메뉴 건너뛰기




Volumn 31, Issue 6, 2010, Pages 1249-1258

In silico prediction and screening of γ-secretase inhibitors by molecular descriptors and machine learning methods

Author keywords

secretase inhibitors; Machine learning; Random forest (rf); Support vector machine (svm); Virtual screening

Indexed keywords

ALZHEIMER'S DISEASE; DEVELOPED MODEL; FEATURE SELECTION METHODS; IN-SILICO; INCOMPLETE KNOWLEDGE; MACHINE LEARNING METHODS; MACHINE-LEARNING; MOLECULAR DESCRIPTORS; OPTIMAL THRESHOLD; PHYSICOCHEMICAL FEATURES; PREDICTION ACCURACY; QUANTITATIVE ANALYSIS; RANDOM FORESTS; RECEIVER OPERATING CHARACTERISTIC CURVES; ROC CURVES; SECRETASES; THERAPEUTIC AGENTS; THREE-DIMENSIONAL STRUCTURE; TWO MACHINES; VIRTUAL SCREENING;

EID: 77950570306     PISSN: 01928651     EISSN: 1096987X     Source Type: Journal    
DOI: 10.1002/jcc.21411     Document Type: Article
Times cited : (24)

References (73)
  • 9
    • 45849110322 scopus 로고    scopus 로고
    • Naunyn-schmiedeberg's arch
    • Tomita, T. Naunyn-Schmiedeberg's Arch. Pharmacol 2008, 377, 295.
    • (2008) Pharmacol , vol.377 , pp. 295
    • Tomita, T.1
  • 62
    • 77950573112 scopus 로고    scopus 로고
    • The NCI Diversity Set II. Available at
    • The NCI Diversity Set II. Available at http://dtp.nci.nih.gov/ branches/dscb/div2-exp.lanation.html (accessed on April 5, 2009).
    • (2009)
  • 64
    • 77950585061 scopus 로고    scopus 로고
    • 2004. Available at
    • Breiman, L.; Cutler, A. Random Forests; version 51, 2004. Available at http://stat-www.berkeley.edu/users/breiman/Random.Forests/ cc-home.htm (accessed on June 25, 2008).
    • Forests; Version 51 , vol.25 , pp. 2008
    • Breiman, L.1    Random, C.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.