.26
, pp. 4800-4809
-
-
Iglesias, M.1
Beetstra, D.J.2
Stasch, A.3
Horton, P.N.4
Hursthouse, M.B.5
Coles, S.J.6
Cavell, K.J.7
Dervisi, A.8
Fallis, I.A.9
-
130
-
-
73949132408
-
-
A. G. Tennyson R. J. Ono T. W. Hudnall D. M. Khramov J. A. V. Er J. W. Kamplain V. M. Lynch J. L. Sessler C. W. Bielawski Chem.-Eur. J. 2010 16 304 305
-
(2010)
Chem.-Eur. J.
, vol.16
, pp. 304-305
-
-
Tennyson, A.G.1
Ono, R.J.2
Hudnall, T.W.3
Khramov, D.M.4
Er, J.A.V.5
Kamplain, J.W.6
Lynch, V.M.7
Sessler, J.L.8
Bielawski, C.W.9
-
132
-
-
11644311048
-
-
TEP = 0.847[νCO(average)] + 336 cm-1 The rates of RCM reactions catalyzed by Grubbs 2nd generation type catalysts increase with the electron donating ability of the NHC ligand, see
-
C. A. Tolman Chem. Rev. 1977 77 313 348
-
(1977)
Chem. Rev.
, vol.77
, pp. 313-348
-
-
Tolman, C.A.1
-
134
-
-
84877252061
-
-
The effect of varying NHC backbone electronics on the performance of Grubbs 2nd generation type indenylidene complexes has also been explored, see
-
Y. Borguet G. Zaragoza A. Demonceau L. Delaude Dalton Trans. 2013 42 7287 7296
-
(2013)
Dalton Trans.
, vol.42
, pp. 7287-7296
-
-
Borguet, Y.1
Zaragoza, G.2
Demonceau, A.3
Delaude, L.4
-
135
-
-
78751518951
-
-
We also synthesized and fully characterized complexes of the type (FcDAC)(PCy3)Cl2RuCHPh and (FcDAC)(SIMes)Cl 2RuCHPh (SIMes = 1,3-dimesitylimidazolinylidene) but did not study these catalysts for their redox-switchable properties, see the ESI. Conditions which favored the formation of exclusively one product could not be found. After extended reaction times (12 h) at ambient temperature, the final molar ratio of 17 to 18 was approximately 1:5 It has been previously reported that the purification of Ru benzylidene complexes using column chromatography on silica gel may cause rearrangements to occur, although the isomerization of 17 → 18 was observed prior to purification. See
-
C. A. Urbina-Blanco X. Bantreil H. Clavier A. M. Slawin S. P. Nolan Beilstein J. Org. Chem. 2010 6 1120 1126
-
(2010)
Beilstein J. Org. Chem.
, vol.6
, pp. 1120-1126
-
-
Urbina-Blanco, C.A.1
Bantreil, X.2
Clavier, H.3
Slawin, A.M.4
Nolan, S.P.5
-
146
-
-
7044260459
-
-
The use of stronger oxidants such as silver salts, [NO][BF4], and [Ac2Fc][BF4] were also explored, but resulted in premature decomposition
-
H. M. A. Salman M. R. Mahmoud M. H. M. Abou-El-Wafa U. M. Rabie R. H. Crabtree Inorg. Chem. Commun. 2004 7 1209 1212
-
(2004)
Inorg. Chem. Commun.
, vol.7
, pp. 1209-1212
-
-
Salman, H.M.A.1
Mahmoud, M.R.2
Abou-El-Wafa, M.H.M.3
Rabie, U.M.4
Crabtree, R.H.5
-
148
-
-
37049131721
-
-
Although oxidation of the Ru and the Fe centers in were reversible (as determined from a scan-rate dependency study; see Fig. S9), the neutral complex was found to decompose in solution over time. As the extinction coefficient for the ferrocenium LCMT transition is relatively low (ε < 1000 M -1 cm-1), the oxidized complex 18+ could not be formed in high enough concentration to be observed due to the competing decomposition of the starting material over the 30 min time scale of the experiment
-
R. Prins J. Chem. Soc., Chem. Commun. 1970 280 281
-
(1970)
J. Chem. Soc., Chem. Commun.
, vol.18
, pp. 280-281
-
-
Prins, R.1
-
156
-
-
39749091147
-
-
T. Kojima D. Noguchi T. Nakayama Y. Inagaki Y. Shiota K. Yoshizawa K. Ohkubo S. Fukuzumi Inorg. Chem. 2008 47 886 895
-
(2008)
Inorg. Chem.
, vol.47
, pp. 886-895
-
-
Kojima, T.1
Noguchi, D.2
Nakayama, T.3
Inagaki, Y.4
Shiota, Y.5
Yoshizawa, K.6
Ohkubo, K.7
Fukuzumi, S.8
-
157
-
-
0001678850
-
-
Complex 18 displayed limited solubility in non-polar solvents, including toluene and benzene It was determined that the use of four equivalents of DDQ was necessary to significantly affect the rate of polymerization, which may be attributed to slow electron-transfer kinetics under the conditions studied
-
I. Noviandri K. N. Brown D. S. Fleming P. T. Gulyas P. A. Lay A. F. Masters L. Phillips J. Phys. Chem. B 1999 103 6713 6722
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 6713-6722
-
-
Noviandri, I.1
Brown, K.N.2
Fleming, D.S.3
Gulyas, P.T.4
Lay, P.A.5
Masters, A.F.6
Phillips, L.7
-
161
-
-
0035843056
-
-
1,1′-Diformamidoferrocene (10) has been previously prepared in situ and used without additional characterization; see
-
M. S. Sanford J. A. Love R. H. Grubbs Organometallics 2001 20 5314 5318
-
(2001)
Organometallics
, vol.20
, pp. 5314-5318
-
-
Sanford, M.S.1
Love, J.A.2
Grubbs, R.H.3
-
162
-
-
0035121206
-
-
The NMR data recorded for this compound are complex and similar to those reported for the monoformamide of ferrocene; see
-
D. Leusen B. Hessen Organometallics 2001 20 224 226
-
(2001)
Organometallics
, vol.20
, pp. 224-226
-
-
Leusen, D.1
Hessen, B.2
|