메뉴 건너뛰기




Volumn 2, Issue 4, 2004, Pages 149-156

Using artificial neural networks to drive virtual screening of combinatorial libraries

Author keywords

artificial neural networks; Bioinformatics; Drug Discovery; in silico screening; Techniques Methods; virtual combinatorial libraries

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMBINATORIAL CHEMISTRY; COMPUTER MODEL; DRUG INDUSTRY; HIGH THROUGHPUT SCREENING; LIPOPHILICITY; REVIEW; TECHNIQUE; VIRTUAL REALITY;

EID: 12344276385     PISSN: 17418364     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1741-8364(04)02402-3     Document Type: Review
Times cited : (26)

References (82)
  • 1
    • 0038387389 scopus 로고    scopus 로고
    • Hit and lead generation: Beyond high-throughput screening
    • Bleicher K., et al. Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2:2003;369-378
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 369-378
    • Bleicher, K.1
  • 2
    • 0035966871 scopus 로고    scopus 로고
    • Detailed analysis of scoring functions for virtual screening
    • Stahl M., Rarey M. Detailed analysis of scoring functions for virtual screening. J. Med. Chem. 44:2001;1035-1042
    • (2001) J. Med. Chem. , vol.44 , pp. 1035-1042
    • Stahl, M.1    Rarey, M.2
  • 3
    • 0036249271 scopus 로고    scopus 로고
    • Scalable methods for the construction and analysis of virtual combinatorial libraries
    • Lobanov V.S., Agrafiotis D.K. Scalable methods for the construction and analysis of virtual combinatorial libraries. Combin. Chem. High Throughput Screen. 5:2002;167-178
    • (2002) Combin. Chem. High Throughput Screen , vol.5 , pp. 167-178
    • Lobanov, V.S.1    Agrafiotis, D.K.2
  • 4
    • 0036933950 scopus 로고    scopus 로고
    • Multiobjective optimization of combinatorial libraries
    • Agrafiotis D.K. Multiobjective optimization of combinatorial libraries. Mol. Divers. 5:2002;209-230
    • (2002) Mol. Divers. , vol.5 , pp. 209-230
    • Agrafiotis, D.K.1
  • 5
    • 0035498999 scopus 로고    scopus 로고
    • The impact of informatics and computational chemistry on synthesis and screening
    • Manly C.J., et al. The impact of informatics and computational chemistry on synthesis and screening. Drug Discov. Today. 6:2001;1101-1110
    • (2001) Drug Discov. Today , vol.6 , pp. 1101-1110
    • Manly, C.J.1
  • 6
    • 0043235835 scopus 로고    scopus 로고
    • Prediction of physicochemical properties based on neural network modelling
    • Taskinen J., Yliruusi J. Prediction of physicochemical properties based on neural network modelling. Adv. Drug Deliv. Rev. 55:2003;1163-1183
    • (2003) Adv. Drug Deliv. Rev. , vol.55 , pp. 1163-1183
    • Taskinen, J.1    Yliruusi, J.2
  • 11
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • Schneider G., Wrede P. Artificial neural networks for computer-based molecular design. Prog. Biophys. Mol. Biol. 70:1998;175-222
    • (1998) Prog. Biophys. Mol. Biol. , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 13
    • 0033970811 scopus 로고    scopus 로고
    • Neural networks are useful tools for drug design
    • Schneider G. Neural networks are useful tools for drug design. Neural Netw. 13:2000;15-16
    • (2000) Neural Netw. , vol.13 , pp. 15-16
    • Schneider, G.1
  • 14
    • 0042884387 scopus 로고    scopus 로고
    • Hierarchy neural networks as applied to pharmaceutical problems
    • Ichikawa H. Hierarchy neural networks as applied to pharmaceutical problems. Adv. Drug Deliv. Rev. 55:2003;1119-1147
    • (2003) Adv. Drug Deliv. Rev. , vol.55 , pp. 1119-1147
    • Ichikawa, H.1
  • 15
    • 20844445340 scopus 로고    scopus 로고
    • Springer Series in Information Sciences, Springer-Verlag
    • Kohonen T. 3rd edn Self-Organizing Maps. Vol. 30:2000;Springer Series in Information Sciences, Springer-Verlag
    • (2000) 3rd Edn Self-Organizing Maps , vol.30
    • Kohonen, T.1
  • 16
    • 0043235843 scopus 로고    scopus 로고
    • Self-organizing neural networks for pharmacophore mapping
    • Polanski J. Self-organizing neural networks for pharmacophore mapping. Adv. Drug Deliv. Rev. 55:2003;1149-1162
    • (2003) Adv. Drug Deliv. Rev. , vol.55 , pp. 1149-1162
    • Polanski, J.1
  • 17
    • 0036682234 scopus 로고    scopus 로고
    • Descriptors, physical properties, and drug-likeness
    • Brüstle M., et al. Descriptors, physical properties, and drug-likeness. J. Med. Chem. 45:2002;3345-3355
    • (2002) J. Med. Chem. , vol.45 , pp. 3345-3355
    • Brüstle, M.1
  • 18
    • 0032572819 scopus 로고    scopus 로고
    • Can we learn to distinguish between 'drug-like' and 'nondrug-like' molecules?
    • Ajay A., et al. Can we learn to distinguish between 'drug-like' and 'nondrug-like' molecules? J. Med. Chem. 41:1998;3314-3324
    • (1998) J. Med. Chem. , vol.41 , pp. 3314-3324
    • Ajay, A.1
  • 19
    • 0032624725 scopus 로고    scopus 로고
    • New QSAR methods applied to structure-activity mapping and combinatorial chemistry
    • Burden F., Winkler D.A. New QSAR methods applied to structure-activity mapping and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 39:1999;236-242
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 236-242
    • Burden, F.1    Winkler, D.A.2
  • 20
    • 0033549850 scopus 로고    scopus 로고
    • Robust QSAR models using bayesian regularized neural networks
    • Burden F.R., Winkler D.A. Robust QSAR models using bayesian regularized neural networks. J. Med. Chem. 42:1999;3183-3187
    • (1999) J. Med. Chem. , vol.42 , pp. 3183-3187
    • Burden, F.R.1    Winkler, D.A.2
  • 22
    • 0342645323 scopus 로고    scopus 로고
    • Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection
    • Brown R., Martin Y. Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36:1996;572-584
    • (1996) J. Chem. Inf. Comput. Sci. , vol.36 , pp. 572-584
    • Brown, R.1    Martin, Y.2
  • 24
    • 5244364312 scopus 로고    scopus 로고
    • The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding
    • Brown R., Martin Y. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comput. Sci. 37:1997;1-9
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 1-9
    • Brown, R.1    Martin, Y.2
  • 25
    • 0001645890 scopus 로고    scopus 로고
    • Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology
    • Huuskonen J. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J. Chem. Inf. Comput. Sci. 40:2000;773-777
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 773-777
    • Huuskonen, J.1
  • 26
    • 0035498340 scopus 로고    scopus 로고
    • Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 1. Aqueous solubility
    • Liu R., So S-S. Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 1. aqueous solubility. J. Chem. Inf. Comput. Sci. 41:2001;1633-1639
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1633-1639
    • Liu, R.1    So, S.-S.2
  • 27
    • 0035526162 scopus 로고    scopus 로고
    • Estimation of aqueous solubility of chemical compounds using E-state indices
    • Tetko I.V. Estimation of aqueous solubility of chemical compounds using E-state indices. J. Chem. Inf. Comput. Sci. 41:2001;1488-1493
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1488-1493
    • Tetko, I.V.1
  • 28
    • 0036757804 scopus 로고    scopus 로고
    • Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program
    • Tetko I.V., Tanchuk V.Yu. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J. Chem. Inf. Comput. Sci. 42:2002;1136-1145
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1136-1145
    • Tetko, I.V.1    Tanchuk, V.Yu.2
  • 29
    • 0036757543 scopus 로고    scopus 로고
    • High-throughput, in silico prediction of aqueous solubility based on one- and two-dimensional descriptors
    • Engkvist O., Wrede P. High-throughput, in silico prediction of aqueous solubility based on one- and two-dimensional descriptors. J. Chem. Inf. Comput. Sci. 42:2002;1247-1249
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1247-1249
    • Engkvist, O.1    Wrede, P.2
  • 30
    • 0042700257 scopus 로고    scopus 로고
    • Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists' intuition
    • Takaoka Y., et al. Development of a method for evaluating drug-likeness and ease of synthesis using a data set in which compounds are assigned scores based on chemists' intuition. J. Chem. Inf. Comput. Sci. 43:2003;1269-1275
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1269-1275
    • Takaoka, Y.1
  • 31
    • 0032572816 scopus 로고    scopus 로고
    • A scoring scheme for discriminating between drugs and nondrugs
    • Sadowski J., Kubinyi H. A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41:1998;3325-3329
    • (1998) J. Med. Chem. , vol.41 , pp. 3325-3329
    • Sadowski, J.1    Kubinyi, H.2
  • 32
    • 85066770290 scopus 로고    scopus 로고
    • 2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database
    • (in press)
    • Baurin, N. et-al. 2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database. J. Chem. Inf. Comput. Sci. (in press)
    • J. Chem. Inf. Comput. Sci.
    • Baurin, N.1
  • 33
    • 0036708537 scopus 로고    scopus 로고
    • Selecting screening candidates for kinase and G-protein-coupled receptor targets using neural networks
    • Manallack D.T., et al. Selecting screening candidates for kinase and G-protein-coupled receptor targets using neural networks. J. Chem. Inf. Comput. Sci. 42:2002;1256-1262
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1256-1262
    • Manallack, D.T.1
  • 34
    • 0036560521 scopus 로고    scopus 로고
    • Combinatorial informatics in post-genomics era
    • Agrafiotis D.K., et al. Combinatorial informatics in post-genomics era. Nat. Rev. Drug Discov. 1:2002;337-346
    • (2002) Nat. Rev. Drug Discov. , vol.1 , pp. 337-346
    • Agrafiotis, D.K.1
  • 35
    • 0035470294 scopus 로고    scopus 로고
    • A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds
    • Yaffe D., et al. A fuzzy ARTMAP based on quantitative structure-property relationships (QSPRs) for predicting aqueous solubility of organic compounds. J. Chem. Inf. Comput. Sci. 41:2001;1177-1207
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1177-1207
    • Yaffe, D.1
  • 36
    • 0037361981 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of organic compounds based on a 3D structure representation
    • Yan A., Gasteiger J. Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J. Chem. Inf. Comput. Sci. 43:2003;429-434
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 429-434
    • Yan, A.1    Gasteiger, J.2
  • 38
    • 0034256065 scopus 로고    scopus 로고
    • The in silico world of virtual libraries
    • Leach A.R., Hann M.M. The in silico world of virtual libraries. Drug Discov. Today. 5:2000;326-336
    • (2000) Drug Discov. Today , vol.5 , pp. 326-336
    • Leach, A.R.1    Hann, M.M.2
  • 39
    • 5344244908 scopus 로고    scopus 로고
    • Chemical similarity searching
    • Willett P., et al. Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38:1998;983-996
    • (1998) J. Chem. Inf. Comput. Sci. , vol.38 , pp. 983-996
    • Willett, P.1
  • 40
    • 0042672732 scopus 로고    scopus 로고
    • Genetic neural networks for functional approximation
    • Chiu T-L., So S-S. Genetic neural networks for functional approximation. QSAR Comb. Sci. 22:2003;519-526
    • (2003) QSAR Comb. Sci. , vol.22 , pp. 519-526
    • Chiu, T.-L.1    So, S.-S.2
  • 41
    • 0033518275 scopus 로고    scopus 로고
    • Designing libraries with CNS activity
    • Ajay A., et al. Designing libraries with CNS activity. J. Med. Chem. 42:1999;4942-4951
    • (1999) J. Med. Chem. , vol.42 , pp. 4942-4951
    • Ajay, A.1
  • 42
    • 0035438386 scopus 로고    scopus 로고
    • Toward an optimal procedure for variable selection and QSAR model building
    • Yasri A., Hartsough D. Toward an optimal procedure for variable selection and QSAR model building. J. Chem. Inf. Comput. Sci. 41:2001;1218-1227
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1218-1227
    • Yasri, A.1    Hartsough, D.2
  • 43
    • 0036827077 scopus 로고    scopus 로고
    • Property-based design of GPCR-targeted library
    • Balakin K.V., et al. Property-based design of GPCR-targeted library. J. Chem. Inf. Comput. Sci. 42:2002;1332-1342
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1332-1342
    • Balakin, K.V.1
  • 44
    • 85066770880 scopus 로고    scopus 로고
    • Structure-based versus property-based approaches in the design of G-protein-coupled receptor-targeted libraries
    • (in press)
    • Balakin, K.V. et-al. Structure-based versus property-based approaches in the design of G-protein-coupled receptor-targeted libraries. J. Chem. Inf. Comput. Sci. (in press)
    • J. Chem. Inf. Comput. Sci.
    • Balakin, K.V.1
  • 45
    • 0034184034 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship studies of progesterone receptor binding steroids
    • So S-S., et al. Quantitative structure-activity relationship studies of progesterone receptor binding steroids. J. Chem. Inf. Comput. Sci. 40:2000;762-772
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 762-772
    • So, S.-S.1
  • 46
    • 0036025427 scopus 로고    scopus 로고
    • Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors
    • Mattioni B.E., Jurs P.C. Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors. J. Chem. Inf. Comput. Sci. 42:2002;94-102
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 94-102
    • Mattioni, B.E.1    Jurs, P.C.2
  • 47
    • 0036708521 scopus 로고    scopus 로고
    • Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure
    • Patankar S.J., Jurs P.C. Prediction of glycine/NMDA receptor antagonist inhibition from molecular structure. J. Chem. Inf. Comput. Sci. 42:2002;1053-1068
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1053-1068
    • Patankar, S.J.1    Jurs, P.C.2
  • 48
    • 0035324930 scopus 로고    scopus 로고
    • Comparison of a neural net-based QSAR algorithm (PCANN) with hologram- and multiple linear regression-based QSAR approaches: Application to 1,4-dihydropyridine-based calcium channel antagonists
    • Viswanadhan V.N., et al. Comparison of a neural net-based QSAR algorithm (PCANN) with hologram- and multiple linear regression-based QSAR approaches: application to 1,4-dihydropyridine-based calcium channel antagonists. J. Chem. Inf. Comput. Sci. 41:2001;505-511
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 505-511
    • Viswanadhan, V.N.1
  • 49
    • 0042700229 scopus 로고    scopus 로고
    • Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: Application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous)
    • Hemmateenejad B., et al. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous). J. Chem. Inf. Comput. Sci. 43:2003;1328-1334
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1328-1334
    • Hemmateenejad, B.1
  • 50
    • 0001245212 scopus 로고    scopus 로고
    • Use of automatic relevance determination in QSAR studies using Bayesian neural networks
    • Burden F.R., et al. Use of automatic relevance determination in QSAR studies using Bayesian neural networks. J. Chem. Inf. Comput. Sci. 40:2000;1423-1430
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 1423-1430
    • Burden, F.R.1
  • 51
    • 0037075063 scopus 로고    scopus 로고
    • Mining the National Cancer Iinstitute's tumor-screening database: Identification of compounds with similar cellular activities
    • Rabow A.A., et al. Mining the National Cancer Iinstitute's tumor-screening database: identification of compounds with similar cellular activities. J. Med. Chem. 45:2002;818-840
    • (2002) J. Med. Chem. , vol.45 , pp. 818-840
    • Rabow, A.A.1
  • 53
    • 0347087255 scopus 로고    scopus 로고
    • Comparative molecular surface analysis: A novel tool for drug design and molecular diversity studies
    • Polanski J., Gieleciak R. Comparative molecular surface analysis: a novel tool for drug design and molecular diversity studies. Mol. Divers. 7:2003;45-59
    • (2003) Mol. Divers. , vol.7 , pp. 45-59
    • Polanski, J.1    Gieleciak, R.2
  • 54
    • 0031024171 scopus 로고    scopus 로고
    • Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
    • Lipinski C.A., et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:1997;3-25
    • (1997) Adv. Drug Deliv. Rev. , vol.23 , pp. 3-25
    • Lipinski, C.A.1
  • 56
    • 0141994392 scopus 로고    scopus 로고
    • Drugs and nondrugs: An effective discrimination with topological methods and artificial neural networks
    • Murcia-Soler M., et al. Drugs and nondrugs: an effective discrimination with topological methods and artificial neural networks. J. Chem. Inf. Comput. Sci. 43:2003;1688-1702
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1688-1702
    • Murcia-Soler, M.1
  • 57
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards prediction paradise?
    • van de Waterbeemd H., Gifford E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2:2003;192-204
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 192-204
    • Van De Waterbeemd, H.1    Gifford, E.2
  • 58
    • 0037204544 scopus 로고    scopus 로고
    • Prediction of drug solubility from structure
    • Jorgensen W.L., Duffy E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev. 54:2002;355-366
    • (2002) Adv. Drug Deliv. Rev. , vol.54 , pp. 355-366
    • Jorgensen, W.L.1    Duffy, E.M.2
  • 59
    • 0035526164 scopus 로고    scopus 로고
    • Search for predictive generic model of aqueous solubility using Bayesian neural nets
    • Bruneau P. Search for predictive generic model of aqueous solubility using Bayesian neural nets. J. Chem. Inf. Comput. Sci. 41:2001;1605-1616
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1605-1616
    • Bruneau, P.1
  • 60
    • 0036383632 scopus 로고    scopus 로고
    • Reliability of logP predictions based on calculated molecular descriptors: A critical review
    • Erös D., et al. Reliability of logP predictions based on calculated molecular descriptors: a critical review. Curr. Med. Chem. 9:2002;1819-1829
    • (2002) Curr. Med. Chem. , vol.9 , pp. 1819-1829
    • Erös, D.1
  • 61
    • 0037498037 scopus 로고    scopus 로고
    • Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method
    • Wegner J.K., Zell A. Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method. J. Chem. Inf. Comput. Sci. 43:2003;1077-1084
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1077-1084
    • Wegner, J.K.1    Zell, A.2
  • 62
    • 0036489454 scopus 로고    scopus 로고
    • Fuzzy ARTMAP and back-propagation neural networks based quantitative structure-property relationships (QSPRs) for octanol-water partition coefficient of organic compounds
    • Yaffe D. Fuzzy ARTMAP and back-propagation neural networks based quantitative structure-property relationships (QSPRs) for octanol-water partition coefficient of organic compounds. J. Chem. Inf. Comput. Sci. 42:2002;162-183
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 162-183
    • Yaffe, D.1
  • 63
    • 0037204547 scopus 로고    scopus 로고
    • Prediction of intestinal permeability
    • Egan W.J., Lauri G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 54:2002;273-289
    • (2002) Adv. Drug Deliv. Rev. , vol.54 , pp. 273-289
    • Egan, W.J.1    Lauri, G.2
  • 64
    • 0034525030 scopus 로고    scopus 로고
    • Prediction of drug half-life values of antihistamines based on the CODES/neural network model
    • Quiñones C., et al. Prediction of drug half-life values of antihistamines based on the CODES/neural network model. Quant. Struct. Act. Relat. 19:2000;448-454
    • (2000) Quant. Struct. Act. Relat. , vol.19 , pp. 448-454
    • Quiñones, C.1
  • 65
    • 0037208305 scopus 로고    scopus 로고
    • Using general regression and probabilistic neural networks to Predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures
    • Niwa T. Using general regression and probabilistic neural networks to Predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. J. Chem. Inf. Comput. Sci. 43:2003;113-119
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 113-119
    • Niwa, T.1
  • 66
    • 0037059925 scopus 로고    scopus 로고
    • A neural network based virtual screening of cytochrome P450 3A4 inhibitors
    • Molnár L., Keser? G.M. A neural network based virtual screening of cytochrome P450 3A4 inhibitors. Bioorg. Med. Chem. Lett. 12:2002;419-421
    • (2002) Bioorg. Med. Chem. Lett. , vol.12 , pp. 419-421
    • Molnár, L.1    Keser, G.M.2
  • 67
    • 0043234176 scopus 로고    scopus 로고
    • Modeling of human cytochrome P450-mediated drug Metabolism using unsupervised machine learning approach
    • Korolev D. Modeling of human cytochrome P450-mediated drug Metabolism using unsupervised machine learning approach. J. Med. Chem. 46:2003;3631-3643
    • (2003) J. Med. Chem. , vol.46 , pp. 3631-3643
    • Korolev, D.1
  • 68
    • 0345381744 scopus 로고    scopus 로고
    • Modeling toxicity by using supervised Kohonen neural networks
    • Mazzatorta P., et al. Modeling toxicity by using supervised Kohonen neural networks. J. Chem. Inf. Comput. Sci. 43:2003;485-492
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 485-492
    • Mazzatorta, P.1
  • 69
    • 0141890760 scopus 로고    scopus 로고
    • Predictive toxicology: Benchmarking molecular descriptors and statistical methods
    • Feng J., et al. Predictive toxicology: benchmarking molecular descriptors and statistical methods. J. Chem. Inf. Comput. Sci. 43:2003;1463-1470
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1463-1470
    • Feng, J.1
  • 70
    • 0037204541 scopus 로고    scopus 로고
    • Computer systems for the prediction of toxicity: An update
    • Greene N. Computer systems for the prediction of toxicity: an update. Adv. Drug Deliv. Rev. 54:2002;417-431
    • (2002) Adv. Drug Deliv. Rev. , vol.54 , pp. 417-431
    • Greene, N.1
  • 71
    • 0034218972 scopus 로고    scopus 로고
    • Use of statistical and neural net approaches in predicting toxicity of chemicals
    • Basak S.C., et al. Use of statistical and neural net approaches in predicting toxicity of chemicals. J. Chem. Inf. Comput. Sci. 40:2000;885-890
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 885-890
    • Basak, S.C.1
  • 72
    • 0034094124 scopus 로고    scopus 로고
    • A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks
    • Burden F.R., Winkler D.A. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chem. Res. Toxicol. 13:2000;436-440
    • (2000) Chem. Res. Toxicol. , vol.13 , pp. 436-440
    • Burden, F.R.1    Winkler, D.A.2
  • 73
    • 0036489456 scopus 로고    scopus 로고
    • An integrated SOM-fuzzy ARTMAP neural system for the evaluation of toxicity
    • Espinosa G., et al. An integrated SOM-fuzzy ARTMAP neural system for the evaluation of toxicity. J. Chem. Inf. Comput. Sci. 42:2002;343-359
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 343-359
    • Espinosa, G.1
  • 74
    • 0038069350 scopus 로고    scopus 로고
    • Neural networks for effect prediction in environmnetal and health issues using large datasets
    • Kaiser K.L.E. Neural networks for effect prediction in environmnetal and health issues using large datasets. QSAR Comb. Sci. 22:2003;185-190
    • (2003) QSAR Comb. Sci. , vol.22 , pp. 185-190
    • Kaiser, K.L.E.1
  • 76
    • 0000181046 scopus 로고    scopus 로고
    • Nonlinear mapping of massive data sets by fuzzy clustering and neural networks
    • Rassokhin D.N., et al. Nonlinear mapping of massive data sets by fuzzy clustering and neural networks. J. Comput. Chem. 22:2001;373-386
    • (2001) J. Comput. Chem. , vol.22 , pp. 373-386
    • Rassokhin, D.N.1
  • 77
    • 0035871891 scopus 로고    scopus 로고
    • Multidimensional scaling and visualization of large molecular similarity tables
    • Agrafiotis D.K., et al. Multidimensional scaling and visualization of large molecular similarity tables. J. Comput. Chem. 22:2001;488-500
    • (2001) J. Comput. Chem. , vol.22 , pp. 488-500
    • Agrafiotis, D.K.1
  • 79
    • 0035889762 scopus 로고    scopus 로고
    • Multidimensional scaling of combinatorial libraries without explicit enumeration
    • Agrafiotis D.K., Lobanov V.S. Multidimensional scaling of combinatorial libraries without explicit enumeration. J. Comput. Chem. 22:2001;1712-1722
    • (2001) J. Comput. Chem. , vol.22 , pp. 1712-1722
    • Agrafiotis, D.K.1    Lobanov, V.S.2
  • 80
    • 0036628567 scopus 로고    scopus 로고
    • On the use of neural network ensembles in QSAR and QSPR
    • Agrafiotis D.K., et al. On the use of neural network ensembles in QSAR and QSPR. J. Chem. Info. Comput. Sci. 42:2002;903-911
    • (2002) J. Chem. Info. Comput. Sci. , vol.42 , pp. 903-911
    • Agrafiotis, D.K.1
  • 81
    • 85066772789 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • (in press)
    • Byvatov, E. et-al. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci. (in press)
    • J. Chem. Inf. Comput. Sci.
    • Byvatov, E.1
  • 82
    • 0036686784 scopus 로고    scopus 로고
    • A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries
    • Zuegge J., et al. A fast virtual screening filter for cytochrome P450 3A4 inhibition liability of compound libraries. Quant. Struct. Act. Relat. 21:2002;249-256
    • (2002) Quant. Struct. Act. Relat , vol.21 , pp. 249-256
    • Zuegge, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.