메뉴 건너뛰기




Volumn 44, Issue 4, 2004, Pages 1257-1266

Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; GENETIC ALGORITHMS; LEARNING SYSTEMS; REGRESSION ANALYSIS; TOXICITY; VECTORS;

EID: 4043071270     PISSN: 00952338     EISSN: None     Source Type: Journal    
DOI: 10.1021/ci049965i     Document Type: Article
Times cited : (233)

References (34)
  • 2
    • 0002905234 scopus 로고    scopus 로고
    • Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties
    • Katritzky, A. R.; Maran, U.; Lobanov, V. S.; Karelson, M. Structurally Diverse Quantitative Structure-Property Relationship Correlations of Technologically Relevant Physical Properties. J. Chem. Inf. Comput. Sci. 2000, 4, 1-18.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.4 , pp. 1-18
    • Katritzky, A.R.1    Maran, U.2    Lobanov, V.S.3    Karelson, M.4
  • 6
    • 0034642825 scopus 로고    scopus 로고
    • Local modeling with radial basis function networks
    • Walczak, B.; Massart, D. L. Local modeling with radial basis function networks. Chemom. Intell. Lab. Syst. 2000, 50, 179-198.
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 179-198
    • Walczak, B.1    Massart, D.L.2
  • 7
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. S.; Cristianini, N.; Duffy, N.; Bednarski, D. W.; Schummer, M. and Haussler, D. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 2000, 16, 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 8
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification Using Support Vector Machines. Mach. Learn. 2002, 46, 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 0037196307 scopus 로고    scopus 로고
    • Support vector machines for predicting HIV protease cleavage sites in protein
    • Cai, Y. D.; Liu, X. J.; Xu, X. B.; Chou, K. C. Support Vector Machines for Predicting HIV Protease Cleavage Sites in Protein. J. Comput. Chem. 2002, 23, 267-274.
    • (2002) J. Comput. Chem. , vol.23 , pp. 267-274
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Chou, K.C.4
  • 12
    • 0035957531 scopus 로고    scopus 로고
    • Novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua, S. J.; Sun, Z. R. Novel Method of Protein Secondary Structure Prediction with High Segment Overlap Measure: Support Vector Machine Approach. J. Mol. Biol. 2001, 308, 397-407.
    • (2001) J. Mol. Biol. , vol.308 , pp. 397-407
    • Hua, S.J.1    Sun, Z.R.2
  • 13
    • 0036827078 scopus 로고    scopus 로고
    • Prediction of protein retention times in anion-exchange chromatography systems using support vector regression
    • Song, M.; Breneman, C. M.; Bi, J.; Sukumar, N.; Bennett, K. P.; Cramer, S.; Tugcu, N. Prediction of Protein Retention Times in Anion-Exchange Chromatography Systems Using Support Vector Regression. J. Chem. Inf. Comput. Sci. 2002, 42, 1347-1357.
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1347-1357
    • Song, M.1    Breneman, C.M.2    Bi, J.3    Sukumar, N.4    Bennett, K.P.5    Cramer, S.6    Tugcu, N.7
  • 14
    • 0242273876 scopus 로고    scopus 로고
    • Prediction of the effect of mobile-phase salt type on protein retention and selectivity in anion exchange systems
    • Tugcu, N.; Song, M.; Breneman, C. M.; Sukumar, N.; Bennett, K. P.; Cramer, S. M. Prediction of the Effect of Mobile-Phase Salt Type on Protein Retention and Selectivity in Anion Exchange Systems. Anal. Chem. 2003, 75, 3563-3572.
    • (2003) Anal. Chem. , vol.75 , pp. 3563-3572
    • Tugcu, N.1    Song, M.2    Breneman, C.M.3    Sukumar, N.4    Bennett, K.P.5    Cramer, S.M.6
  • 15
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001, 26, 5-14.
    • (2001) Comput Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 16
    • 0036632452 scopus 로고    scopus 로고
    • Fragment generation and support vector machines for inducing SARs
    • Kramer, S.; Frank, E.; Helma, C. Fragment Generation and Support Vector Machines for Inducing SARs. SAR QSAR Environ Res. 2002, 13, 509-523.
    • (2002) SAR QSAR Environ Res. , vol.13 , pp. 509-523
    • Kramer, S.1    Frank, E.2    Helma, C.3
  • 17
    • 0035150169 scopus 로고    scopus 로고
    • Use of support vector machine in pattern classification: Application to QSAR studies
    • Czerminski, R.; Yasri, A.; Hartsough, D. Use of support vector machine in pattern classification: application to QSAR studies. Quant. Struct. Act. Relat. 2001, 20, 227-240
    • (2001) Quant. Struct. Act. Relat. , vol.20 , pp. 227-240
    • Czerminski, R.1    Yasri, A.2    Hartsough, D.3
  • 19
    • 0043201408 scopus 로고    scopus 로고
    • QSAR study of ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl))amino]-4- (trifluoromethyl) pyrimidine-5-carboxylate: An inhibitor of AP-1 and NF-κB mediated gene expression based on support vector machines
    • Liu, H. X.; Zhang, R. S.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. QSAR Study of Ethyl 2-[(3-Methyl-2,5-dioxo(3-pyrrolinyl))amino]-4- (trifluoromethyl) pyrimidine-5-carboxylate: An Inhibitor of AP-1 and NF-κB Mediated Gene Expression Based on Support Vector Machines. J. Chem. Inf. Comput. Sci. 2003, 43, 1288-1296.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1288-1296
    • Liu, H.X.1    Zhang, R.S.2    Yao, X.J.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6
  • 20
    • 4043055740 scopus 로고    scopus 로고
    • Support vector machine identification of the aquatic toxicity mechanism of organic compounds
    • Ivanciuc, O. Support vector machine identification of the aquatic toxicity mechanism of organic compounds. Internet Electron. J. Mol. Des. 2002, 1, 151-172.
    • (2002) Internet Electron. J. Mol. Des. , vol.1 , pp. 151-172
    • Ivanciuc, O.1
  • 21
    • 4043092665 scopus 로고    scopus 로고
    • Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons
    • Ivanciuc, O. Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons. Internet Electron. J. Mol. Des. 2002, 1, 203-218.
    • (2002) Internet Electron. J. Mol. Des. , vol.1 , pp. 203-218
    • Ivanciuc, O.1
  • 27
    • 0036505670 scopus 로고    scopus 로고
    • Comparison of methods for multi-class support vector machines
    • Hsu, C. W.; Lin, C. J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 2002, 13, 415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.A.2
  • 30
    • 0037364747 scopus 로고    scopus 로고
    • Cyclooxygenase (COX) inhibitors: A comparative QSAR study
    • Garg, R.; Kurup, A.; Mekapati, S. B.; Hansch, C.; Cyclooxygenase (COX) Inhibitors: A Comparative QSAR Study. Chem. Rev. 2003, 103, 703-732.
    • (2003) Chem. Rev. , vol.103 , pp. 703-732
    • Garg, R.1    Kurup, A.2    Mekapati, S.B.3    Hansch, C.4
  • 33
    • 0004320505 scopus 로고
    • Hypercube, Inc.
    • HyperChem 4.0, Hypercube, Inc., 1994.
    • (1994) HyperChem 4.0


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.