메뉴 건너뛰기




Volumn 22, Issue 1 A, 2002, Pages 433-438

Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: Statistical, neural network and fuzzy approaches

Author keywords

Artificial neural networks; Fuzzy k nearest neighbour; Histological assessment; Logistic regression; Nodal involvement; Oncology; Prognosis; Survival analysis

Indexed keywords

ACCURACY; ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CANCER; CANCER GRADING; CANCER GROWTH; CANCER SURVIVAL; CELL CYCLE G0 PHASE; CELL CYCLE G1 PHASE; CELL CYCLE G2 PHASE; CELL CYCLE S PHASE; FEMALE; HISTOLOGY; HUMAN; HUMAN TISSUE; IMAGE CYTOMETRY; LOGISTIC REGRESSION ANALYSIS; LYMPH NODE METASTASIS; MAJOR CLINICAL STUDY; METAPHASE; MODEL; PLOIDY; PREDICTION; PRIORITY JOURNAL; PROGNOSIS; RELIABILITY; SURVIVAL RATE;

EID: 0036254780     PISSN: 02507005     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (36)

References (23)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.