메뉴 건너뛰기




Volumn 66, Issue 4, 2005, Pages 245-259

Statistical learning approach for predicting specific pharmacodynamic, pharmacokinetic, or toxicological properties of pharmaceutical agents

Author keywords

Feature selection; Molecular descriptors; Pharmacodynamic; Pharmacokinetic; QSAR; Statistical learning methods; Toxicology

Indexed keywords

2 CHLORO 4 (4 METHOXYPHENYL) 3 PHENYLQUINOLINE; CANDESARTAN; CEFTIBUTEN; CYCLOPHOSPHAMIDE; DANSYLTRYPTAMINE; FLURITHROMYCIN; MEBENDAZOLE; PROPAFENONE; UNCLASSIFIED DRUG;

EID: 33646420101     PISSN: 02724391     EISSN: 10982299     Source Type: Journal    
DOI: 10.1002/ddr.20044     Document Type: Review
Times cited : (28)

References (74)
  • 1
    • 0003700389 scopus 로고    scopus 로고
    • American Society of Health-System Pharmacists, Inc.
    • Bethesda. 2001. AHFS drug information. American Society of Health-System Pharmacists, Inc.
    • (2001) AHFS Drug Information
  • 2
    • 0030641914 scopus 로고    scopus 로고
    • MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids
    • Bravi G, Gancia E, Mascagni P, Pegna M, Todeschini R, Zaliani A. 1997. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Des 11:79-92.
    • (1997) J Comput Aided Mol des , vol.11 , pp. 79-92
    • Bravi, G.1    Gancia, E.2    Mascagni, P.3    Pegna, M.4    Todeschini, R.5    Zaliani, A.6
  • 3
    • 1042302103 scopus 로고    scopus 로고
    • Early prediction of drug metabolism and toxicity: Systems biology approach and modeling
    • Bugrim A, Nikolskaya T, Nikolsky Y. 2004. Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 9:127-135.
    • (2004) Drug Discov Today , vol.9 , pp. 127-135
    • Bugrim, A.1    Nikolskaya, T.2    Nikolsky, Y.3
  • 4
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge R, Trotter M, Buxton B, Holden S. 2001. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26:5-14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 5
    • 0029156692 scopus 로고
    • An introduction to drug disposition: The basic principles of absorption, distribution, metabolism, and excretion
    • Caldwell J, Gardner I, Swales N. 1995. An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol Pathol 23:102-114.
    • (1995) Toxicol Pathol , vol.23 , pp. 102-114
    • Caldwell, J.1    Gardner, I.2    Swales, N.3
  • 6
    • 0036827275 scopus 로고    scopus 로고
    • CLiBE: A database of computed ligand binding energy for ligand-receptor complexes
    • Chen X, Ji ZL, Zhi DG, Chen YZ. 2002. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes. Comput Chem 26:661-666.
    • (2002) Comput Chem , vol.26 , pp. 661-666
    • Chen, X.1    Ji, Z.L.2    Zhi, D.G.3    Chen, Y.Z.4
  • 7
    • 0036589086 scopus 로고    scopus 로고
    • Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors
    • Consonni V, Todeschini R, Pavan M. 2002. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682-692.
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 682-692
    • Consonni, V.1    Todeschini, R.2    Pavan, M.3
  • 9
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani G, Pastor M, Guba W. 2000. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 11:S29-S39.
    • (2000) Eur J Pharm Sci , vol.11
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 10
    • 12244271454 scopus 로고    scopus 로고
    • Predicting CNS permeability of drug molecules: Comparison of neural network and Support Vector Machine algorithms
    • Doniger S, Hofman T, Yeh J. 2002. Predicting CNS permeability of drug molecules: Comparison of neural network and Support Vector Machine algorithms. J Comput Biol 9:849-864.
    • (2002) J Comput Biol , vol.9 , pp. 849-864
    • Doniger, S.1    Hofman, T.2    Yeh, J.3
  • 11
    • 0034677966 scopus 로고    scopus 로고
    • Drug discovery: A historical perspective
    • Drews J. 2000. Drug discovery: a historical perspective. Science 287:1960-1964.
    • (2000) Science , vol.287 , pp. 1960-1964
    • Drews, J.1
  • 14
    • 0037813165 scopus 로고    scopus 로고
    • An accelerated procedure for recursive feature ranking on microarray data
    • Furlanello C, Serafini M, Merler S, Jurman G. 2003. An accelerated procedure for recursive feature ranking on microarray data. Neural Netw 16:641-648.
    • (2003) Neural Netw , vol.16 , pp. 641-648
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 16
    • 5444232094 scopus 로고    scopus 로고
    • Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling
    • Gramatica P, Pilutti P, Papa E. 2004. Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling. J Chem Inf Comput Sci 44: 1794-1802.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1794-1802
    • Gramatica, P.1    Pilutti, P.2    Papa, E.3
  • 17
    • 0034142319 scopus 로고    scopus 로고
    • Quantitative structure-property relationships in pharmaceutical research - Part 2
    • Grover II, Singh II, Bakshi II. 2000. Quantitative structure-property relationships in pharmaceutical research-Part 2. Pharm Sci Technol Today 3:50-57.
    • (2000) Pharm Sci Technol Today , vol.3 , pp. 50-57
    • Grover, I.I.1    Singh, I.I.2    Bakshi, I.I.3
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene selection for cancer classification using support vector machines. Mach Learn 46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 0018833858 scopus 로고
    • Diazepam and N-desmethyldiazepam concentrations in saliva, plasma and CSF
    • Hallstrom C, Lader M. 1980. Diazepam and N-desmethyldiazepam concentrations in saliva, plasma and CSF. Br J Clin Pharmacol 9:333-339.
    • (1980) Br J Clin Pharmacol , vol.9 , pp. 333-339
    • Hallstrom, C.1    Lader, M.2
  • 22
    • 0001219854 scopus 로고    scopus 로고
    • Deriving the 3D structure of organic molecules from their infrared spectra
    • Hemmer MC, Steinhauer V, Gasteiger J. 1999. Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 19:151-164.
    • (1999) Vib Spectrosc , vol.19 , pp. 151-164
    • Hemmer, M.C.1    Steinhauer, V.2    Gasteiger, J.3
  • 23
    • 33847086085 scopus 로고
    • A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis
    • Hopfinger A. 1980. A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J Am Chem Soc 102:7196-7206.
    • (1980) J Am Chem Soc , vol.102 , pp. 7196-7206
    • Hopfinger, A.1
  • 25
    • 0345117308 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors
    • Hou T, Xu X. 2003. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J Chem Inf Comput Sci 43:2137-2152.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 2137-2152
    • Hou, T.1    Xu, X.2
  • 27
    • 0036844787 scopus 로고    scopus 로고
    • Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis
    • Iyer M, Mishru R, Han Y, Hopfinger AJ. 2002. Predicting blood-brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm Res 19:1611-1621.
    • (2002) Pharm Res , vol.19 , pp. 1611-1621
    • Iyer, M.1    Mishru, R.2    Han, Y.3    Hopfinger, A.J.4
  • 28
    • 0842289047 scopus 로고    scopus 로고
    • A method for quantifying and visualizing the diversity of QSAR models
    • Izrailev S, Agrafiotis DK. 2004. A method for quantifying and visualizing the diversity of QSAR models. J Mol Graph Model 22:275-284.
    • (2004) J Mol Graph Model , vol.22 , pp. 275-284
    • Izrailev, S.1    Agrafiotis, D.K.2
  • 30
    • 0000087194 scopus 로고    scopus 로고
    • QSPR as a means of predicting and understanding chemical and physical properties in terms of structure
    • Katritzky AR, Karelson M, Lobanov V. 1997. QSPR as a means of predicting and understanding chemical and physical properties in terms of structure. Pure Appl Chem 69:245-248.
    • (1997) Pure Appl Chem , vol.69 , pp. 245-248
    • Katritzky, A.R.1    Karelson, M.2    Lobanov, V.3
  • 32
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John G. 1997. Wrappers for feature subset selection. Artif Intell Med 97:273-324.
    • (1997) Artif Intell Med , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 33
    • 0030828787 scopus 로고    scopus 로고
    • QSAR and 3D QSAR in drug design. Part 2: Applications and problems
    • Kubinyi H. 1997. QSAR and 3D QSAR in drug design. Part 2: applications and problems. Drug Discov Today 2:538-546.
    • (1997) Drug Discov Today , vol.2 , pp. 538-546
    • Kubinyi, H.1
  • 34
    • 21144435586 scopus 로고    scopus 로고
    • Prediction of genotoxicity of chemical compounds by statistical learning methods
    • Li H, Ung C, Yap C, Xue Y, Li Z, Cao Z, Chen Y. 2005a. Prediction of genotoxicity of chemical compounds by statistical learning methods. Chem Res Toxicol 18:1071-1080.
    • (2005) Chem Res Toxicol , vol.18 , pp. 1071-1080
    • Li, H.1    Ung, C.2    Yap, C.3    Xue, Y.4    Li, Z.5    Cao, Z.6    Chen, Y.7
  • 35
    • 26944502743 scopus 로고    scopus 로고
    • Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods
    • Li H, Yap C, Ung C, Xue Y, Cao Z, Chen Y. 2005b. Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods. J Chem Inf Model 45:1376-1384.
    • (2005) J Chem Inf Model , vol.45 , pp. 1376-1384
    • Li, H.1    Yap, C.2    Ung, C.3    Xue, Y.4    Cao, Z.5    Chen, Y.6
  • 36
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu Y. 2004. A comparative study on feature selection methods for drug discovery. J Chem Inf Comput Sci 44:1823-1828.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1823-1828
    • Liu, Y.1
  • 37
    • 0347717608 scopus 로고    scopus 로고
    • In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values
    • Lobell M, Sivarajah V. 2003. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pKa and AlogP98 values. Mol Divers 7:69-87.
    • (2003) Mol Divers , vol.7 , pp. 69-87
    • Lobell, M.1    Sivarajah, V.2
  • 38
    • 0027284874 scopus 로고
    • Understanding and using genetic algorithms. Part 1. Concepts, properties and context
    • Lucasius CB, Kateman G. 1993. Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemometr Intell Lab 19:1-33.
    • (1993) Chemometr Intell Lab , vol.19 , pp. 1-33
    • Lucasius, C.B.1    Kateman, G.2
  • 39
    • 0032735695 scopus 로고    scopus 로고
    • Neural networks in drug discovery: Have they lived up to their promise?
    • Manallack DT, Livingstone DJ. 1999. Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem 34:195-208.
    • (1999) Eur J Med Chem , vol.34 , pp. 195-208
    • Manallack, D.T.1    Livingstone, D.J.2
  • 40
    • 26944464804 scopus 로고    scopus 로고
    • Greenwood Village, Colorado: MICROMEDEX
    • MICROMEDEX. 2003. MICROMEDEX. Greenwood Village, Colorado: MICROMEDEX.
    • (2003) MICROMEDEX
  • 41
    • 4844227862 scopus 로고    scopus 로고
    • Quantitative structure-pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial agents in humans using simulated annealing k-nearest-neighbor and partial least-square analysis methods
    • Ng C, Xiao Y, Putnam W, Lum B, Tropsha A. 2004. Quantitative structure-pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial agents in humans using simulated annealing k-nearest-neighbor and partial least-square analysis methods. J Pharm Sci 93:2535-2544.
    • (2004) J Pharm Sci , vol.93 , pp. 2535-2544
    • Ng, C.1    Xiao, Y.2    Putnam, W.3    Lum, B.4    Tropsha, A.5
  • 42
    • 0034676475 scopus 로고    scopus 로고
    • Advances in molecular toxicology-towards understanding idiosyncratic drug toxicity
    • Park BK, Kitteringham NR, Powell H, Pirmohamed M. 2000. Advances in molecular toxicology-towards understanding idiosyncratic drug toxicity. Toxicology 153:39-60.
    • (2000) Toxicology , vol.153 , pp. 39-60
    • Park, B.K.1    Kitteringham, N.R.2    Powell, H.3    Pirmohamed, M.4
  • 43
    • 15744363581 scopus 로고    scopus 로고
    • Metric validation and the receptor-relevant subspace concept
    • Pearlman RS, Smith KM. 1999. Metric validation and the receptor-relevant subspace concept. J Chem Inf Comput Sci 39:28-35.
    • (1999) J Chem Inf Comput Sci , vol.39 , pp. 28-35
    • Pearlman, R.S.1    Smith, K.M.2
  • 44
    • 0040524262 scopus 로고    scopus 로고
    • Estimation of molecular free energy relation descriptors using a group contribution approach
    • Platts JA, Butina D, Abraham MH, Hersey A. 1999. Estimation of molecular free energy relation descriptors using a group contribution approach. J Chem Inf Comput Sci 39:835-845.
    • (1999) J Chem Inf Comput Sci , vol.39 , pp. 835-845
    • Platts, J.A.1    Butina, D.2    Abraham, M.H.3    Hersey, A.4
  • 45
    • 0023947965 scopus 로고
    • Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985)
    • Prentis RA, Lis Y, Walker SR. 1988. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). Br J Pharmacol 25:387-396.
    • (1988) Br J Pharmacol , vol.25 , pp. 387-396
    • Prentis, R.A.1    Lis, Y.2    Walker, S.R.3
  • 46
    • 33646394902 scopus 로고    scopus 로고
    • National Institutes of Health (NIH)
    • PubChem. 2004. http://pubchem.ncbi.nlm.nih.gov/. National Institutes of Health (NIH).
    • (2004)
  • 48
    • 0000608843 scopus 로고
    • Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons
    • Randic M. 1975. Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons. Tetrahedron 31:1477-1481.
    • (1975) Tetrahedron , vol.31 , pp. 1477-1481
    • Randic, M.1
  • 49
    • 0000733018 scopus 로고
    • Molecular profiles. Novel geometry-dependent molecular descriptors
    • Randic M. 1995. Molecular profiles. Novel geometry-dependent molecular descriptors. New J Chem 19:781-791.
    • (1995) New J Chem , vol.19 , pp. 781-791
    • Randic, M.1
  • 50
    • 0033861845 scopus 로고    scopus 로고
    • The multiplicity of serotonin receptors: Uselessly diverse molecules or an embarrassment of riches?
    • Roth BL, Kroeze WK, Patel S, Lopez E. 2000. The multiplicity of serotonin receptors: Uselessly diverse molecules or an embarrassment of riches? Neuroscientist 6:252-262.
    • (2000) Neuroscientist , vol.6 , pp. 252-262
    • Roth, B.L.1    Kroeze, W.K.2    Patel, S.3    Lopez, E.4
  • 51
    • 0027658970 scopus 로고
    • Counts of all walks as atomic and molecular descriptors
    • Ruecker G, Ruecker C. 1993. Counts of all walks as atomic and molecular descriptors. J Chem Inf Comput Sci 33:683-695.
    • (1993) J Chem Inf Comput Sci , vol.33 , pp. 683-695
    • Ruecker, G.1    Ruecker, C.2
  • 52
    • 0000224701 scopus 로고    scopus 로고
    • The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity
    • Schnur JH, Setzer P, Gasteiger J. 1996. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334-344.
    • (1996) J Chem Inf Comput Sci , vol.36 , pp. 334-344
    • Schnur, J.H.1    Setzer, P.2    Gasteiger, J.3
  • 53
    • 0037325243 scopus 로고    scopus 로고
    • Development of binary classification of structural chromosome aberrations for a diverse set of organic compounds from molecular structure
    • Serra J, Thompson E, Jurs P. 2003. Development of binary classification of structural chromosome aberrations for a diverse set of organic compounds from molecular structure. Chem Res Toxicol 16:153-163.
    • (2003) Chem Res Toxicol , vol.16 , pp. 153-163
    • Serra, J.1    Thompson, E.2    Jurs, P.3
  • 54
    • 0034582010 scopus 로고    scopus 로고
    • Combining high-throughput pharmacokinetic screens at the hits-to-leads stage of drug discovery
    • Spalding DJ, Harker AJ, Bayliss MK. 2000. Combining high-throughput pharmacokinetic screens at the hits-to-leads stage of drug discovery. Drug Discov Today 5(Suppl 11):70-76.
    • (2000) Drug Discov Today , vol.5 , Issue.SUPPL. 11 , pp. 70-76
    • Spalding, D.J.1    Harker, A.J.2    Bayliss, M.K.3
  • 55
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D. 1990. Probabilistic neural networks. Neural Netw 3: 109-118.
    • (1990) Neural Netw , vol.3 , pp. 109-118
    • Specht, D.1
  • 56
    • 0141890762 scopus 로고    scopus 로고
    • On the physical interpretation of QSAR models
    • Stanton DT. 2003. On the physical interpretation of QSAR models. J Chem Inf Comput Sci 43:1423-1433.
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1423-1433
    • Stanton, D.T.1
  • 57
    • 0001912153 scopus 로고
    • Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection
    • Sutter JM, Kalivas JH. 1993. Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection. Microchem J 47:60-66.
    • (1993) Microchem J , vol.47 , pp. 60-66
    • Sutter, J.M.1    Kalivas, J.H.2
  • 59
    • 0041670909 scopus 로고    scopus 로고
    • Support vector machines for ADME property classification
    • Trotter M, Holden S. 2003. Support vector machines for ADME property classification. QSAR & Comb Sci 22:533-548.
    • (2003) QSAR & Comb Sci , vol.22 , pp. 533-548
    • Trotter, M.1    Holden, S.2
  • 60
    • 1642579654 scopus 로고    scopus 로고
    • Bioavailability prediction based on molecular structure for a diverse series of drugs
    • Turner JV, Maddalena DJ, Agatonovic-Kustrin S. 2004. Bioavailability prediction based on molecular structure for a diverse series of drugs. Pharm Res 21:68-82.
    • (2004) Pharm Res , vol.21 , pp. 68-82
    • Turner, J.V.1    Maddalena, D.J.2    Agatonovic-Kustrin, S.3
  • 61
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards prediction paradise?
    • van de Waterbeemd H, Gifford E. 2003. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2: 192-204.
    • (2003) Nat Rev Drug Discov , vol.2 , pp. 192-204
    • Van De Waterbeemd, H.1    Gifford, E.2
  • 63
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • Venkatraman V, Dalby AR, Yang ZR. 2004. Evaluation of mutual information and genetic programming for feature selection in QSAR. J Chem Inf Comput Sci 44:1686-1692.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1686-1692
    • Venkatraman, V.1    Dalby, A.R.2    Yang, Z.R.3
  • 64
    • 17844411481 scopus 로고    scopus 로고
    • Feature selection in quantitative structure-activity relationships
    • Walters WP, Goldman BB. 2005. Feature selection in quantitative structure-activity relationships. Curr Opin Drug Discov Devel 8:329-333.
    • (2005) Curr Opin Drug Discov Devel , vol.8 , pp. 329-333
    • Walters, W.P.1    Goldman, B.B.2
  • 65
    • 33646407913 scopus 로고    scopus 로고
    • Wegner JK. 2005. JOELib/JOELib2: http://www-ra.informatik. uni-tuebingen.de/software/joelib/index.html
    • (2005) JOELib/JOELib2
    • Wegner, J.K.1
  • 67
    • 0034034259 scopus 로고    scopus 로고
    • High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery
    • White RE. 2000. High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu Rev Pharmacol Toxicol 40:133-157.
    • (2000) Annu Rev Pharmacol Toxicol , vol.40 , pp. 133-157
    • White, R.E.1
  • 68
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in Support Vector Machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue Y, Li ZR, Yap CW, Sun LZ, Chen X, Chen YZ. 2004a. Effect of molecular descriptor feature selection in Support Vector Machine classification of pharmacokinetic and toxicological properties of chemical agents. J Chem Inf Comput Sci 44: 1630-1638.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 69
    • 4043091303 scopus 로고    scopus 로고
    • Prediction of p-glycoprotein substrates by support vector machine approach
    • Xue Y, Yap C, Sun L, Cao Z, Wang J, Chen Y. 2004b. Prediction of p-glycoprotein substrates by support vector machine approach. J Chem Inf Comput Sci 44:1497-1505.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1497-1505
    • Xue, Y.1    Yap, C.2    Sun, L.3    Cao, Z.4    Wang, J.5    Chen, Y.6
  • 70
    • 27144433809 scopus 로고    scopus 로고
    • QSAR and classification study of 1,4-dihydropyridine calcium channel antagonists based on least squares support vector machines
    • Yao X, Liu H, Zhang R, Liu M, Hu Z, Panaye A, Doucet JP, Fan B. 2005. QSAR and classification study of 1,4-dihydropyridine calcium channel antagonists based on least squares support vector machines. Mol Pharm 2:348-356.
    • (2005) Mol Pharm , vol.2 , pp. 348-356
    • Yao, X.1    Liu, H.2    Zhang, R.3    Liu, M.4    Hu, Z.5    Panaye, A.6    Doucet, J.P.7    Fan, B.8
  • 71
    • 12244273713 scopus 로고    scopus 로고
    • Quantitative structure-pharmacokinetic relationships for drug distribution properties by using general regression neural network
    • Yap C, Chen Y. 2004. Quantitative structure-pharmacokinetic relationships for drug distribution properties by using general regression neural network. J Pharm Sci 94:153-168.
    • (2004) J Pharm Sci , vol.94 , pp. 153-168
    • Yap, C.1    Chen, Y.2
  • 72
    • 23844460948 scopus 로고    scopus 로고
    • Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines
    • Yap CW, Chen YZ. 2005. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. J Chem Inf Model 45:982-992.
    • (2005) J Chem Inf Model , vol.45 , pp. 982-992
    • Yap, C.W.1    Chen, Y.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.