메뉴 건너뛰기




Volumn 22, Issue 11, 2012, Pages 557-566

The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation

Author keywords

Cancer; Glycolysis; Metabolism; Mitochondria; NF B; Respiration

Indexed keywords

I KAPPA B; I KAPPA B KINASE; I KAPPA B KINASE INHIBITOR; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; LONIDAMINE; PROTEASOME INHIBITOR;

EID: 84867867477     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2012.08.001     Document Type: Review
Times cited : (385)

References (84)
  • 1
    • 84858718448 scopus 로고    scopus 로고
    • NF-κB and the link between inflammation and cancer
    • Di Donato J.A., et al. NF-κB and the link between inflammation and cancer. Immunol. Rev. 2012, 246:379-400.
    • (2012) Immunol. Rev. , vol.246 , pp. 379-400
    • Di Donato, J.A.1
  • 2
    • 84856213846 scopus 로고    scopus 로고
    • The diverse and complex roles of NF-κB subunits in cancer
    • Perkins N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer 2012, 12:121-132.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 121-132
    • Perkins, N.D.1
  • 3
    • 77950346282 scopus 로고    scopus 로고
    • Immunity, inflammation, and cancer
    • Grivennikov S.I., et al. Immunity, inflammation, and cancer. Cell 2010, 140:883-899.
    • (2010) Cell , vol.140 , pp. 883-899
    • Grivennikov, S.I.1
  • 4
    • 38849199203 scopus 로고    scopus 로고
    • Shared principles in NF-κB signaling
    • Hayden M.S., Ghosh S. Shared principles in NF-κB signaling. Cell 2008, 132:344-362.
    • (2008) Cell , vol.132 , pp. 344-362
    • Hayden, M.S.1    Ghosh, S.2
  • 5
    • 78650878363 scopus 로고    scopus 로고
    • NF-κB, inflammation, and metabolic disease
    • Baker R.G., et al. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011, 5:11-22.
    • (2011) Cell Metab. , vol.5 , pp. 11-22
    • Baker, R.G.1
  • 6
    • 56749164791 scopus 로고    scopus 로고
    • Nutrient sensing and inflammation in metabolic diseases
    • Hotamisligil G.S., Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 2008, 8:923-934.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 923-934
    • Hotamisligil, G.S.1    Erbay, E.2
  • 7
    • 77955806634 scopus 로고    scopus 로고
    • JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction
    • Solinas G., Karin M. JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010, 24:2596-2611.
    • (2010) FASEB J. , vol.24 , pp. 2596-2611
    • Solinas, G.1    Karin, M.2
  • 8
    • 47949099098 scopus 로고    scopus 로고
    • Origin and physiological roles of inflammation
    • Medzhitov R. Origin and physiological roles of inflammation. Nature 2008, 454:428-435.
    • (2008) Nature , vol.454 , pp. 428-435
    • Medzhitov, R.1
  • 9
    • 38849133044 scopus 로고    scopus 로고
    • A calculated response: control of inflammation by the innate immune system
    • Barton G.M. A calculated response: control of inflammation by the innate immune system. J. Clin. Invest. 2008, 118:413-420.
    • (2008) J. Clin. Invest. , vol.118 , pp. 413-420
    • Barton, G.M.1
  • 11
    • 48149112746 scopus 로고    scopus 로고
    • Leptin beyond body weight regulation - current concepts concerning its role in immune function and inflammation
    • Lago R., et al. Leptin beyond body weight regulation - current concepts concerning its role in immune function and inflammation. Cell. Immunol. 2008, 252:139-145.
    • (2008) Cell. Immunol. , vol.252 , pp. 139-145
    • Lago, R.1
  • 12
    • 77950343252 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
    • Hotamisligil G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010, 140:900-917.
    • (2010) Cell , vol.140 , pp. 900-917
    • Hotamisligil, G.S.1
  • 14
    • 77950250064 scopus 로고    scopus 로고
    • Metabolic syndrome and altered gut microbiota in mice lacking Toll-Like Receptor 5
    • Vijay-Kumar M., et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-Like Receptor 5. Science 2010, 328:228-231.
    • (2010) Science , vol.328 , pp. 228-231
    • Vijay-Kumar, M.1
  • 15
    • 51349156218 scopus 로고    scopus 로고
    • Insulin sensitivity: modulation by nutrients and inflammation
    • Schenk S., et al. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 2008, 118:2992-3002.
    • (2008) J. Clin. Invest. , vol.118 , pp. 2992-3002
    • Schenk, S.1
  • 16
    • 9144223683 scopus 로고    scopus 로고
    • Chronic inflammation in fat plays a crucial role in development of obesity-related insulin resistance
    • Xu H., et al. Chronic inflammation in fat plays a crucial role in development of obesity-related insulin resistance. J. Clin. Invest. 2003, 112:1821-1839.
    • (2003) J. Clin. Invest. , vol.112 , pp. 1821-1839
    • Xu, H.1
  • 17
    • 69249205739 scopus 로고    scopus 로고
    • Obesity, inflammation and atherosclerosis
    • Rocha V.Z., Libby P. Obesity, inflammation and atherosclerosis. Nat. Rev. Cardiol. 2009, 6:399-409.
    • (2009) Nat. Rev. Cardiol. , vol.6 , pp. 399-409
    • Rocha, V.Z.1    Libby, P.2
  • 18
    • 76149111947 scopus 로고    scopus 로고
    • Inflammatory lipid mediators in adipocyte function and obesity
    • Iyer A., et al. Inflammatory lipid mediators in adipocyte function and obesity. Nat. Rev. Endocrinol. 2010, 6:71-82.
    • (2010) Nat. Rev. Endocrinol. , vol.6 , pp. 71-82
    • Iyer, A.1
  • 19
    • 79751493607 scopus 로고    scopus 로고
    • Linking the inflammasome to obesity-related disease
    • Horng T., Hotamisligil G.S. Linking the inflammasome to obesity-related disease. Nat. Med. 2011, 17:164-165.
    • (2011) Nat. Med. , vol.17 , pp. 164-165
    • Horng, T.1    Hotamisligil, G.S.2
  • 20
    • 33847073149 scopus 로고    scopus 로고
    • Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity
    • Lumeng C.N., et al. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007, 56:16-23.
    • (2007) Diabetes , vol.56 , pp. 16-23
    • Lumeng, C.N.1
  • 21
    • 77956335194 scopus 로고    scopus 로고
    • Inrleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action
    • Wunderlich F.T., et al. Inrleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 2010, 12:237-249.
    • (2010) Cell Metab. , vol.12 , pp. 237-249
    • Wunderlich, F.T.1
  • 22
    • 14644427890 scopus 로고    scopus 로고
    • Local and systemic insulin resistance resulting from hepatic activation of IKKβ and NF-κB
    • Cai D., et al. Local and systemic insulin resistance resulting from hepatic activation of IKKβ and NF-κB. Nat. Med. 2005, 11:183-190.
    • (2005) Nat. Med. , vol.11 , pp. 183-190
    • Cai, D.1
  • 23
    • 20044387026 scopus 로고    scopus 로고
    • IKKβ links inflammation to obesity-induced insulin resistance
    • Arkan M., et al. IKKβ links inflammation to obesity-induced insulin resistance. Nat. Med. 2005, 11:191-198.
    • (2005) Nat. Med. , vol.11 , pp. 191-198
    • Arkan, M.1
  • 24
    • 0037073679 scopus 로고    scopus 로고
    • Serine phosphorylation of insulin receptor substrate 1 by inhibitor of βB kinase complex
    • Gao Z., et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor of βB kinase complex. J. Biol. Chem. 2002, 277:48115-48121.
    • (2002) J. Biol. Chem. , vol.277 , pp. 48115-48121
    • Gao, Z.1
  • 25
    • 34547102518 scopus 로고    scopus 로고
    • Common inhibitory serine sites phosphorylated by IRS-1 kinase, triggered by insulin and inducers of insulin resistance
    • Herschkovitz A., et al. Common inhibitory serine sites phosphorylated by IRS-1 kinase, triggered by insulin and inducers of insulin resistance. J. Biol. Chem. 2007, 282:18018-18027.
    • (2007) J. Biol. Chem. , vol.282 , pp. 18018-18027
    • Herschkovitz, A.1
  • 26
    • 0034708832 scopus 로고    scopus 로고
    • The c-Jun NH(2)- terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307)
    • Aguirre V., et al. The c-Jun NH(2)- terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem. 2000, 275:9047-9054.
    • (2000) J. Biol. Chem. , vol.275 , pp. 9047-9054
    • Aguirre, V.1
  • 27
    • 38949119009 scopus 로고    scopus 로고
    • Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling
    • Sharfi H., Eldar-Finkelman H. Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am. J. Physiol. Endocrinol. Metab. 2008, 294:E307-E315.
    • (2008) Am. J. Physiol. Endocrinol. Metab. , vol.294
    • Sharfi, H.1    Eldar-Finkelman, H.2
  • 28
    • 73549091444 scopus 로고    scopus 로고
    • Role of muscle JNK1 in obesity-induced insulin resistance
    • Sabio G., et al. Role of muscle JNK1 in obesity-induced insulin resistance. Mol. Cell. Biol. 2010, 30:106-115.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 106-115
    • Sabio, G.1
  • 29
    • 0037153158 scopus 로고    scopus 로고
    • A central role for JNK in obesity and insulin resistance
    • Hirosumi J., et al. A central role for JNK in obesity and insulin resistance. Nature 2002, 420:333-336.
    • (2002) Nature , vol.420 , pp. 333-336
    • Hirosumi, J.1
  • 30
    • 33750823407 scopus 로고    scopus 로고
    • Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin receptor substrates
    • Solinas G., et al. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin receptor substrates. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:16454-16459.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 16454-16459
    • Solinas, G.1
  • 31
    • 33745863033 scopus 로고    scopus 로고
    • Islet β cell function in type 2 diabetes
    • Prentky M., Nolan C. Islet β cell function in type 2 diabetes. J. Clin. Invest. 2006, 116:1802-1812.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1802-1812
    • Prentky, M.1    Nolan, C.2
  • 32
    • 63849267286 scopus 로고    scopus 로고
    • Recent progress in research on β-cell apoptosis by cytokines
    • Kim K.A., Lee M.S. Recent progress in research on β-cell apoptosis by cytokines. Front. Biosci. 2009, 14:657-664.
    • (2009) Front. Biosci. , vol.14 , pp. 657-664
    • Kim, K.A.1    Lee, M.S.2
  • 33
    • 52949096557 scopus 로고    scopus 로고
    • Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity
    • Zhang X., et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008, 135:61-73.
    • (2008) Cell , vol.135 , pp. 61-73
    • Zhang, X.1
  • 34
    • 57849115277 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress plays a central role in development of leptin resistance
    • Ozcan L., et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009, 9:35-51.
    • (2009) Cell Metab. , vol.9 , pp. 35-51
    • Ozcan, L.1
  • 35
    • 33847687659 scopus 로고    scopus 로고
    • Multiple functions of the IKK-related kinase IKKe{open} in interferon-mediated antiviral immunity
    • Tenoever B.R., et al. Multiple functions of the IKK-related kinase IKKe{open} in interferon-mediated antiviral immunity. Science 2007, 315:1274-1278.
    • (2007) Science , vol.315 , pp. 1274-1278
    • Tenoever, B.R.1
  • 36
    • 69449097633 scopus 로고    scopus 로고
    • The protein kinase IKKe{open} regulates energy balance in obese mice
    • Chiang S.H., et al. The protein kinase IKKe{open} regulates energy balance in obese mice. Cell 2009, 138:961-975.
    • (2009) Cell , vol.138 , pp. 961-975
    • Chiang, S.H.1
  • 37
    • 80053539605 scopus 로고    scopus 로고
    • NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
    • Mauro C., et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol. 2011, 13:1272-1279.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1272-1279
    • Mauro, C.1
  • 38
    • 43049139541 scopus 로고    scopus 로고
    • P53 regulates glucose metabolism through an IKK- NF-κB pathway and inhibits cell transformation
    • Kawauchi K., et al. p53 regulates glucose metabolism through an IKK- NF-κB pathway and inhibits cell transformation. Nat. Cell Biol. 2008, 10:611-618.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 611-618
    • Kawauchi, K.1
  • 39
    • 80051677812 scopus 로고    scopus 로고
    • P53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB
    • Johnson R.F., et al. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res. 2011, 71:5588-5597.
    • (2011) Cancer Res. , vol.71 , pp. 5588-5597
    • Johnson, R.F.1
  • 40
    • 61849135453 scopus 로고    scopus 로고
    • Tumor suppressors and cell metabolism: a recipe for cancer growth
    • Jones R.G., Thompson C.B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009, 23:537-548.
    • (2009) Genes Dev. , vol.23 , pp. 537-548
    • Jones, R.G.1    Thompson, C.B.2
  • 41
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2008, 324:1029-1033.
    • (2008) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 43
    • 5644264889 scopus 로고    scopus 로고
    • The nuclear factor κB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation
    • Hanson J.L., et al. The nuclear factor κB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res. 2004, 64:7248-7255.
    • (2004) Cancer Res. , vol.64 , pp. 7248-7255
    • Hanson, J.L.1
  • 44
    • 62549161375 scopus 로고    scopus 로고
    • Loss of p53 enhances catalytic activity of IKKβ through O-linked beta-N-acetyl glucosamine modification
    • Kawauchi K., et al. Loss of p53 enhances catalytic activity of IKKβ through O-linked beta-N-acetyl glucosamine modification. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3431-3436.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 3431-3436
    • Kawauchi, K.1
  • 45
    • 65349103899 scopus 로고    scopus 로고
    • Blinded by the light: the growing complexity of p53
    • Vousden K.H., Prives C. Blinded by the light: the growing complexity of p53. Cell 2009, 137:413-431.
    • (2009) Cell , vol.137 , pp. 413-431
    • Vousden, K.H.1    Prives, C.2
  • 46
    • 78951475020 scopus 로고    scopus 로고
    • P53 and its mutants in tumour cell migration and invasion
    • Muller P.A., et al. p53 and its mutants in tumour cell migration and invasion. J. Cell Biol. 2011, 192:209-218.
    • (2011) J. Cell Biol. , vol.192 , pp. 209-218
    • Muller, P.A.1
  • 48
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones R.G., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 2005, 18:283-293.
    • (2005) Mol. Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 49
    • 77957085271 scopus 로고    scopus 로고
    • Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad
    • Leary S.C. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid. Redox Signal. 2010, 13:1403-1416.
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1403-1416
    • Leary, S.C.1
  • 50
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • Matoba S., et al. p53 regulates mitochondrial respiration. Science 2006, 16:1650-1653.
    • (2006) Science , vol.16 , pp. 1650-1653
    • Matoba, S.1
  • 51
    • 70449109147 scopus 로고    scopus 로고
    • Requirement for NF-κB signaling in a mouse model of lung adenocarcinoma
    • Meylan E., et al. Requirement for NF-κB signaling in a mouse model of lung adenocarcinoma. Nature 2009, 462:104-107.
    • (2009) Nature , vol.462 , pp. 104-107
    • Meylan, E.1
  • 52
    • 0034981543 scopus 로고    scopus 로고
    • Ras regulation of NF-κB and apoptosis
    • Mayo M.W. Ras regulation of NF-κB and apoptosis. Methods Enzymol. 2001, 333:73-87.
    • (2001) Methods Enzymol. , vol.333 , pp. 73-87
    • Mayo, M.W.1
  • 53
    • 4544224979 scopus 로고    scopus 로고
    • Inhibition of NF-κB in cancer cells converts inflammation-induced tumour growth mediated by TNF-α to TRAIL-mediated tumour regression
    • Luo J.L., et al. Inhibition of NF-κB in cancer cells converts inflammation-induced tumour growth mediated by TNF-α to TRAIL-mediated tumour regression. Cancer Cell 2004, 6:297-305.
    • (2004) Cancer Cell , vol.6 , pp. 297-305
    • Luo, J.L.1
  • 54
    • 4043088499 scopus 로고    scopus 로고
    • IKK-β links inflammation and tumorigenesis in a mouse model of colitis-associated cancer
    • Greten F.R., et al. IKK-β links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004, 118:285-296.
    • (2004) Cell , vol.118 , pp. 285-296
    • Greten, F.R.1
  • 55
    • 0037421484 scopus 로고    scopus 로고
    • NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia
    • Dajee M., et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003, 421:639-643.
    • (2003) Nature , vol.421 , pp. 639-643
    • Dajee, M.1
  • 56
    • 26944478633 scopus 로고    scopus 로고
    • Immortalized fibroblasts from NF-κB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor α after transformation by v-Ras
    • Gapuzan M.E., et al. Immortalized fibroblasts from NF-κB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor α after transformation by v-Ras. Oncogene 2005, 24:6574-6583.
    • (2005) Oncogene , vol.24 , pp. 6574-6583
    • Gapuzan, M.E.1
  • 57
    • 70349947018 scopus 로고    scopus 로고
    • Cancer's insatiable appetite
    • Locasale J.W., et al. Cancer's insatiable appetite. Nat. Biotechnol. 2009, 27:916-917.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 916-917
    • Locasale, J.W.1
  • 58
    • 34547114031 scopus 로고    scopus 로고
    • Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth
    • Buzzai M., et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007, 67:6745-6752.
    • (2007) Cancer Res. , vol.67 , pp. 6745-6752
    • Buzzai, M.1
  • 59
    • 77953494288 scopus 로고    scopus 로고
    • Targeting mitochondria for cancer therapy
    • Hockenbery D.M. Targeting mitochondria for cancer therapy. Environ. Mol. Mutagen. 2010, 51:476-489.
    • (2010) Environ. Mol. Mutagen. , vol.51 , pp. 476-489
    • Hockenbery, D.M.1
  • 60
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:8788-8793.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 8788-8793
    • Weinberg, F.1
  • 61
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy
    • Guo J.Y., et al. Activated Ras requires autophagy. Genes Dev. 2011, 25:460-470.
    • (2011) Genes Dev. , vol.25 , pp. 460-470
    • Guo, J.Y.1
  • 62
    • 77952200593 scopus 로고    scopus 로고
    • Alternative fuel - another role for p53 in the regulation of metabolism
    • Vousden K.H. Alternative fuel - another role for p53 in the regulation of metabolism. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7117-7118.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7117-7118
    • Vousden, K.H.1
  • 63
    • 33847651284 scopus 로고    scopus 로고
    • Three faces of mortalin: a housekeeper, guardian and killer
    • Kaul S.C., et al. Three faces of mortalin: a housekeeper, guardian and killer. Exp. Gerontol. 2007, 42:263-274.
    • (2007) Exp. Gerontol. , vol.42 , pp. 263-274
    • Kaul, S.C.1
  • 64
    • 34249741418 scopus 로고    scopus 로고
    • Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions
    • Yaguchi T., et al. Involvement of mortalin in cellular senescence from the perspective of its mitochondrial import, chaperone, and oxidative stress management functions. Ann. N. Y. Acad. Sci. 2007, 1100:306-311.
    • (2007) Ann. N. Y. Acad. Sci. , vol.1100 , pp. 306-311
    • Yaguchi, T.1
  • 65
    • 77952424136 scopus 로고    scopus 로고
    • Cross talk between stimulated NF-κB and the tumor suppressor p53
    • Schneider G., et al. Cross talk between stimulated NF-κB and the tumor suppressor p53. Oncogene 2010, 29:2795-2806.
    • (2010) Oncogene , vol.29 , pp. 2795-2806
    • Schneider, G.1
  • 66
    • 79955398591 scopus 로고    scopus 로고
    • Otto Warburg's contributions to current concepts of cancer metabolism
    • Koppenol W.H., et al. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11:325-337.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 325-337
    • Koppenol, W.H.1
  • 67
    • 58149202128 scopus 로고    scopus 로고
    • Is NF-κB a good target for cancer therapy? Hopes and pitfalls
    • Baud V., Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 2009, 8:33-40.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 33-40
    • Baud, V.1    Karin, M.2
  • 68
    • 74049142026 scopus 로고    scopus 로고
    • The use of novel agents in the treatment of relapsed and refractory multiple myeloma
    • Laubach J.P., et al. The use of novel agents in the treatment of relapsed and refractory multiple myeloma. Leukemia 2009, 23:2222-2232.
    • (2009) Leukemia , vol.23 , pp. 2222-2232
    • Laubach, J.P.1
  • 69
    • 53049083867 scopus 로고    scopus 로고
    • Mechanisms of proteasome inhibitor action and resistance in cancer
    • McConkey D.J., Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist. Updat. 2008, 11:164-179.
    • (2008) Drug Resist. Updat. , vol.11 , pp. 164-179
    • McConkey, D.J.1    Zhu, K.2
  • 70
    • 33845520806 scopus 로고    scopus 로고
    • Proteasome inhibitors: antitumor effects and beyond
    • Nencioni A., et al. Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007, 21:30-36.
    • (2007) Leukemia , vol.21 , pp. 30-36
    • Nencioni, A.1
  • 71
    • 34548225362 scopus 로고    scopus 로고
    • NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ
    • Greten F.R., et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 2007, 130:918-931.
    • (2007) Cell , vol.130 , pp. 918-931
    • Greten, F.R.1
  • 72
    • 79953705886 scopus 로고    scopus 로고
    • Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?
    • Jose C., et al. Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma?. Biochim. Biophys. Acta 2011, 1807:552-561.
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 552-561
    • Jose, C.1
  • 73
    • 77953494288 scopus 로고    scopus 로고
    • Targeting mitochondria for cancer therapy
    • Hockenbery D.M. Targeting mitochondria for cancer therapy. Environ. Mol. Mutagen. 2010, 51:476-489.
    • (2010) Environ. Mol. Mutagen. , vol.51 , pp. 476-489
    • Hockenbery, D.M.1
  • 74
    • 33746879141 scopus 로고    scopus 로고
    • Glycolysis inhibition for anticancer treatment
    • Pelicano H. Glycolysis inhibition for anticancer treatment. Oncogene 2006, 25:4633-4646.
    • (2006) Oncogene , vol.25 , pp. 4633-4646
    • Pelicano, H.1
  • 75
    • 65549093967 scopus 로고    scopus 로고
    • Targeting of cancer energy metabolism
    • Rodríguez-Enríquez S., et al. Targeting of cancer energy metabolism. Mol. Nutr. Food Res. 2009, 53:29-48.
    • (2009) Mol. Nutr. Food Res. , vol.53 , pp. 29-48
    • Rodríguez-Enríquez, S.1
  • 76
    • 73149109062 scopus 로고    scopus 로고
    • Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis
    • Nomura D.K., et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 2010, 140:49-61.
    • (2010) Cell , vol.140 , pp. 49-61
    • Nomura, D.K.1
  • 77
    • 70350355240 scopus 로고    scopus 로고
    • Regulation of vascularization by hypoxia-inducible factor 1
    • Semenza G.L. Regulation of vascularization by hypoxia-inducible factor 1. Ann. N. Y. Acad. Sci. 2009, 1177:2-8.
    • (2009) Ann. N. Y. Acad. Sci. , vol.1177 , pp. 2-8
    • Semenza, G.L.1
  • 78
    • 84655161946 scopus 로고    scopus 로고
    • HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression
    • Keit B., et al. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2011, 12:9-22.
    • (2011) Nat. Rev. Cancer , vol.12 , pp. 9-22
    • Keit, B.1
  • 79
    • 60249085118 scopus 로고    scopus 로고
    • Mitochondria in cancer: not just innocent bystanders
    • Frezza C., Gottlieb E. Mitochondria in cancer: not just innocent bystanders. Semin. Cancer Biol. 2009, 19:4-11.
    • (2009) Semin. Cancer Biol. , vol.19 , pp. 4-11
    • Frezza, C.1    Gottlieb, E.2
  • 80
    • 51749089798 scopus 로고    scopus 로고
    • Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation
    • Taylor C.T. Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation. J. Physiol. 2008, 586:4055-4059.
    • (2008) J. Physiol. , vol.586 , pp. 4055-4059
    • Taylor, C.T.1
  • 81
    • 34247631690 scopus 로고    scopus 로고
    • The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis
    • Lum J.J., et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007, 21:1037-1049.
    • (2007) Genes Dev. , vol.21 , pp. 1037-1049
    • Lum, J.J.1
  • 82
    • 43749083041 scopus 로고    scopus 로고
    • Brick by brick: metabolism and tumor cell growth
    • Deberardinis R.J., et al. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 2008, 18:54-61.
    • (2008) Curr. Opin. Genet. Dev. , vol.18 , pp. 54-61
    • Deberardinis, R.J.1
  • 83
    • 34748912615 scopus 로고    scopus 로고
    • Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
    • Menendez J.A., et al. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7:763-777.
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 763-777
    • Menendez, J.A.1
  • 84
    • 34247255527 scopus 로고    scopus 로고
    • P53 and NF-κB crosstalk: IKKα tips the balance
    • Tergaonkar V., Perkins N.D. p53 and NF-κB crosstalk: IKKα tips the balance. Mol. Cell 2007, 26:158-159.
    • (2007) Mol. Cell , vol.26 , pp. 158-159
    • Tergaonkar, V.1    Perkins, N.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.