-
1
-
-
77749264581
-
PGC-1 α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle
-
2-s2.0-77749264581 10.1152/ajpcell.00481.2009
-
Geng T., Li P., Okutsu M., Yin X., Kwek J., Zhang M., Yan Z., PGC-1 α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. American Journal of Physiology 2010 298 3 C572 C579 2-s2.0-77749264581 10.1152/ajpcell.00481.2009
-
(2010)
American Journal of Physiology
, vol.298
, Issue.3
-
-
Geng, T.1
Li, P.2
Okutsu, M.3
Yin, X.4
Kwek, J.5
Zhang, M.6
Yan, Z.7
-
2
-
-
33750354533
-
Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1α
-
DOI 10.1073/pnas.0607334103
-
Cha S. H., Rodgers J. T., Puigserver P., Chohnan S., Lane M. D., Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: role of PGC-1 α Proceedings of the National Academy of Sciences of the United States of America 2006 103 42 15410 15415 2-s2.0-33750354533 10.1073/pnas.0607334103 (Pubitemid 44625605)
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.42
, pp. 15410-15415
-
-
Cha, S.-H.1
Rodgers, J.T.2
Puigserver, P.3
Chohnan, S.4
Lane, M.D.5
-
3
-
-
77951738458
-
A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms
-
2-s2.0-77951738458 10.1113/jphysiol.2009.181743
-
Little J. P., Safdar A., Wilkin G. P., Tarnopolsky M. A., Gibala M. J., A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. Journal of Physiology 2010 588 6 1011 1022 2-s2.0-77951738458 10.1113/jphysiol.2009. 181743
-
(2010)
Journal of Physiology
, vol.588
, Issue.6
, pp. 1011-1022
-
-
Little, J.P.1
Safdar, A.2
Wilkin, G.P.3
Tarnopolsky, M.A.4
Gibala, M.J.5
-
4
-
-
42049114034
-
Transcriptional paradigms in mammalian mitochondrial biogenesis and function
-
DOI 10.1152/physrev.00025.2007
-
Scarpulla R. C., Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews 2008 88 2 611 638 2-s2.0-42049114034 10.1152/physrev.00025.2007 (Pubitemid 351520089)
-
(2008)
Physiological Reviews
, vol.88
, Issue.2
, pp. 611-638
-
-
Scarpulla, R.C.1
-
5
-
-
76749087887
-
Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging
-
2-s2.0-76749087887 10.1016/j.bbagen.2009.07.031
-
Ljubicic V., Joseph A. M., Saleem A., Uguccioni G., Collu-Marchese M., Lai R. Y. J., Nguyen L. M. D., Hood D. A., Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochimica et Biophysica Acta 2010 1800 3 223 234 2-s2.0-76749087887 10.1016/j.bbagen.2009.07.031
-
(2010)
Biochimica et Biophysica Acta
, vol.1800
, Issue.3
, pp. 223-234
-
-
Ljubicic, V.1
Joseph, A.M.2
Saleem, A.3
Uguccioni, G.4
Collu-Marchese, M.5
Lai, R.Y.J.6
Nguyen, L.M.D.7
Hood, D.A.8
-
6
-
-
81055125669
-
NCoR1 is a conserved physiological modulator of muscle mass and oxidative function
-
Yamamoto H., Williams E. G., Mouchiroud L., Canto C., Fan W., NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 2011 147 827 839
-
(2011)
Cell
, vol.147
, pp. 827-839
-
-
Yamamoto, H.1
Williams, E.G.2
Mouchiroud, L.3
Canto, C.4
Fan, W.5
-
7
-
-
79952775519
-
Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance
-
2-s2.0-79952775519 10.1073/pnas.1017707108
-
Fang S., Suh J. M., Atkins A. R., Hong S. H., Leblanc M., Nofsinger R. R., Yu R. T., Downes M., Evans R. M., Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America 2011 108 8 3412 3417 2-s2.0-79952775519 10.1073/pnas.1017707108
-
(2011)
Proceedings of the National Academy of Sciences of the United States of America
, vol.108
, Issue.8
, pp. 3412-3417
-
-
Fang, S.1
Suh, J.M.2
Atkins, A.R.3
Hong, S.H.4
Leblanc, M.5
Nofsinger, R.R.6
Yu, R.T.7
Downes, M.8
Evans, R.M.9
-
10
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
2-s2.0-77956400005 10.1016/j.cmet.2010.04.005
-
Yang L., Li P., Fu S., Calay E. S., Hotamisligil G. S., Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metabolism 2010 11 6 467 478 2-s2.0-77956400005 10.1016/j.cmet.2010.04.005
-
(2010)
Cell Metabolism
, vol.11
, Issue.6
, pp. 467-478
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
11
-
-
70449927247
-
Autophagy is required to maintain muscle mass
-
2-s2.0-70449927247 10.1016/j.cmet.2009.10.008
-
Masiero E., Agatea L., Mammucari C., Blaauw B., Loro E., Komatsu M., Metzger D., Reggiani C., Schiaffino S., Sandri M., Autophagy is required to maintain muscle mass. Cell Metabolism 2009 10 6 507 515 2-s2.0-70449927247 10.1016/j.cmet.2009.10.008
-
(2009)
Cell Metabolism
, vol.10
, Issue.6
, pp. 507-515
-
-
Masiero, E.1
Agatea, L.2
Mammucari, C.3
Blaauw, B.4
Loro, E.5
Komatsu, M.6
Metzger, D.7
Reggiani, C.8
Schiaffino, S.9
Sandri, M.10
-
12
-
-
71449091240
-
Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. Inhibition of FoxO1-dependent expression of key autophagy genes by insulin
-
2-s2.0-71449091240 10.1074/jbc.M109.033936
-
Liu H. Y., Han J., Cao S. Y., Hong T., Zhuo D., Shi J., Liu Z., Cao W., Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia. Inhibition of FoxO1-dependent expression of key autophagy genes by insulin. Journal of Biological Chemistry 2009 284 45 31484 31492 2-s2.0-71449091240 10.1074/jbc.M109.033936
-
(2009)
Journal of Biological Chemistry
, vol.284
, Issue.45
, pp. 31484-31492
-
-
Liu, H.Y.1
Han, J.2
Cao, S.Y.3
Hong, T.4
Zhuo, D.5
Shi, J.6
Liu, Z.7
Cao, W.8
-
13
-
-
84862309959
-
Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: Ameliorating effects of (-)-epigallocatechin-3-gallate
-
2-s2.0-79960891162 10.1016/j.jnutbio.2011.03.014
-
Yan J., Feng Z., Liu J., Shen W., Wang Y., Wertz K., Weber P., Long J., Liu J., Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate. Journal of Nutritional Biochemistry 2012 23 7 716 724 2-s2.0-79960891162 10.1016/j.jnutbio.2011.03.014
-
(2012)
Journal of Nutritional Biochemistry
, vol.23
, Issue.7
, pp. 716-724
-
-
Yan, J.1
Feng, Z.2
Liu, J.3
Shen, W.4
Wang, Y.5
Wertz, K.6
Weber, P.7
Long, J.8
Liu, J.9
-
14
-
-
77952409809
-
Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy
-
2-s2.0-77952409809
-
Wu J. J., Quijano C., Chen E., Liu H., Cao L., Fergusson M. M., Rovira I. I., Gutkind S., Daniels M. P., Komatsu M., Finkel T., Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging 2009 1 4 425 437 2-s2.0-77952409809
-
(2009)
Aging
, vol.1
, Issue.4
, pp. 425-437
-
-
Wu, J.J.1
Quijano, C.2
Chen, E.3
Liu, H.4
Cao, L.5
Fergusson, M.M.6
Rovira, I.I.7
Gutkind, S.8
Daniels, M.P.9
Komatsu, M.10
Finkel, T.11
-
15
-
-
78650890352
-
Regulation of autophagy by ROS: Physiology and pathology
-
2-s2.0-78650890352 10.1016/j.tibs.2010.07.007
-
Scherz-Shouval R., Elazar Z., Regulation of autophagy by ROS: physiology and pathology. Trends in Biochemical Sciences 2011 36 1 30 38 2-s2.0-78650890352 10.1016/j.tibs.2010.07.007
-
(2011)
Trends in Biochemical Sciences
, vol.36
, Issue.1
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
16
-
-
77951243028
-
Autophagy regulation by p53
-
2-s2.0-77951243028 10.1016/j.ceb.2009.12.001
-
Maiuri M. C., Galluzzi L., Morselli E., Kepp O., Malik S. A., Kroemer G., Autophagy regulation by p53. Current Opinion in Cell Biology 2010 22 2 181 185 2-s2.0-77951243028 10.1016/j.ceb.2009.12.001
-
(2010)
Current Opinion in Cell Biology
, vol.22
, Issue.2
, pp. 181-185
-
-
Maiuri, M.C.1
Galluzzi, L.2
Morselli, E.3
Kepp, O.4
Malik, S.A.5
Kroemer, G.6
-
17
-
-
50249145608
-
A dual role of p53 in the control of autophagy
-
2-s2.0-50249145608
-
Tasdemir E., Chiara M. M., Morselli E., Criollo A., D'Amelio M., Djavaheri-Mergny M., Cecconi F., Tavernarakis N., Kroemer G., A dual role of p53 in the control of autophagy. Autophagy 2008 4 6 810 814 2-s2.0-50249145608
-
(2008)
Autophagy
, vol.4
, Issue.6
, pp. 810-814
-
-
Tasdemir, E.1
Chiara, M.M.2
Morselli, E.3
Criollo, A.4
D'Amelio, M.5
Djavaheri-Mergny, M.6
Cecconi, F.7
Tavernarakis, N.8
Kroemer, G.9
-
18
-
-
80053476420
-
The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
-
2-s2.0-79957881460 10.4161/auto.7.6.15122
-
Egan D. F., Kim J., Shaw R. J., Guan K. L., The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011 7 6 645 646 2-s2.0-79957881460 10.4161/auto.7.6.15122
-
(2011)
Autophagy
, vol.7
, Issue.6
, pp. 645-646
-
-
Egan, D.F.1
Kim, J.2
Shaw, R.J.3
Guan, K.L.4
-
20
-
-
77956252454
-
Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming
-
2-s2.0-77956252454 10.1074/jbc.M110.119537
-
Ding W. X., Ni H. M., Li M., Liao Y., Chen X., Stolz D. B., Dorn G. W., Yin X. M., Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. Journal of Biological Chemistry 2010 285 36 27879 27890 2-s2.0-77956252454 10.1074/jbc.M110.119537
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.36
, pp. 27879-27890
-
-
Ding, W.X.1
Ni, H.M.2
Li, M.3
Liao, Y.4
Chen, X.5
Stolz, D.B.6
Dorn, G.W.7
Yin, X.M.8
-
21
-
-
79952324644
-
Regulation of PINK1-Parkin-mediated mitophagy
-
2-s2.0-79952324644 10.4161/auto.7.3.14348
-
Springer W., Kahle P. J., Regulation of PINK1-Parkin-mediated mitophagy. Autophagy 2011 7 3 266 278 2-s2.0-79952324644 10.4161/auto.7.3.14348
-
(2011)
Autophagy
, vol.7
, Issue.3
, pp. 266-278
-
-
Springer, W.1
Kahle, P.J.2
-
22
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura E., Kishi-Itakura C., Koyama-Honda I., Mizushima N., Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. Journal of Cell Science 2012 125 1488 1499
-
(2012)
Journal of Cell Science
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
23
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
2-s2.0-79251587803 10.1126/science.1196371
-
Egan D. F., Shackelford D. B., Mihaylova M. M., Gelino S., Kohnz R. A., Mair W., Vasquez D. S., Joshi A., Gwinn D. M., Taylor R., Asara J. M., Fitzpatrick J., Dillin A., Viollet B., Kundu M., Hansen M., Shaw R. J., Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011 331 6016 456 461 2-s2.0-79251587803 10.1126/science.1196371
-
(2011)
Science
, vol.331
, Issue.6016
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
Asara, J.M.11
Fitzpatrick, J.12
Dillin, A.13
Viollet, B.14
Kundu, M.15
Hansen, M.16
Shaw, R.J.17
-
24
-
-
80052729571
-
Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy
-
Mitsuhashi S., Hatakeyama H., Karahashi M., Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Human Molecular Genetics 2011 20 3841 3851
-
(2011)
Human Molecular Genetics
, vol.20
, pp. 3841-3851
-
-
Mitsuhashi, S.1
Hatakeyama, H.2
Karahashi, M.3
-
26
-
-
83555169408
-
Crosstalk between mitochondrial (dys)function and mitochondrial abundance
-
Michel S., Wanet A., De Pauw A., Rommelaere G., Arnould T., Renard P., Crosstalk between mitochondrial (dys)function and mitochondrial abundance. Journal of Cellular Physiology 2012 227 2297 2310
-
(2012)
Journal of Cellular Physiology
, vol.227
, pp. 2297-2310
-
-
Michel, S.1
Wanet, A.2
De Pauw, A.3
Rommelaere, G.4
Arnould, T.5
Renard, P.6
-
27
-
-
77649282583
-
Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: Implications in the pathogenesis of the disease
-
ARTICLE R17 2-s2.0-77649282583 10.1186/ar2918
-
Cordero M. D., De Miguel M., Moreno Fernández A. M., Carmona López I. M., Garrido Maraver J., Cotán D., Gómez Izquierdo L., Bonal P., Campa F., Bullon P., Navas P., Sánchez Alcázar J. A., Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Research and Therapy 2010 12 1, article R17 2-s2.0-77649282583 10.1186/ar2918
-
(2010)
Arthritis Research and Therapy
, vol.12
, Issue.1
-
-
Cordero, M.D.1
De Miguel, M.2
Moreno Fernández, A.M.3
Carmona López, I.M.4
Garrido Maraver, J.5
Cotán, D.6
Gómez Izquierdo, L.7
Bonal, P.8
Campa, F.9
Bullon, P.10
Navas, P.11
Sánchez Alcázar, J.A.12
-
28
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova M. M., Shaw R. J., The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology 2011 13 1016 1023
-
(2011)
Nature Cell Biology
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
29
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
2-s2.0-53349091768 10.1084/jem.20081297
-
Chen C., Liu Y., Liu R., Ikenoue T., Guan K. L., Liu Y., Zheng P., TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine 2008 205 10 2397 2408 2-s2.0-53349091768 10.1084/jem.20081297
-
(2008)
Journal of Experimental Medicine
, vol.205
, Issue.10
, pp. 2397-2408
-
-
Chen, C.1
Liu, Y.2
Liu, R.3
Ikenoue, T.4
Guan, K.L.5
Liu, Y.6
Zheng, P.7
-
30
-
-
84865742594
-
Contractile activity-induced mitochondrial biogenesis and mTORC1
-
Carter H. N., Hood D. A., Contractile activity-induced mitochondrial biogenesis and mTORC1. American Journal of Physiology 2012 303 5 C540 C547
-
(2012)
American Journal of Physiology
, vol.303
, Issue.5
-
-
Carter, H.N.1
Hood, D.A.2
-
31
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex
-
DOI 10.1038/nature06322, PII NATURE06322
-
Cunningham J. T., Rodgers J. T., Arlow D. H., Vazquez F., Mootha V. K., Puigserver P., mTOR controls mitochondrial oxidative function through a YY1-PGC-1 α transcriptional complex. Nature 2007 450 7170 736 740 2-s2.0-36749081539 10.1038/nature06322 (Pubitemid 350207689)
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
32
-
-
80053348143
-
Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis
-
2-s2.0-79960653883 10.1097/JES.0b013e31822d71be
-
Saleem A., Carter H., Iqbal S., Hood D. A., Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exercise and Sport Sciences Reviews 2011 39 199 205 2-s2.0-79960653883 10.1097/JES. 0b013e31822d71be
-
(2011)
Exercise and Sport Sciences Reviews
, vol.39
, pp. 199-205
-
-
Saleem, A.1
Carter, H.2
Iqbal, S.3
Hood, D.A.4
-
33
-
-
70349655709
-
P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content
-
2-s2.0-70349655709 10.1161/CIRCRESAHA.109.205310
-
Park J. Y., Wang P. Y., Matsumoto T., Sung H. J., Ma W., Choi J. W., Anderson S. A., Leary S. C., Balaban R. S., Kang J. G., Hwang P. M., P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circulation Research 2009 105 7 705 712 2-s2.0-70349655709 10.1161/CIRCRESAHA.109.205310
-
(2009)
Circulation Research
, vol.105
, Issue.7
, pp. 705-712
-
-
Park, J.Y.1
Wang, P.Y.2
Matsumoto, T.3
Sung, H.J.4
Ma, W.5
Choi, J.W.6
Anderson, S.A.7
Leary, S.C.8
Balaban, R.S.9
Kang, J.G.10
Hwang, P.M.11
-
34
-
-
65449137587
-
Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis
-
2-s2.0-65449137587 10.1016/j.bbabio.2009.01.004
-
Lebedeva M. A., Eaton J. S., Shadel G. S., Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochimica et Biophysica Acta 2009 1787 5 328 334 2-s2.0-65449137587 10.1016/j.bbabio.2009.01.004
-
(2009)
Biochimica et Biophysica Acta
, vol.1787
, Issue.5
, pp. 328-334
-
-
Lebedeva, M.A.1
Eaton, J.S.2
Shadel, G.S.3
-
35
-
-
66249086606
-
P53 regulates mtDNA copy number and mitocheckpoint pathway
-
2-s2.0-66249086606 10.4103/1477-3163.50893
-
Kulawiec M., Ayyasamy V., Singh K. K., p53 regulates mtDNA copy number and mitocheckpoint pathway. Journal of Carcinogenesis 2009 8, article 8 2-s2.0-66249086606 10.4103/1477-3163.50893
-
(2009)
Journal of Carcinogenesis
, vol.88
-
-
Kulawiec, M.1
Ayyasamy, V.2
Singh, K.K.3
-
36
-
-
50249168137
-
Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: Implications for Parkinson's disease
-
2-s2.0-50249168137
-
Dagda R. K., Zhu J., Kulich S. M., Chu C. T., Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 2008 4 6 770 782 2-s2.0-50249168137
-
(2008)
Autophagy
, vol.4
, Issue.6
, pp. 770-782
-
-
Dagda, R.K.1
Zhu, J.2
Kulich, S.M.3
Chu, C.T.4
-
38
-
-
71449126926
-
Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis
-
2-s2.0-71449126926 10.1242/jcs.049734
-
Echave P., Machado-da-Silva G., Arkell R. S., Duchen M. R., Jacobson J., Mitter R., Lloyd A. C., Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis. Journal of Cell Science 2009 122 24 4516 4525 2-s2.0-71449126926 10.1242/jcs.049734
-
(2009)
Journal of Cell Science
, vol.122
, Issue.24
, pp. 4516-4525
-
-
Echave, P.1
MacHado-Da-Silva, G.2
Arkell, R.S.3
Duchen, M.R.4
Jacobson, J.5
Mitter, R.6
Lloyd, A.C.7
-
39
-
-
84860347826
-
ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1alpha levels in Abeta-injected rats
-
Ashabi G., Ramin M., Azizi P., ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1alpha levels in Abeta-injected rats. Behavioural Brain Research 2012 232 165 173
-
(2012)
Behavioural Brain Research
, vol.232
, pp. 165-173
-
-
Ashabi, G.1
Ramin, M.2
Azizi, P.3
-
40
-
-
84855293919
-
MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila
-
Zhang W., Thompson B. J., Hietakangas V., Cohen S. M., MAPK/ERK signaling regulates insulin sensitivity to control glucose metabolism in Drosophila. PLoS Genetics 2011 7 12 e1002429
-
(2011)
PLoS Genetics
, vol.7
, Issue.12
-
-
Zhang, W.1
Thompson, B.J.2
Hietakangas, V.3
Cohen, S.M.4
-
41
-
-
82855169510
-
Activation of autophagy is required for muscle homeostasis during physical exercise
-
Nair U., Klionsky D. J., Activation of autophagy is required for muscle homeostasis during physical exercise. Autophagy 2011 7 1405 1406
-
(2011)
Autophagy
, vol.7
, pp. 1405-1406
-
-
Nair, U.1
Klionsky, D.J.2
-
42
-
-
84856075151
-
Autophagy. Explaining exercise
-
10.1126/science.335.6066.281
-
Garber K., Autophagy. Explaining exercise. Science 2012 335 281 10.1126/science.335.6066.281
-
(2012)
Science
, vol.335
, pp. 281
-
-
Garber, K.1
-
43
-
-
82855169509
-
Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles
-
Grumati P., Coletto L., Schiavinato A., Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 2011 7 1415 1423
-
(2011)
Autophagy
, vol.7
, pp. 1415-1423
-
-
Grumati, P.1
Coletto, L.2
Schiavinato, A.3
-
44
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
He C., Bassik M. C., Moresi V., Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012 481 511 515
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
Bassik, M.C.2
Moresi, V.3
-
46
-
-
84862082711
-
Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running
-
Jamart C., Francaux M., Millet G. Y., Deldicque L., Frère D., Féasson L., Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. Journal of Applied Physiology 2012 112 1529 1537
-
(2012)
Journal of Applied Physiology
, vol.112
, pp. 1529-1537
-
-
Jamart, C.1
Francaux, M.2
Millet, G.Y.3
Deldicque, L.4
Frère, D.5
Féasson, L.6
-
47
-
-
36749001754
-
MVps34 is activated by an acute bout of resistance exercise
-
DOI 10.1042/BST0351314
-
MacKenzie M. G., Hamilton D. L., Murray J. T., Baar K., mVps34 is activated by an acute bout of resistance exercise. Biochemical Society Transactions 2007 35 5 1314 1316 2-s2.0-36749001754 10.1042/BST0351314 (Pubitemid 350206489)
-
(2007)
Biochemical Society Transactions
, vol.35
, Issue.5
, pp. 1314-1316
-
-
MacKenzie, M.G.1
Hamilton, D.L.2
Murray, J.T.3
Baar, K.4
-
48
-
-
84871833331
-
Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats
-
Lee Y., Kim J. H., Hong Y., Lee S. R., Chang K. T., Hong Y., Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats. Laboratory Animal Research 2012 28 171 1179
-
(2012)
Laboratory Animal Research
, vol.28
, pp. 171-1179
-
-
Lee, Y.1
Kim, J.H.2
Hong, Y.3
Lee, S.R.4
Chang, K.T.5
Hong, Y.6
-
49
-
-
80052888751
-
Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle
-
Smuder A. J., Kavazis A. N., Min K., Powers S. K., Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. Journal of Applied Physiology 2011 111 1190 1198
-
(2011)
Journal of Applied Physiology
, vol.111
, pp. 1190-1198
-
-
Smuder, A.J.1
Kavazis, A.N.2
Min, K.3
Powers, S.K.4
-
50
-
-
33947710793
-
Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
-
DOI 10.1371/journal.pmed.0040076
-
Civitarese A. E., Carling S., Heilbronn L. K., Hulver M. H., Ukropcova B., Deutsch W. A., Smith S. R., Ravussin E., Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Medicine 2007 4, article e76 3 2-s2.0-33947710793 10.1371/journal.pmed.0040076 (Pubitemid 46495316)
-
(2007)
PLoS Medicine
, vol.4
, Issue.3
, pp. 485-494
-
-
Civitarese, A.E.1
Carling, S.2
Heilbronn, L.K.3
Hulver, M.H.4
Ukropcova, B.5
Deutsch, W.A.6
Smith, S.R.7
Ravussin, E.8
-
51
-
-
32444437067
-
Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency
-
DOI 10.1073/pnas.0510452103
-
López-Lluch G., Hunt N., Jones B., Zhu M., Jamieson H., Hilmer S., Cascajo M. V., Allard J., Ingram D. K., Navas P., De Cabo R., Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proceedings of the National Academy of Sciences of the United States of America 2006 103 6 1768 1773 2-s2.0-32444437067 10.1073/pnas.0510452103 (Pubitemid 43228768)
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.6
, pp. 1768-1773
-
-
Lopez-Lluch, G.1
Hunt, N.2
Jones, B.3
Zhu, M.4
Jamieson, H.5
Hilmer, S.6
Cascajo, M.V.7
Allard, J.8
Ingram, D.K.9
Navas, P.10
De Cabo, R.11
-
52
-
-
84863119126
-
Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction
-
Finley L. W., Lee J., Souza A., Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction. The Proceedings of the National Academy of Sciences of the United States of America 2012 109 2931 2936
-
(2012)
The Proceedings of the National Academy of Sciences of the United States of America
, vol.109
, pp. 2931-2936
-
-
Finley, L.W.1
Lee, J.2
Souza, A.3
-
53
-
-
79551641369
-
Does calorie restriction induce mitochondrial biogenesis? A reevaluation
-
2-s2.0-79551641369 10.1096/fj.10-170415
-
Hancock C. R., Han D. H., Higashida K., Kim S. H., Holloszy J. O., Does calorie restriction induce mitochondrial biogenesis? A reevaluation. The FASEB Journal 2011 25 2 785 791 2-s2.0-79551641369 10.1096/fj.10-170415
-
(2011)
The FASEB Journal
, vol.25
, Issue.2
, pp. 785-791
-
-
Hancock, C.R.1
Han, D.H.2
Higashida, K.3
Kim, S.H.4
Holloszy, J.O.5
-
54
-
-
77955894794
-
Short-term fasting induces profound neuronal autophagy
-
2-s2.0-77955894794 10.4161/auto.6.6.12376
-
Alirezaei M., Kemball C. C., Flynn C. T., Wood M. R., Whitton J. L., Kiosses W. B., Short-term fasting induces profound neuronal autophagy. Autophagy 2010 6 6 702 710 2-s2.0-77955894794 10.4161/auto.6.6.12376
-
(2010)
Autophagy
, vol.6
, Issue.6
, pp. 702-710
-
-
Alirezaei, M.1
Kemball, C.C.2
Flynn, C.T.3
Wood, M.R.4
Whitton, J.L.5
Kiosses, W.B.6
-
55
-
-
75049085555
-
Skeletal muscle autophagy and apoptosis during aging: Effects of calorie restriction and life-long exercise
-
2-s2.0-75049085555 10.1016/j.exger.2009.11.002
-
Wohlgemuth S. E., Seo A. Y., Marzetti E., Lees H. A., Leeuwenburgh C., Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Experimental Gerontology 2010 45 2 138 148 2-s2.0-75049085555 10.1016/j.exger.2009.11.002
-
(2010)
Experimental Gerontology
, vol.45
, Issue.2
, pp. 138-148
-
-
Wohlgemuth, S.E.1
Seo, A.Y.2
Marzetti, E.3
Lees, H.A.4
Leeuwenburgh, C.5
-
56
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
2-s2.0-77951157657 10.1172/JCI41376
-
Kume S., Uzu T., Horiike K., Chin-Kanasaki M., Isshiki K., Araki S. I., Sugimoto T., Haneda M., Kashiwagi A., Koya D., Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. Journal of Clinical Investigation 2010 120 4 1043 1055 2-s2.0-77951157657 10.1172/JCI41376
-
(2010)
Journal of Clinical Investigation
, vol.120
, Issue.4
, pp. 1043-1055
-
-
Kume, S.1
Uzu, T.2
Horiike, K.3
Chin-Kanasaki, M.4
Isshiki, K.5
Araki, S.I.6
Sugimoto, T.7
Haneda, M.8
Kashiwagi, A.9
Koya, D.10
-
57
-
-
84871832587
-
The effect of long term calorie restriction on in vivo hepatic proteostatis: A novel combination of dynamic and quantitative proteomics
-
In press
-
Price J. C., Khambatta C. F., Li K. W., The effect of long term calorie restriction on in vivo hepatic proteostatis: a novel combination of dynamic and quantitative proteomics. Molecular & Cellular Proteomics. In press
-
Molecular & Cellular Proteomics
-
-
Price, J.C.1
Khambatta, C.F.2
Li, K.W.3
-
58
-
-
84856763304
-
Mitochondrial biogenesis and PGC-1alpha deacetylation by chronic treadmill exercise: Differential response in cardiac and skeletal muscle
-
Li L., Muhlfeld C., Niemann B., Pan R., Li R., Mitochondrial biogenesis and PGC-1alpha deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle. Basic Research in Cardiology 2011 106 1221 1234
-
(2011)
Basic Research in Cardiology
, vol.106
, pp. 1221-1234
-
-
Li, L.1
Muhlfeld, C.2
Niemann, B.3
Pan, R.4
Li, R.5
-
59
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
-
DOI 10.1073/pnas.0705070104
-
Jäer S., Handschin C., St-Pierre J., Spiegelman B. M., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 α Proceedings of the National Academy of Sciences of the United States of America 2007 104 29 12017 12022 2-s2.0-34547545892 10.1073/pnas.0705070104 (Pubitemid 47185622)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.29
, pp. 12017-12022
-
-
Jaer, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
60
-
-
78751529597
-
Mitochondrial biogenesis and peroxisome proliferator-activated receptor- γ coactivator-1 α (PGC-1 α) deacetylation by physical activity: Intact adipocytokine signaling is required
-
2-s2.0-78751529597 10.2337/db10-0331
-
Li L., Pan R., Li R., Niemann B., Aurich A. C., Chen Y., Rohrbach S., Mitochondrial biogenesis and peroxisome proliferator-activated receptor- γ coactivator-1 α (PGC-1 α) deacetylation by physical activity: intact adipocytokine signaling is required. Diabetes 2011 60 1 157 167 2-s2.0-78751529597 10.2337/db10-0331
-
(2011)
Diabetes
, vol.60
, Issue.1
, pp. 157-167
-
-
Li, L.1
Pan, R.2
Li, R.3
Niemann, B.4
Aurich, A.C.5
Chen, Y.6
Rohrbach, S.7
-
61
-
-
79953232671
-
Exercise increases mitochondrial PGC-1 α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis
-
2-s2.0-79953232671 10.1074/jbc.M110.211466
-
Safdar A., Little J. P., Stokl A. J., Hettinga B. P., Akhtar M., Tarnopolsky M. A., Exercise increases mitochondrial PGC-1 α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. Journal of Biological Chemistry 2011 286 12 10605 10617 2-s2.0-79953232671 10.1074/jbc.M110.211466
-
(2011)
Journal of Biological Chemistry
, vol.286
, Issue.12
, pp. 10605-10617
-
-
Safdar, A.1
Little, J.P.2
Stokl, A.J.3
Hettinga, B.P.4
Akhtar, M.5
Tarnopolsky, M.A.6
-
62
-
-
58349118928
-
Interactions between ROS and AMP kinase activity in the regulation of PGC-1 α transcription in skeletal muscle cells
-
2-s2.0-58349118928 10.1152/ajpcell.00267.2007
-
Irrcher I., Ljubicic V., Hood D. A., Interactions between ROS and AMP kinase activity in the regulation of PGC-1 α transcription in skeletal muscle cells. American Journal of Physiology 2009 296 1 C116 C123 2-s2.0-58349118928 10.1152/ajpcell.00267.2007
-
(2009)
American Journal of Physiology
, vol.296
, Issue.1
-
-
Irrcher, I.1
Ljubicic, V.2
Hood, D.A.3
-
63
-
-
77955347446
-
Sirtuin 3, a new target of PGC-1 α, plays an important role in the suppression of ROS and mitochondrial biogenesis
-
2-s2.0-77955347446 10.1371/journal.pone.0011707 e11707
-
Kong X., Wang R., Xue Y., Liu X., Zhang H., Chen Y., Fang F., Chang Y., Sirtuin 3, a new target of PGC-1 α plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 2010 5 7 2-s2.0-77955347446 10.1371/journal.pone.0011707 e11707
-
(2010)
PLoS ONE
, vol.5
, Issue.7
-
-
Kong, X.1
Wang, R.2
Xue, Y.3
Liu, X.4
Zhang, H.5
Chen, Y.6
Fang, F.7
Chang, Y.8
-
64
-
-
80055029604
-
Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia
-
Chen S. D., Yang D. I., Lin T. K., Shaw F. Z., Liou C. W., Chuang Y. C., Roles of oxidative stress, apoptosis, PGC-1alpha and mitochondrial biogenesis in cerebral ischemia. International Journal of Molecular Sciences 2011 12 7199 7215
-
(2011)
International Journal of Molecular Sciences
, vol.12
, pp. 7199-7215
-
-
Chen, S.D.1
Yang, D.I.2
Lin, T.K.3
Shaw, F.Z.4
Liou, C.W.5
Chuang, Y.C.6
-
65
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
DOI 10.1016/j.cell.2006.09.024, PII S0092867406012281
-
St-Pierre J., Drori S., Uldry M., Silvaggi J. M., Rhee J., Jäger S., Handschin C., Zheng K., Lin J., Yang W., Simon D. K., Bachoo R., Spiegelman B. M., Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006 127 2 397 408 2-s2.0-33749999530 10.1016/j.cell.2006.09.024 (Pubitemid 44572377)
-
(2006)
Cell
, vol.127
, Issue.2
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jager, S.6
Handschin, C.7
Zheng, K.8
Lin, J.9
Yang, W.10
Simon, D.K.11
Bachoo, R.12
Spiegelman, B.M.13
-
66
-
-
78650785696
-
Fiber type conversion by PGC-1 α activates lysosomal and autophagosomal biogenesis in both unaffected and pompe skeletal muscle
-
2-s2.0-78650785696 10.1371/journal.pone.0015239 e15239
-
Takikita S., Schreiner C., Baum R., Xie T., Ralston E., Plotz P. H., Raben N., Fiber type conversion by PGC-1 α activates lysosomal and autophagosomal biogenesis in both unaffected and pompe skeletal muscle. PLoS ONE 2010 5 12 2-s2.0-78650785696 10.1371/journal.pone.0015239 e15239
-
(2010)
PLoS ONE
, vol.5
, Issue.12
-
-
Takikita, S.1
Schreiner, C.2
Baum, R.3
Xie, T.4
Ralston, E.5
Plotz, P.H.6
Raben, N.7
-
67
-
-
73949099327
-
Increased muscle PGC-1 α expression protects from sarcopenia and metabolic disease during aging
-
2-s2.0-73949099327 10.1073/pnas.0911570106
-
Wenz T., Rossi S. G., Rotundo R. L., Spiegelman B. M., Moraes C. T., Increased muscle PGC-1 α expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences of the United States of America 2009 106 48 20405 20410 2-s2.0-73949099327 10.1073/pnas.0911570106
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, Issue.48
, pp. 20405-20410
-
-
Wenz, T.1
Rossi, S.G.2
Rotundo, R.L.3
Spiegelman, B.M.4
Moraes, C.T.5
-
68
-
-
77953495952
-
Peroxisome proliferator-activated receptor γ coactivator 1 α or 1 β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy
-
2-s2.0-77953495952 10.1074/jbc.M110.113092
-
Brault J. J., Jespersen J. G., Goldberg A. L., Peroxisome proliferator-activated receptor γ coactivator 1 α or 1 β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. Journal of Biological Chemistry 2010 285 25 19460 19471 2-s2.0-77953495952 10.1074/jbc.M110.113092
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.25
, pp. 19460-19471
-
-
Brault, J.J.1
Jespersen, J.G.2
Goldberg, A.L.3
-
69
-
-
77749306132
-
Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia
-
2-s2.0-77749306132 10.1152/ajpregu.00320.2009
-
Gamboa J. L., Andrade F. H., Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia. American Journal of Physiology 2010 298 3 R575 R583 2-s2.0-77749306132 10.1152/ajpregu.00320.2009
-
(2010)
American Journal of Physiology
, vol.298
, Issue.3
-
-
Gamboa, J.L.1
Andrade, F.H.2
-
70
-
-
79955469432
-
Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: Regulatory effects of hydroxytyrosol
-
2-s2.0-79955469432 10.1016/j.freeradbiomed.2011.03.001
-
Feng Z., Bai L., Yan J., Li Y., Shen W., Wang Y., Wertz K., Weber P., Zhang Y., Chen Y., Liu J., Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol. Free Radical Biology and Medicine 2011 50 10 1437 1446 2-s2.0-79955469432 10.1016/j.freeradbiomed.2011.03.001
-
(2011)
Free Radical Biology and Medicine
, vol.50
, Issue.10
, pp. 1437-1446
-
-
Feng, Z.1
Bai, L.2
Yan, J.3
Li, Y.4
Shen, W.5
Wang, Y.6
Wertz, K.7
Weber, P.8
Zhang, Y.9
Chen, Y.10
Liu, J.11
-
71
-
-
79551631199
-
Ablation of Akt2 induces autophagy through cell cycle arrest, the downregulation of p70s6k, and the deregulation of mitochondria in MDA-MB231 cells
-
2-s2.0-79551631199 10.1371/journal.pone.0014614 e14614
-
Santi S. A., Lee H., Ablation of Akt2 induces autophagy through cell cycle arrest, the downregulation of p70s6k, and the deregulation of mitochondria in MDA-MB231 cells. PLoS ONE 2011 6 1 2-s2.0-79551631199 10.1371/journal.pone. 0014614 e14614
-
(2011)
PLoS ONE
, vol.6
, Issue.1
-
-
Santi, S.A.1
Lee, H.2
-
72
-
-
84869438139
-
Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance
-
Salem A. F., Whitaker-Menezes D., Howell A., Sotgia F., Lisanti M. P., Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle 2012 11 22 4174 4180
-
(2012)
Cell Cycle
, vol.11
, Issue.22
, pp. 4174-4180
-
-
Salem, A.F.1
Whitaker-Menezes, D.2
Howell, A.3
Sotgia, F.4
Lisanti, M.P.5
-
73
-
-
79958245892
-
Mitochondrial defect and PGC-1 α dysfunction in parkin-associated familial Parkinson's disease
-
2-s2.0-79958245892 10.1016/j.bbadis.2010.12.022
-
Pacelli C., De Rasmo D., Signorile A., Grattagliano I., di Tullio G., D'Orazio A., Nico B., Comi G. P., Ronchi D., Ferranini E., Pirolo D., Seibel P., Schubert S., Gaballo A., Villani G., Cocco T., Mitochondrial defect and PGC-1 α dysfunction in parkin-associated familial Parkinson's disease. Biochimica et Biophysica Acta 2011 1812 8 1041 1053 2-s2.0-79958245892 10.1016/j.bbadis.2010.12.022
-
(2011)
Biochimica et Biophysica Acta
, vol.1812
, Issue.8
, pp. 1041-1053
-
-
Pacelli, C.1
De Rasmo, D.2
Signorile, A.3
Grattagliano, I.4
Di Tullio, G.5
D'Orazio, A.6
Nico, B.7
Comi, G.P.8
Ronchi, D.9
Ferranini, E.10
Pirolo, D.11
Seibel, P.12
Schubert, S.13
Gaballo, A.14
Villani, G.15
Cocco, T.16
-
74
-
-
79952303794
-
PARIS (ZNF746) repression of PGC-1 α contributes to neurodegeneration in parkinson's disease
-
2-s2.0-79952303794 10.1016/j.cell.2011.02.010
-
Shin J. H., Ko H. S., Kang H., Lee Y., Lee Y. I., Pletinkova O., Troconso J. C., Dawson V. L., Dawson T. M., PARIS (ZNF746) repression of PGC-1 α contributes to neurodegeneration in parkinson's disease. Cell 2011 144 5 689 702 2-s2.0-79952303794 10.1016/j.cell.2011.02.010
-
(2011)
Cell
, vol.144
, Issue.5
, pp. 689-702
-
-
Shin, J.H.1
Ko, H.S.2
Kang, H.3
Lee, Y.4
Lee, Y.I.5
Pletinkova, O.6
Troconso, J.C.7
Dawson, V.L.8
Dawson, T.M.9
-
75
-
-
26444471700
-
A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ
-
DOI 10.1038/nature03988, PII N03988
-
Pascual G., Fong A. L., Ogawa S., Gamliel A., Li A. C., Perissi V., Rose D. W., Willson T. M., Rosenfeld M. G., Glass C. K., A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR- γ Nature 2005 437 7059 759 763 2-s2.0-26444471700 10.1038/nature03988 (Pubitemid 41486547)
-
(2005)
Nature
, vol.437
, Issue.7059
, pp. 759-763
-
-
Pascual, G.1
Fong, A.L.2
Ogawa, S.3
Gamliel, A.4
Li, A.C.5
Perissi, V.6
Rose, D.W.7
Willson, T.M.8
Rosenfeld, M.G.9
Glass, C.K.10
-
76
-
-
79953163464
-
The three musketeers of autophagy: Phosphorylation, ubiquitylation and acetylation
-
2-s2.0-79953163464 10.1016/j.tcb.2010.12.006
-
McEwan D. G., Dikic I., The three musketeers of autophagy: phosphorylation, ubiquitylation and acetylation. Trends in Cell Biology 2011 21 4 195 201 2-s2.0-79953163464 10.1016/j.tcb.2010.12.006
-
(2011)
Trends in Cell Biology
, vol.21
, Issue.4
, pp. 195-201
-
-
McEwan, D.G.1
Dikic, I.2
-
77
-
-
79951780039
-
Coronin 2A mediates actin-dependent de-repression of inflammatory response genes
-
2-s2.0-79951780039 10.1038/nature09703
-
Huang W., Ghisletti S., Saijo K., Gandhi M., Aouadi M., Tesz G. J., Zhang D. X., Yao J., Czech M. P., Goode B. L., Rosenfeld M. G., Glass C. K., Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 2011 470 7334 414 418 2-s2.0-79951780039 10.1038/nature09703
-
(2011)
Nature
, vol.470
, Issue.7334
, pp. 414-418
-
-
Huang, W.1
Ghisletti, S.2
Saijo, K.3
Gandhi, M.4
Aouadi, M.5
Tesz, G.J.6
Zhang, D.X.7
Yao, J.8
Czech, M.P.9
Goode, B.L.10
Rosenfeld, M.G.11
Glass, C.K.12
-
78
-
-
33845970925
-
Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ
-
DOI 10.1016/j.molcel.2006.11.022, PII S1097276506008161
-
Ghisletti S., Huang W., Ogawa S., Pascual G., Lin M. E., Willson T. M., Rosenfeld M. G., Glass C. K., Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPAR γ Molecular Cell 2007 25 1 57 70 2-s2.0-33845970925 10.1016/j.molcel.2006.11.022 (Pubitemid 46049061)
-
(2007)
Molecular Cell
, vol.25
, Issue.1
, pp. 57-70
-
-
Ghisletti, S.1
Huang, W.2
Ogawa, S.3
Pascual, G.4
Lin, M.-E.5
Willson, T.M.6
Rosenfeld, M.G.7
Glass, C.K.8
-
79
-
-
54049147721
-
Sumoylation of peroxisome proliferator-activated receptor γ by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from B binding sites mediating transrepression of proinflammatory cytokines
-
2-s2.0-54049147721
-
Jennewein C., Kuhn A. M., Schmidt M. V., Meilladec-Jullig V., Von Knethen A., Gonzalez F. J., Brüne B., Sumoylation of peroxisome proliferator-activated receptor γ by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from B binding sites mediating transrepression of proinflammatory cytokines. Journal of Immunology 2008 181 8 5646 5652 2-s2.0-54049147721
-
(2008)
Journal of Immunology
, vol.181
, Issue.8
, pp. 5646-5652
-
-
Jennewein, C.1
Kuhn, A.M.2
Schmidt, M.V.3
Meilladec-Jullig, V.4
Von Knethen, A.5
Gonzalez, F.J.6
Brüne, B.7
-
80
-
-
77949878458
-
SUMOylation of human peroxisome proliferator-activated receptor α inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR
-
2-s2.0-77949878458 10.1074/jbc.M109.078311
-
Pourcet B., Pineda-Torra I., Derudas B., Staels B., Glineur C., SUMOylation of human peroxisome proliferator-activated receptor α inhibits its trans-activity through the recruitment of the nuclear corepressor NCoR. Journal of Biological Chemistry 2010 285 9 5983 5992 2-s2.0-77949878458 10.1074/jbc.M109.078311
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.9
, pp. 5983-5992
-
-
Pourcet, B.1
Pineda-Torra, I.2
Derudas, B.3
Staels, B.4
Glineur, C.5
-
81
-
-
81055144760
-
Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity
-
Li P., Fan W., Xu J., Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity. Cell 2011 147 815 826
-
(2011)
Cell
, vol.147
, pp. 815-826
-
-
Li, P.1
Fan, W.2
Xu, J.3
-
82
-
-
33845948962
-
RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis
-
DOI 10.1074/jbc.M604803200
-
Nichol D., Christian M., Steel J. H., White R., Parker M. G., RIP140 expression is stimulated by estrogen-related receptor α during adipogenesis. Journal of Biological Chemistry 2006 281 43 32140 32147 2-s2.0-33845948962 10.1074/jbc.M604803200 (Pubitemid 46036768)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.43
, pp. 32140-32147
-
-
Nichol, D.1
Christian, M.2
Steel, J.H.3
White, R.4
Parker, M.G.5
-
83
-
-
67651227759
-
Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140
-
2-s2.0-67651227759 10.1139/H09-026
-
Fritah A., Control of skeletal muscle metabolic properties by the nuclear receptor corepressor RIP140. Applied Physiology, Nutrition and Metabolism 2009 34 3 362 367 2-s2.0-67651227759 10.1139/H09-026
-
(2009)
Applied Physiology, Nutrition and Metabolism
, vol.34
, Issue.3
, pp. 362-367
-
-
Fritah, A.1
-
84
-
-
79958266484
-
Role of nuclear receptor corepressor RIP140 in metabolic syndrome
-
2-s2.0-79958266484 10.1016/j.bbadis.2010.12.016
-
Rosell M., Jones M. C., Parker M. G., Role of nuclear receptor corepressor RIP140 in metabolic syndrome. Biochimica et Biophysica Acta 2011 1812 8 919 928 2-s2.0-79958266484 10.1016/j.bbadis.2010.12.016
-
(2011)
Biochimica et Biophysica Acta
, vol.1812
, Issue.8
, pp. 919-928
-
-
Rosell, M.1
Jones, M.C.2
Parker, M.G.3
-
85
-
-
2942532305
-
Nuclear receptor corepressor RIP140 regulates fat accumulation
-
DOI 10.1073/pnas.0401013101
-
Leonardsson G., Steel J. H., Christian M., Pocock V., Milligan S., Bell J., So P. W., Medina-Gomez G., Vidal-Puig A., White R., Parker M. G., Nuclear receptor corepressor RIP140 regulates fat accumulation. Proceedings of the National Academy of Sciences of the United States of America 2004 101 22 8437 8442 2-s2.0-2942532305 10.1073/pnas.0401013101 (Pubitemid 38736593)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.22
, pp. 8437-8442
-
-
Leonardsson, G.1
Steel, J.H.2
Christian, M.3
Pocock, V.4
Milligan, S.5
Bell, J.6
So, P.-W.7
Medina-Gomez, G.8
Vidal-Puig, A.9
White, R.10
Parker, M.G.11
-
86
-
-
27144476457
-
RIP140-targeted repression of gene expression in adipocytes
-
DOI 10.1128/MCB.25.21.9383-9391.2005
-
Christian M., Kiskinis E., Debevec D., Leonardsson G., White R., Parker M. G., RIP140-targeted repression of gene expression in adipocytes. Molecular and Cellular Biology 2005 25 21 9383 9391 2-s2.0-27144476457 10.1128/MCB.25.21.9383-9391.2005 (Pubitemid 41507839)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.21
, pp. 9383-9391
-
-
Christian, M.1
Kiskinis, E.2
Debevec, D.3
Leonardsson, G.4
White, R.5
Parker, M.G.6
-
87
-
-
31044432605
-
Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes
-
DOI 10.1172/JCI26040
-
Powelka A. M., Seth A., Virbasius J. V., Kiskinis E., Nicoloro S. M., Guilherme A., Tang X., Straubhaar J., Cherniack A. D., Parker M. G., Czech M. P., Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. Journal of Clinical Investigation 2006 116 1 125 136 2-s2.0-31044432605 10.1172/JCI26040 (Pubitemid 43121797)
-
(2006)
Journal of Clinical Investigation
, vol.116
, Issue.1
, pp. 125-136
-
-
Powelka, A.M.1
Seth, A.2
Virbasius, J.V.3
Kiskinis, E.4
Nicoloro, S.M.5
Guilherme, A.6
Tang, X.7
Straubhaar, J.8
Cherniack, A.D.9
Parker, M.G.10
Czech, M.P.11
-
88
-
-
34548208233
-
The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle
-
DOI 10.1016/j.cmet.2007.08.004, PII S1550413107002264
-
Seth A., Steel J. H., Nichol D., Pocock V., Kumaran M. K., Fritah A., Mobberley M., Ryder T. A., Rowlerson A., Scott J., Poutanen M., White R., Parker M., The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metabolism 2007 6 3 236 245 2-s2.0-34548208233 10.1016/j.cmet.2007.08.004 (Pubitemid 47324141)
-
(2007)
Cell Metabolism
, vol.6
, Issue.3
, pp. 236-245
-
-
Seth, A.1
Steel, J.H.2
Nichol, D.3
Pocock, V.4
Kumaran, M.K.5
Fritah, A.6
Mobberley, M.7
Ryder, T.A.8
Rowlerson, A.9
Scott, J.10
Poutanen, M.11
White, R.12
Parker, M.13
-
89
-
-
84857599194
-
Absence of RIP140 reveals a pathway regulating glut4-dependent glucose uptake in oxidative skeletal muscle through UCP1-mediated activation of AMPK
-
Fritah A., Steel J. H., Parker N., Absence of RIP140 reveals a pathway regulating glut4-dependent glucose uptake in oxidative skeletal muscle through UCP1-mediated activation of AMPK. PLoS One 2012 7 e32520
-
(2012)
PLoS One
, vol.7
-
-
Fritah, A.1
Steel, J.H.2
Parker, N.3
-
90
-
-
70449900602
-
A negative regulatory pathway of GLUT4 trafficking in adipocyte: New Ffnction of RIP140 in the cytoplasm via AS160
-
2-s2.0-70449900602 10.1016/j.cmet.2009.09.012
-
Ho P. C., Lin Y. W., Tsui Y. C., Gupta P., Wei L. N., A negative regulatory pathway of GLUT4 trafficking in adipocyte: new Ffnction of RIP140 in the cytoplasm via AS160. Cell Metabolism 2009 10 6 516 523 2-s2.0-70449900602 10.1016/j.cmet.2009.09.012
-
(2009)
Cell Metabolism
, vol.10
, Issue.6
, pp. 516-523
-
-
Ho, P.C.1
Lin, Y.W.2
Tsui, Y.C.3
Gupta, P.4
Wei, L.N.5
-
91
-
-
80755140611
-
Negative regulation of adiponectin secretion by receptor interacting protein 140 (RIP140)
-
Ho P. C., Wei L. N., Negative regulation of adiponectin secretion by receptor interacting protein 140 (RIP140). Cell Signal 2012 24 71 76
-
(2012)
Cell Signal
, vol.24
, pp. 71-76
-
-
Ho, P.C.1
Wei, L.N.2
-
92
-
-
84862812765
-
Endothelin-1 promotes cytoplasmic accumulation of RIP140 through a ET(A)-PLCbeta-PKCepsilon pathway
-
Ho P. C., Tsui Y. C., Lin Y. W., Persaud S. D., Wei L. N., Endothelin-1 promotes cytoplasmic accumulation of RIP140 through a ET(A)-PLCbeta-PKCepsilon pathway. Molecular and Cellular Endocrinology 2012 351 176 183
-
(2012)
Molecular and Cellular Endocrinology
, vol.351
, pp. 176-183
-
-
Ho, P.C.1
Tsui, Y.C.2
Lin, Y.W.3
Persaud, S.D.4
Wei, L.N.5
-
93
-
-
50549100990
-
PKC ε stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation
-
2-s2.0-50549100990 10.1371/journal.pone.0002658 e2658
-
Gupta P., Ho P. C., Huq M. D., Khan A. A., Tsai N. P., Wei L. N., PKC ε stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. PLoS ONE 2008 3 7 2-s2.0-50549100990 10.1371/journal.pone.0002658 e2658
-
(2008)
PLoS ONE
, vol.3
, Issue.7
-
-
Gupta, P.1
Ho, P.C.2
Huq, M.D.3
Khan, A.A.4
Tsai, N.P.5
Wei, L.N.6
-
94
-
-
79955851817
-
Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis
-
2-s2.0-79955851817 10.1016/j.cellsig.2011.03.023
-
Ho P. C., Chuang Y. S., Hung C. H., Wei L. N., Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cellular Signalling 2011 23 8 1396 1403 2-s2.0-79955851817 10.1016/j.cellsig.2011.03.023
-
(2011)
Cellular Signalling
, vol.23
, Issue.8
, pp. 1396-1403
-
-
Ho, P.C.1
Chuang, Y.S.2
Hung, C.H.3
Wei, L.N.4
-
95
-
-
77956815542
-
The metabolic coregulator RIP140: An update
-
2-s2.0-77956815542 10.1152/ajpendo.00243.2010
-
Fritah A., Christian M., Parker M. G., The metabolic coregulator RIP140: an update. American Journal of Physiology 2010 299 3 E335 E340 2-s2.0-77956815542 10.1152/ajpendo.00243.2010
-
(2010)
American Journal of Physiology
, vol.299
, Issue.3
-
-
Fritah, A.1
Christian, M.2
Parker, M.G.3
-
96
-
-
33847326835
-
SMRT recruitment by PPAR γ is mediated by specific residues located in its carboxy-terminal interacting domain
-
2-s2.0-33847326835 10.1016/j.mce.2006.10.015
-
Sutanto M. M., Symons M. S., Cohen R. N., SMRT recruitment by PPAR γ is mediated by specific residues located in its carboxy-terminal interacting domain. Molecular and Cellular Endocrinology 2007 267 1-2 138 143 2-s2.0-33847326835 10.1016/j.mce.2006.10.015
-
(2007)
Molecular and Cellular Endocrinology
, vol.267
, Issue.1-2
, pp. 138-143
-
-
Sutanto, M.M.1
Symons, M.S.2
Cohen, R.N.3
-
97
-
-
17144395146
-
The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor γ transcriptional activity and repress 3T3-L1 adipogenesis
-
DOI 10.1074/jbc.M409468200
-
Yu C., Markan K., Temple K. A., Deplewski D., Brady M. J., Cohen R. N., The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor γ transcriptional activity and repress 3T3-L1 adipogenesis. Journal of Biological Chemistry 2005 280 14 13600 13605 2-s2.0-17144395146 10.1074/jbc.M409468200 (Pubitemid 40517253)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.14
, pp. 13600-13605
-
-
Yu, C.1
Markan, K.2
Temple, K.A.3
Deplewski, D.4
Brady, M.J.5
Cohen, R.N.6
-
98
-
-
77749323466
-
Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the corepressor N terminus and the receptor DNA binding domain
-
2-s2.0-77749323466 10.1128/MCB.01002-09
-
Varlakhanova N., Snyder C., Jose S., Hahm J. B., Privalsky M. L., Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the corepressor N terminus and the receptor DNA binding domain. Molecular and Cellular Biology 2010 30 6 1434 1445 2-s2.0-77749323466 10.1128/MCB.01002-09
-
(2010)
Molecular and Cellular Biology
, vol.30
, Issue.6
, pp. 1434-1445
-
-
Varlakhanova, N.1
Snyder, C.2
Jose, S.3
Hahm, J.B.4
Privalsky, M.L.5
-
99
-
-
79551626803
-
Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery
-
2-s2.0-79551626803 10.1038/nsmb.1983
-
Oberoi J., Fairall L., Watson P. J., Yang J. C., Czimmerer Z., Kampmann T., Goult B. T., Greenwood J. A., Gooch J. T., Kallenberger B. C., Nagy L., Neuhaus D., Schwabe J. W. R., Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nature Structural and Molecular Biology 2011 18 2 177 185 2-s2.0-79551626803 10.1038/nsmb.1983
-
(2011)
Nature Structural and Molecular Biology
, vol.18
, Issue.2
, pp. 177-185
-
-
Oberoi, J.1
Fairall, L.2
Watson, P.J.3
Yang, J.C.4
Czimmerer, Z.5
Kampmann, T.6
Goult, B.T.7
Greenwood, J.A.8
Gooch, J.T.9
Kallenberger, B.C.10
Nagy, L.11
Neuhaus, D.12
Schwabe, J.W.R.13
-
100
-
-
78249276172
-
Hdac3 is essential for the maintenance of chromatin structure and genome stability
-
2-s2.0-78249276172 10.1016/j.ccr.2010.10.022
-
Bhaskara S., Knutson S. K., Jiang G., Chandrasekharan M. B., Wilson A. J., Zheng S., Yenamandra A., Locke K., Yuan J. L., Bonine-Summers A. R., Wells C. E., Kaiser J. F., Washington M. K., Zhao Z., Wagner F. F., Sun Z. W., Xia F., Holson E. B., Khabele D., Hiebert S. W., Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010 18 5 436 447 2-s2.0-78249276172 10.1016/j.ccr.2010.10.022
-
(2010)
Cancer Cell
, vol.18
, Issue.5
, pp. 436-447
-
-
Bhaskara, S.1
Knutson, S.K.2
Jiang, G.3
Chandrasekharan, M.B.4
Wilson, A.J.5
Zheng, S.6
Yenamandra, A.7
Locke, K.8
Yuan, J.L.9
Bonine-Summers, A.R.10
Wells, C.E.11
Kaiser, J.F.12
Washington, M.K.13
Zhao, Z.14
Wagner, F.F.15
Sun, Z.W.16
Xia, F.17
Holson, E.B.18
Khabele, D.19
Hiebert, S.W.20
more..
-
101
-
-
33846940901
-
Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2
-
DOI 10.1128/MCB.00882-06
-
Grégoire S., Xiao L., Nie J., Zhang X., Xu M., Li J., Wong J., Seto E., Yang X. J., Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Molecular and Cellular Biology 2007 27 4 1280 1295 2-s2.0-33846940901 10.1128/MCB.00882-06 (Pubitemid 46239812)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.4
, pp. 1280-1295
-
-
Gregoire, S.1
Xiao, L.2
Nie, J.3
Zhang, X.4
Xu, M.5
Li, J.6
Wong, J.7
Seto, E.8
Yang, X.-J.9
-
102
-
-
78649513372
-
Nuclear receptor corepressor SMRT regulates mitochondrial oxidative metabolism and mediates aging-related metabolic deterioration
-
2-s2.0-78649513372 10.1016/j.cmet.2010.11.007
-
Reilly S. M., Bhargava P., Liu S., Gangl M. R., Gorgun C., Nofsinger R. R., Evans R. M., Qi L., Hu F. B., Lee C. H., Nuclear receptor corepressor SMRT regulates mitochondrial oxidative metabolism and mediates aging-related metabolic deterioration. Cell Metabolism 2010 12 6 643 653 2-s2.0-78649513372 10.1016/j.cmet.2010.11.007
-
(2010)
Cell Metabolism
, vol.12
, Issue.6
, pp. 643-653
-
-
Reilly, S.M.1
Bhargava, P.2
Liu, S.3
Gangl, M.R.4
Gorgun, C.5
Nofsinger, R.R.6
Evans, R.M.7
Qi, L.8
Hu, F.B.9
Lee, C.H.10
-
103
-
-
58149380715
-
SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis
-
2-s2.0-58149380715 10.1073/pnas.0811012105
-
Nofsinger R. R., Li P., Hong S. H., Jonker J. W., Barish G. D., Ying H., Cheng S. Y., LeBlanc M., Xu W., Pei L., Kang Y. J., Nelson M., Downes M., Yu R. T., Olefsky J. M., Lee C. H., Evans R. M., SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America 2008 105 50 20021 20026 2-s2.0-58149380715 10.1073/pnas.0811012105
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.50
, pp. 20021-20026
-
-
Nofsinger, R.R.1
Li, P.2
Hong, S.H.3
Jonker, J.W.4
Barish, G.D.5
Ying, H.6
Cheng, S.Y.7
Leblanc, M.8
Xu, W.9
Pei, L.10
Kang, Y.J.11
Nelson, M.12
Downes, M.13
Yu, R.T.14
Olefsky, J.M.15
Lee, C.H.16
Evans, R.M.17
-
104
-
-
77953297721
-
The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo
-
2-s2.0-77953297721 10.1074/jbc.M110.107680
-
Sutanto M. M., Ferguson K. K., Sakuma H., Ye H., Brady M. J., Cohen R. N., The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo. Journal of Biological Chemistry 2010 285 24 18485 18495 2-s2.0-77953297721 10.1074/jbc.M110.107680
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.24
, pp. 18485-18495
-
-
Sutanto, M.M.1
Ferguson, K.K.2
Sakuma, H.3
Ye, H.4
Brady, M.J.5
Cohen, R.N.6
-
105
-
-
45549093204
-
Cidea is associated with lipid droplets and insulin sensitivity in humans
-
DOI 10.1073/pnas.0802063105
-
Puri V., Ranjit S., Konda S., Nicoloro S. M. C., Straubhaar J., Chawla A., Chouinard M., Lin C., Burkart A., Corvera S., Perugini R. A., Czech M. P., Cidea is associated with lipid droplets and insulin sensitivity in humans. Proceedings of the National Academy of Sciences of the United States of America 2008 105 22 7833 7838 2-s2.0-45549093204 10.1073/pnas.0802063105 (Pubitemid 351872724)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.22
, pp. 7833-7838
-
-
Puri, V.1
Ranjit, S.2
Konda, S.3
Nicoloro, S.M.C.4
Straubhaar, J.5
Chawla, A.6
Chouinard, M.7
Lin, C.8
Burkart, A.9
Corvera, S.10
Perugini, R.A.11
Czech, M.P.12
-
106
-
-
55849147331
-
A functional interaction between RIP140 and PGC-1 α regulates the expression of the lipid droplet protein CIDEA
-
2-s2.0-55849147331 10.1128/MCB.00504-08
-
Hallberg M., Morganstein D. L., Kiskinis E., Shah K., Kralli A., Dilworth S. M., White R., Parker M. G., Christian M., A functional interaction between RIP140 and PGC-1 α regulates the expression of the lipid droplet protein CIDEA. Molecular and Cellular Biology 2008 28 22 6785 6795 2-s2.0-55849147331 10.1128/MCB.00504-08
-
(2008)
Molecular and Cellular Biology
, vol.28
, Issue.22
, pp. 6785-6795
-
-
Hallberg, M.1
Morganstein, D.L.2
Kiskinis, E.3
Shah, K.4
Kralli, A.5
Dilworth, S.M.6
White, R.7
Parker, M.G.8
Christian, M.9
-
107
-
-
84856995221
-
Clenbuterol, a beta2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle
-
Hoshino D., Yoshida Y., Holloway G. P., Lally J., Hatta H., Bonen A., Clenbuterol, a beta2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle. American Journal of Physiology 2012 302 R373 R384
-
(2012)
American Journal of Physiology
, vol.302
-
-
Hoshino, D.1
Yoshida, Y.2
Holloway, G.P.3
Lally, J.4
Hatta, H.5
Bonen, A.6
-
108
-
-
70350031566
-
SUMOylation attenuates the function of PGC-1 α
-
2-s2.0-70350031566 10.1074/jbc.M109.038943
-
Rytinki M. M., Palvimo J. J., SUMOylation attenuates the function of PGC-1 α Journal of Biological Chemistry 2009 284 38 26184 26193 2-s2.0-70350031566 10.1074/jbc.M109.038943
-
(2009)
Journal of Biological Chemistry
, vol.284
, Issue.38
, pp. 26184-26193
-
-
Rytinki, M.M.1
Palvimo, J.J.2
-
109
-
-
84865285759
-
Roles of transcriptional corepressor RIP140 and coactivator PGC-1alpha in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes
-
Chen Y., Wang Y., Chen J., Chen X., Cao W., Roles of transcriptional corepressor RIP140 and coactivator PGC-1alpha in energy state of chronically infarcted rat hearts and mitochondrial function of cardiomyocytes. Molecular and Cellular Endocrinology 2012 362 1-2 11 18
-
(2012)
Molecular and Cellular Endocrinology
, vol.362
, Issue.1-2
, pp. 11-18
-
-
Chen, Y.1
Wang, Y.2
Chen, J.3
Chen, X.4
Cao, W.5
-
110
-
-
80053048318
-
Reductions in RIP140 are not required for exercise- and AICAR-mediated increases in skeletal muscle mitochondrial content
-
Frier B. C., Hancock C. R., Little J. P., Reductions in RIP140 are not required for exercise- and AICAR-mediated increases in skeletal muscle mitochondrial content. Journal of Applied Physiology 2011 111 688 695
-
(2011)
Journal of Applied Physiology
, vol.111
, pp. 688-695
-
-
Frier, B.C.1
Hancock, C.R.2
Little, J.P.3
-
111
-
-
70349142240
-
Negative feedback maintenance of heme homeostasis by its receptor, Rev-erb α
-
2-s2.0-70349142240 10.1101/gad.1825809
-
Wu N., Yin L., Hanniman E. A., Joshi S., Lazar M. A., Negative feedback maintenance of heme homeostasis by its receptor, Rev-erb α Genes and Development 2009 23 18 2201 2209 2-s2.0-70349142240 10.1101/gad.1825809
-
(2009)
Genes and Development
, vol.23
, Issue.18
, pp. 2201-2209
-
-
Wu, N.1
Yin, L.2
Hanniman, E.A.3
Joshi, S.4
Lazar, M.A.5
-
112
-
-
79952853841
-
Neuronal activity controls the antagonistic balance between peroxisome proliferator-activated receptor- γ coactivator-1 α and silencing mediator of retinoic acid and thyroid hormone receptors in regulating antioxidant defenses
-
2-s2.0-79952853841 10.1089/ars.2010.3568
-
Soriano F. X., Léveillé F., Papadia S., Bell K. F. S., Puddifoot C., Hardingham G. E., Neuronal activity controls the antagonistic balance between peroxisome proliferator-activated receptor- γ coactivator-1 α and silencing mediator of retinoic acid and thyroid hormone receptors in regulating antioxidant defenses. Antioxidants and Redox Signaling 2011 14 8 1425 1436 2-s2.0-79952853841 10.1089/ars.2010.3568
-
(2011)
Antioxidants and Redox Signaling
, vol.14
, Issue.8
, pp. 1425-1436
-
-
Soriano, F.X.1
Léveillé, F.2
Papadia, S.3
Bell, K.F.S.4
Puddifoot, C.5
Hardingham, G.E.6
-
113
-
-
29144474215
-
FK614, a novel peroxisome proliferator-activated receptor γ modulator, induces differential transactivation through a unique ligand-specific interaction with transcriptional coactivators
-
DOI 10.1254/jphs.FP0050578
-
Fujimura T., Sakuma H., Konishi S., Oe T., Hosogai N., Kimura C., Aramori I., Mutoh S., FK614, a novel peroxisome proliferator-activated receptor γ modulator, induces differential transactivation through a unique ligand-specific interaction with transcriptional coactivators. Journal of Pharmacological Sciences 2005 99 4 342 352 2-s2.0-29144474215 10.1254/jphs.FP0050578 (Pubitemid 41813426)
-
(2005)
Journal of Pharmacological Sciences
, vol.99
, Issue.4
, pp. 342-352
-
-
Fujimura, T.1
Sakuma, H.2
Konishi, S.3
Oe, T.4
Hosogai, N.5
Kimura, C.6
Aramori, I.7
Mutoh, S.8
|