메뉴 건너뛰기




Volumn 9, Issue 1, 2011, Pages 1-13

Predicting protein folding rate from amino acid sequence

Author keywords

folding rate prediction; genetic algorithm; neural network; Protein folding

Indexed keywords

PROTEIN;

EID: 79851510251     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720011005306     Document Type: Article
Times cited : (14)

References (50)
  • 1
    • 0026345750 scopus 로고
    • Folding of chymotrypsin inhibitor 2.1 Evidence for a two-state transition
    • Jackson SE, Fersht AR, Folding of chymotrypsin inhibitor 2.1 Evidence for a two-state transition, Biochemistry 30(43):10428-10435, 1991.
    • (1991) Biochemistry , vol.30 , Issue.43 , pp. 10428-10435
    • Jackson, S.E.1    Fersht, A.R.2
  • 2
    • 0031815749 scopus 로고    scopus 로고
    • How do small single-domain proteins fold?
    • Jackson SE, How do small single-domain proteins fold? Fold Des 3(4):81-91, 1998.
    • (1998) Fold des , vol.3 , Issue.4 , pp. 81-91
    • Jackson, S.E.1
  • 3
    • 0034652206 scopus 로고    scopus 로고
    • Transition-state structure as a unifying basis in protein-folding mechanisms: Contact order, chain topology, stability, and the extended nucleus mechanism
    • DOI 10.1073/pnas.97.4.1525
    • Fersht AR, Transition-state structure as a unifying basis in protein-folding mechanisms: Contact order, chain topology, stability, and the extended nucleus mechanism, Proc Natl Acad Sci USA 97(4):1525-1529, 2000. (Pubitemid 30118475)
    • (2000) Proceedings of the National Academy of Sciences of the United States of America , vol.97 , Issue.4 , pp. 1525-1529
    • Fersht, A.R.1
  • 6
    • 0032502839 scopus 로고    scopus 로고
    • Contact order, transition state placement and the refolding rates of single domain proteins
    • DOI 10.1006/jmbi.1998.1645
    • Plaxco KW, Simons KT, Baker D, Contact order, transition state placement and the refolding rates of single domain proteins, J Mol Biol 277(4):985-994, 1998. (Pubitemid 28195995)
    • (1998) Journal of Molecular Biology , vol.277 , Issue.4 , pp. 985-994
    • Plaxco, K.W.1    Simons, K.T.2    Baker, D.3
  • 7
    • 0035967862 scopus 로고    scopus 로고
    • Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: Application of long-range order to folding rate prediction
    • DOI 10.1006/jmbi.2001.4775
    • Gromiha MM, Selvaraj S, Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: Application of long-range order to folding rate prediction, J Mol Biol 310(1):27-32, 2001. (Pubitemid 32619950)
    • (2001) Journal of Molecular Biology , vol.310 , Issue.1 , pp. 27-32
    • Gromiha, M.M.1    Selvaraj, S.2
  • 8
    • 0036215854 scopus 로고    scopus 로고
    • Folding rate prediction using total contact distance
    • Zhou H, Zhou Y, Folding rate prediction using total contact distance, Biophys J 82(1):458-463, 2002. (Pubitemid 34289818)
    • (2002) Biophysical Journal , vol.82 , Issue.1 , pp. 458-463
    • Zhou, H.1    Zhou, Y.2
  • 9
    • 0041825363 scopus 로고    scopus 로고
    • Folding kinetics of two-state proteins: Effect of circularization, permutation, and crosslinks
    • DOI 10.1016/S0022-2836(03)00884-2
    • Weikl TR, Dill KA, Folding kinetics of two-state proteins: Effect of circularization, permutation, and crosslinks, J Mol Biol 332(4):953-963, 2003. (Pubitemid 37101380)
    • (2003) Journal of Molecular Biology , vol.332 , Issue.4 , pp. 953-963
    • Weikl, T.R.1    Dill, K.A.2
  • 13
    • 11144269751 scopus 로고    scopus 로고
    • Folding rate prediction using n-order contact distance for proteins with two- and three-state folding kinetics
    • Zhang LX, Sun TT, Folding rate prediction using n-order contact distance for proteins with two- and three-state folding kinetics, Biophys Chem 113(1):9-16, 2005.
    • (2005) Biophys Chem , vol.113 , Issue.1 , pp. 9-16
    • Zhang, L.X.1    Sun, T.T.2
  • 14
    • 33847255036 scopus 로고    scopus 로고
    • K-Fold: A tool for the prediction of the protein folding kinetic order and rate
    • DOI 10.1093/bioinformatics/btl610
    • Capriotti E, Casadio R, K-Fold: A tool for the prediction of the protein folding kinetic order and rate, Bioinformatics 23(3):385-386, 2007. (Pubitemid 46323166)
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 385-386
    • Capriotti, E.1    Casadio, R.2
  • 16
    • 0037432567 scopus 로고    scopus 로고
    • Local secondary structure content predicts folding rates for simple, two-state proteins
    • DOI 10.1016/S0022-2836(03)00211-0
    • Gong H, Isom DG, Srinivasan R, Rose GD, Local secondary structure content predicts folding rates for simple two-state proteins, J Mol Biol 327(5):1149-1154, 2003. (Pubitemid 36363719)
    • (2003) Journal of Molecular Biology , vol.327 , Issue.5 , pp. 1149-1154
    • Gong, H.1    Isom, D.G.2    Srinivasan, R.3    Rose, G.D.4
  • 17
    • 0037566828 scopus 로고    scopus 로고
    • A simple parameter relating sequences with folding rates of small α helical proteins
    • DOI 10.2174/0929866033478906
    • Shao H, Peng Y, Zeng ZH, A simple parameter relating sequences with folding rates of small helical proteins, Protein Pept Lett 10(3):277-280, 2003. (Pubitemid 36614852)
    • (2003) Protein and Peptide Letters , vol.10 , Issue.3 , pp. 277-280
    • Shao, H.1    Peng, Y.2    Zeng, Z.-H.3
  • 19
    • 33646028225 scopus 로고    scopus 로고
    • Amino acid sequence predicts folding rate for middle-size two-state proteins
    • Huang JT, Jing T, Amino acid sequence predicts folding rate for middle-size two-state proteins, Proteins 63(3):551-554, 2006.
    • (2006) Proteins , vol.63 , Issue.3 , pp. 551-554
    • Huang, J.T.1    Jing, T.2
  • 20
    • 17144369578 scopus 로고    scopus 로고
    • Protein folding rates estimated from contact predictions
    • DOI 10.1016/j.jmb.2005.02.068
    • Punta M, Rost B, Protein folding rates estimated from contact predictions, J Mol Biol 348(3):507-512, 2005. (Pubitemid 40515665)
    • (2005) Journal of Molecular Biology , vol.348 , Issue.3 , pp. 507-512
    • Punta, M.1    Rost, B.2
  • 21
    • 18344371857 scopus 로고    scopus 로고
    • A statistical model for predicting protein folding rates from amino acid sequence with structural class information
    • DOI 10.1021/ci049757q
    • Gromiha MM, A statistical model for predicting protein folding rates from amino acid sequence with structural class information, J Chem Inf Model 45(2):494-501, 2005. (Pubitemid 40635357)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.2 , pp. 494-501
    • Gromiha, M.M.1
  • 22
    • 33747822326 scopus 로고    scopus 로고
    • FOLD-RATE: Prediction of protein folding rates from amino acid sequence
    • Gromiha MM, Thangakani AM, Selvaraj S, FOLD-RATE: Prediction of protein folding rates from amino acid sequence, Nucleic Acids Res 34(Suppl 2):70-74, 2006.
    • (2006) Nucleic Acids Res , vol.34 , Issue.SUPPL. 2 , pp. 70-74
    • Gromiha, M.M.1    Thangakani, A.M.2    Selvaraj, S.3
  • 23
    • 33749035288 scopus 로고    scopus 로고
    • Direct correlation between proteins' folding rates and their amino acid compositions: An ab initio folding rate prediction
    • Ma BG, Guo JX, Zhang HY, Direct correlation between proteins' folding rates and their amino acid compositions: An ab initio folding rate prediction, Proteins 65(2):362-372, 2006.
    • (2006) Proteins , vol.65 , Issue.2 , pp. 362-372
    • Ma, B.G.1    Guo, J.X.2    Zhang, H.Y.3
  • 24
    • 64549141572 scopus 로고    scopus 로고
    • Prediction of protein folding rates from primary sequences using hybrid sequence representation
    • Jiang Y, Iglinski P, Kurgan L, Prediction of protein folding rates from primary sequences using hybrid sequence representation, J Comput Chem 30(5):772-783, 2009.
    • (2009) J Comput Chem , vol.30 , Issue.5 , pp. 772-783
    • Jiang, Y.1    Iglinski, P.2    Kurgan, L.3
  • 25
    • 46449092464 scopus 로고    scopus 로고
    • Analysis and prediction of protein folding rates using quadratic response surface models
    • Huang LT, Gromiha MM, Analysis and prediction of protein folding rates using quadratic response surface models, J Comput Chem 29(10):1675-1683, 2008.
    • (2008) J Comput Chem , vol.29 , Issue.10 , pp. 1675-1683
    • Huang, L.T.1    Gromiha, M.M.2
  • 26
    • 46449120907 scopus 로고    scopus 로고
    • Predicting protein folding rates from geometric contact and amino acid sequence
    • DOI 10.1110/ps.034660.108
    • OuYang Z, Liang J, Predicting protein folding rates from geometric contact and amino acid sequence, Protein Sci 17(7):1256-1263, 2008. (Pubitemid 351930923)
    • (2008) Protein Science , vol.17 , Issue.7 , pp. 1256-1263
    • Ouyang, Z.1    Liang, J.2
  • 27
    • 69949110263 scopus 로고    scopus 로고
    • Prediction of protein folding rates from primary sequence by fusing multiple sequential features
    • Shen HB, Song JN, Chou KC, Prediction of protein folding rates from primary sequence by fusing multiple sequential features, Journal of Biomedical Science and Engineering 2(3):136-143, 2009.
    • (2009) Journal of Biomedical Science and Engineering , vol.2 , Issue.3 , pp. 136-143
    • Shen, H.B.1    Song, J.N.2    Chou, K.C.3
  • 28
    • 77953592974 scopus 로고    scopus 로고
    • Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility
    • Gao J, Zhang T, Zhang H, Shen S, Ruan J, Kurgan L, Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility, Proteins 78(9):2114-2130, 2010.
    • (2010) Proteins , vol.78 , Issue.9 , pp. 2114-2130
    • Gao, J.1    Zhang, T.2    Zhang, H.3    Shen, S.4    Ruan, J.5    Kurgan, L.6
  • 29
    • 58149199581 scopus 로고    scopus 로고
    • KineticDB: A database of protein folding kinetics
    • (Database issue)
    • Bogatyreva NS, Osypov AA, Ivankov DN, KineticDB: A database of protein folding kinetics, Nucleic Acids Res 37(Database issue); D342-346, 2009.
    • (2009) Nucleic Acids Res , vol.37
    • Bogatyreva, N.S.1    Osypov, A.A.2    Ivankov, D.N.3
  • 30
    • 33846054321 scopus 로고    scopus 로고
    • Protein Folding Database (PFD 2.0): An online environment for the international foldeomics consortium
    • DOI 10.1093/nar/gkl1007
    • Fulton KF, Bate MA, Faux NG, Mahmood K, Betts C, Buckle AM, Protein Folding Database (PFD 2.0): An online environment for the International Foldeomics Consortium, Nucleic Acids Res 35(Database issue); D304-D307 2007. (Pubitemid 46056220)
    • (2007) Nucleic Acids Research , vol.35 , Issue.SUPPL. 1
    • Fulton, K.F.1    Bate, M.A.2    Faux, N.G.3    Mahmood, K.4    Betts, C.5    Buckle, A.M.6
  • 32
    • 0027596624 scopus 로고
    • Using knowledge-based neural network to improve algorithms: Refining the Chou-Fasman algorithm for protein folding
    • Maclin R and Shavlik JW, Using knowledge-based neural network to improve algorithms: Refining the Chou-Fasman algorithm for protein folding, Mach Learn 11(2- 3):195-215, 1993.
    • (1993) Mach Learn , vol.11 , Issue.2-3 , pp. 195-215
    • MacLin, R.1    Shavlik, J.W.2
  • 33
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart DE, Hinton GE, Williams RJ, Learning representations by backpropagating errors, Nature 323(9):533-536, 1986.
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems 2(4):303-314, 1989.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 35
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M, Lin VY, Pinkus A, Schochen S, Multilayer feed forward networks with a nonpolynomial activation function can approximate any function, Neural Networks 6(6):861-867, 1993. (Pubitemid 23713273)
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 861-867
    • Leshno Moshe1    Lin Vladimir, Ya.2    Pinkus Allan3    Schocken Shimon4
  • 36
    • 0029004155 scopus 로고
    • Neural networks, approximation theory, and finite precision computation
    • Wray J, Green GGR, Neural networks, approximation theory, and finite precision computation, Neural networks 8(1):31-37, 1995.
    • (1995) Neural Networks , vol.8 , Issue.1 , pp. 31-37
    • Wray, J.1    Green, G.G.R.2
  • 37
    • 37349076888 scopus 로고    scopus 로고
    • Prediction of N-linked glycan branching patterns using artificial neural networks
    • DOI 10.1016/j.mbs.2007.10.005, PII S0025556407002052
    • Senger RS, Nazmul KM, Prediction of N-linked glycan branching patterns using artificial neural networks, Math. Biosci. 211(1):89-104, 2008. (Pubitemid 350298119)
    • (2008) Mathematical Biosciences , vol.211 , Issue.1 , pp. 89-104
    • Senger, R.S.1    Karim, M.N.2
  • 38
    • 0034811555 scopus 로고    scopus 로고
    • A new algorithm to design compact two-hidden-layer artificial neural networks
    • DOI 10.1016/S0893-6080(01)00075-2, PII S0893608001000752
    • Islam MM, Murase K, A new algorithm to design compact two hidden-layer artificial neural network, Neural Networks 14(9):1265-1278, 2001. (Pubitemid 32910636)
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1265-1278
    • Islam, Md.M.1    Murase, K.2
  • 39
    • 27944449317 scopus 로고    scopus 로고
    • The study of the optimal structure of BP nueral network
    • Tang WM, The study of the optimal structure of BP nueral network, Systems Engineering - Theory and Practice 25(10):95-100, 2005.
    • (2005) Systems Engineering - Theory and Practice , vol.25 , Issue.10 , pp. 95-100
    • Tang, W.M.1
  • 40
    • 0031283308 scopus 로고    scopus 로고
    • Artificial neural networks for molecular sequence analysis
    • PII S0097848596000381
    • Wu CH, Artificial neural networks for molecular sequence analysis, Comput Chem 21(4):237-256, 1997. (Pubitemid 127400188)
    • (1997) Computers and Chemistry , vol.21 , Issue.4 , pp. 237-256
    • Wu, C.H.1
  • 41
    • 45449100528 scopus 로고    scopus 로고
    • Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers
    • Taheri M, Mohebbi A, Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers, J Hazard Mater 157(1):122-129, 2008.
    • (2008) J Hazard Mater , vol.157 , Issue.1 , pp. 122-129
    • Taheri, M.1    Mohebbi, A.2
  • 42
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • Leung HF, Lam HK, Ling SH, Tam PS, Tuning of the structure and parameters of a neural network using an improved genetic algorithm, IEEE Trans Neural Networks 14(1):79-88, 2003.
    • (2003) IEEE Trans Neural Networks , vol.14 , Issue.1 , pp. 79-88
    • Leung, H.F.1    Lam, H.K.2    Ling, S.H.3    Tam, P.S.4
  • 43
    • 0008863560 scopus 로고
    • Some factors in the interpretation of protein denaturation
    • KauzmannW, Some factors in the interpretation of protein denaturation, Adv Protein Chem 14:1-63, 1959.
    • (1959) Adv Protein Chem , vol.14 , pp. 1-63
    • Kauzmann, W.1
  • 44
    • 0038519321 scopus 로고
    • Contribution of hydrophobic interactions to the stability of the globular conformation of proteins
    • Tanford C, Contribution of hydrophobic interactions to the stability of the globular conformation of proteins, J Am Chem Soc 84(22):4240-4274, 1962.
    • (1962) J Am Chem Soc , vol.84 , Issue.22 , pp. 4240-4274
    • Tanford, C.1
  • 45
    • 0029595442 scopus 로고
    • SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments
    • Geourjon C, G. Deĺeage, SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments, Comput Appl Biosci 11(6):681-684, 1995. (Pubitemid 26032758)
    • (1995) Computer Applications in the Biosciences , vol.11 , Issue.6 , pp. 681-684
    • Geourjon, C.1    Deleage, G.2
  • 46
    • 33644842082 scopus 로고    scopus 로고
    • Prediction of protein secondary structure content using amino acid composition and evolutionary information
    • DOI 10.1002/prot.20821
    • Lee S, Lee BC, Kim D, Prediction of protein secondary structure content using amino acid composition and evolutionary information, Proteins 62(4):1107-1114, 2006. (Pubitemid 43364173)
    • (2006) Proteins: Structure, Function and Genetics , vol.62 , Issue.4 , pp. 1107-1114
    • Lee, S.1    Lee, B.-C.2    Kim, D.3
  • 47
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • DOI 10.1002/1097-0134(20000815 )40:3<502::AID-PROT170>3.0.CO;2-Q
    • Cuff JA, Barton GJ, Application of multiple sequence alignment profiles to improve protein secondary structure prediction, Proteins 40(3):502-511, 2000. (Pubitemid 30624459)
    • (2000) Proteins: Structure, Function and Genetics , vol.40 , Issue.3 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 48
    • 77955803368 scopus 로고    scopus 로고
    • Study on wavelet image border processing method
    • Xu WY, Yu XB, Study on wavelet image border processing method, Comput Appl Softw 20(3):35-37, 2003.
    • (2003) Comput Appl Softw , vol.20 , Issue.3 , pp. 35-37
    • Xu, W.Y.1    Yu, X.B.2
  • 50
    • 77649339280 scopus 로고    scopus 로고
    • Recent advances in developing web-servers for predicting protein attributes
    • Chou KC, Shen HB, Recent advances in developing web-servers for predicting protein attributes, Natural Science 1(2):63-92, 2009.
    • (2009) Natural Science , vol.1 , Issue.2 , pp. 63-92
    • Chou, K.C.1    Shen, H.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.