메뉴 건너뛰기




Volumn 12, Issue 5, 2008, Pages 519-534

Initiation of protein synthesis: A target for antimicrobials

Author keywords

Edeine; FMet tRNA; GE81112; Kasugamycin; MRNA; Orthosomycin; Oxazolidinones; Pactamycin; Thiostrepton; Trimethoprim

Indexed keywords

ACTINONIN; AMINOGLYCOSIDE ANTIBIOTIC AGENT; ANTIBIOTIC AGENT; ANTIINFECTIVE AGENT; AVILAMYCIN; BB 86398; CHLORAMPHENICOL; DIHYDROFOLATE REDUCTASE INHIBITOR; DSM 14386; EDEINE; EVERNIMICIN; GE 81112; KASUGAMYCIN; LINCOMYCIN; LINEZOLID; MACROLIDE; METHOTREXATE; N (1 TERT BUTYL 2 DIMETHYLAMINO 2 OXOETHYL) 2 (N FORMYL N HYDROXYAMINOMETHYL)HEXANAMIDE; ORTHOSOMYCIN; OXAZOLIDINONE DERIVATIVE; PACTAMYCIN; PEPTIDE DEFORMYLASE INHIBITOR; PYRIMETHAMINE; SULFONAMIDE; THIOSTREPTON; TRIMETHOPRIM; VANCOMYCIN; VRC 3375; BACTERIAL PROTEIN; INITIATION FACTOR; PROTEIN SYNTHESIS INHIBITOR;

EID: 43349101061     PISSN: 14728222     EISSN: None     Source Type: Journal    
DOI: 10.1517/14728222.12.5.519     Document Type: Review
Times cited : (11)

References (109)
  • 1
    • 33644504461 scopus 로고    scopus 로고
    • Antibacterial drug discovery-then, now and the genomics future
    • Monaghan RL, Barrett JF. Antibacterial drug discovery-then, now and the genomics future. Biochem Pharmacol 2006;71:901-9
    • (2006) Biochem Pharmacol , vol.71 , pp. 901-909
    • Monaghan, R.L.1    Barrett, J.F.2
  • 3
    • 10944272743 scopus 로고    scopus 로고
    • Antibacterial resistance worldwide: Causes, challenges and responses
    • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004;10:S122-9
    • (2004) Nat Med , vol.10
    • Levy, S.B.1    Marshall, B.2
  • 4
    • 33644610182 scopus 로고    scopus 로고
    • Structure-based drug design meets the ribosome
    • Franceschi F, Duffy EM. Structure-based drug design meets the ribosome. Biochem Pharmacol 2006;7:1016-25
    • (2006) Biochem Pharmacol , vol.7 , pp. 1016-1025
    • Franceschi, F.1    Duffy, E.M.2
  • 5
    • 30444456799 scopus 로고    scopus 로고
    • Specific, efficient and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic
    • Brandi L, Fabbretti A, La Teana A, et al. Specific, efficient and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. Proc Natl Acad Sci USA 2006;103:39-44
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 39-44
    • Brandi, L.1    Fabbretti, A.2    La Teana, A.3
  • 6
    • 0035032997 scopus 로고    scopus 로고
    • Structural basis for selectivity and toxicity of ribosomal antibiotics
    • Bottger EC, Springer B, Prammananan T, et al. Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep 2001;2:318-23
    • (2001) EMBO Rep , vol.2 , pp. 318-323
    • Bottger, E.C.1    Springer, B.2    Prammananan, T.3
  • 7
    • 15944390620 scopus 로고    scopus 로고
    • Evolution of translational initiation: New insights from the archaea
    • Londei P. Evolution of translational initiation: new insights from the archaea. FEMS Microbiol Rev 2005;29:185-200
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 185-200
    • Londei, P.1
  • 8
    • 0025365804 scopus 로고
    • Initiation of mRNA translation in prokaryotes
    • Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry 1990;29:5881-9
    • (1990) Biochemistry , vol.29 , pp. 5881-5889
    • Gualerzi, C.O.1    Pon, C.L.2
  • 9
    • 0242439747 scopus 로고    scopus 로고
    • Role of the initiation factors in the early events of mRNA translation in bacteria
    • Gualerzi CO, Brandi L, Caserta E, et al. Role of the initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harbor Symp Quant Biol 2001;66:363-76
    • (2001) Cold Spring Harbor Symp Quant Biol , vol.66 , pp. 363-376
    • Gualerzi, C.O.1    Brandi, L.2    Caserta, E.3
  • 11
    • 0016368458 scopus 로고
    • Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli
    • Pon CL, Gualerzi C. Effect of initiation factor 3 binding on the 30S ribosomal subunits of Escherichia coli. Proc Natl Acad Sci USA 1974;71:4950-4
    • (1974) Proc Natl Acad Sci USA , vol.71 , pp. 4950-4954
    • Pon, C.L.1    Gualerzi, C.2
  • 12
    • 0020045013 scopus 로고
    • The topographical localization of IF3 on E. coli 30S ribosomal subunits as a clue to its way of functioning
    • Pon CL, Pawlik RT, Gualerzi C. The topographical localization of IF3 on E. coli 30S ribosomal subunits as a clue to its way of functioning. FEBS Lett 1982;137:163-7
    • (1982) FEBS Lett , vol.137 , pp. 163-167
    • Pon, C.L.1    Pawlik, R.T.2    Gualerzi, C.3
  • 13
    • 0035910393 scopus 로고    scopus 로고
    • Crystal structure of an initiation factor bound to the 30S ribosomal subunit
    • Carter AP, Clemons WM Jr, Brodersen DE, et al. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 2001;291:498-501
    • (2001) Science , vol.291 , pp. 498-501
    • Carter, A.P.1    Clemons Jr, W.M.2    Brodersen, D.E.3
  • 14
    • 27644491082 scopus 로고    scopus 로고
    • Structures of the bacterial ribosome at 3.5Å resolution
    • Schuwirth BS, Borovinskaya MA, Hau CW, et al. Structures of the bacterial ribosome at 3.5Å resolution. Science 2005;310:827-34
    • (2005) Science , vol.310 , pp. 827-834
    • Schuwirth, B.S.1    Borovinskaya, M.A.2    Hau, C.W.3
  • 15
    • 0024360942 scopus 로고
    • Translation initiation factors affect an alternative occupancy of a dual ribosomal binding site by mRNA
    • Canonaco M, Gualerzi CO, Pon CL. Translation initiation factors affect an alternative occupancy of a dual ribosomal binding site by mRNA. Eur J Biochem 1989;182:501-6
    • (1989) Eur J Biochem , vol.182 , pp. 501-506
    • Canonaco, M.1    Gualerzi, C.O.2    Pon, C.L.3
  • 16
    • 0029383434 scopus 로고
    • From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors
    • La Teana A, Gualerzi CO, Brimacombe R. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1995;1:772-82
    • (1995) RNA , vol.1 , pp. 772-782
    • La Teana, A.1    Gualerzi, C.O.2    Brimacombe, R.3
  • 17
    • 33751103912 scopus 로고    scopus 로고
    • Structural basis for messenger RNA movement on the ribosome
    • Yusupova G, Jenner L, Rees B, et al. Structural basis for messenger RNA movement on the ribosome. Nature 2006;444:391-4
    • (2006) Nature , vol.444 , pp. 391-394
    • Yusupova, G.1    Jenner, L.2    Rees, B.3
  • 18
    • 33847670917 scopus 로고    scopus 로고
    • A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgamo interaction
    • Kaminishi T, Wilson DL, Takemoto C, et al. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgamo interaction. Structure 2007;15:289-97
    • (2007) Structure , vol.15 , pp. 289-297
    • Kaminishi, T.1    Wilson, D.L.2    Takemoto, C.3
  • 19
    • 0342264747 scopus 로고    scopus 로고
    • Late events of translation initiation in bacteria: A kinetic analysis
    • Tomsic J, Vitali LA, Daviter T, et al. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 2000;19:2127-36
    • (2000) EMBO J , vol.19 , pp. 2127-2136
    • Tomsic, J.1    Vitali, L.A.2    Daviter, T.3
  • 20
    • 34748843156 scopus 로고    scopus 로고
    • A qualitative kinetic scheme for 70S initiation complex formation
    • Grigoriadou C, Marzi S, Kirillov S, et al. A qualitative kinetic scheme for 70S initiation complex formation. J Mol Biol 2007;373:562-72
    • (2007) J Mol Biol , vol.373 , pp. 562-572
    • Grigoriadou, C.1    Marzi, S.2    Kirillov, S.3
  • 21
    • 13844280352 scopus 로고    scopus 로고
    • A time-resolved investigation of ribosomal subunit association
    • Hennelly SP, Antoun A, Ehrenberg M, et al. A time-resolved investigation of ribosomal subunit association. J Mol Biol 2005;346:1243-58
    • (2005) J Mol Biol , vol.346 , pp. 1243-1258
    • Hennelly, S.P.1    Antoun, A.2    Ehrenberg, M.3
  • 22
    • 33846208718 scopus 로고    scopus 로고
    • The real time path of IF3 onto and off the ribosome
    • Fabbretti A, Pon CL, Hennelly SP, et al. The real time path of IF3 onto and off the ribosome. Mol Cell 2007;25:285-96
    • (2007) Mol Cell , vol.25 , pp. 285-296
    • Fabbretti, A.1    Pon, C.L.2    Hennelly, S.P.3
  • 23
    • 34748909381 scopus 로고    scopus 로고
    • The translational fidelity function of IF3 during transition from the 30S initiation complex to the 70S initiation complex
    • Grigoriadou C, Marzi S, Pan D, et al. The translational fidelity function of IF3 during transition from the 30S initiation complex to the 70S initiation complex. J Mol Biol 2007;372:551-61
    • (2007) J Mol Biol , vol.372 , pp. 551-561
    • Grigoriadou, C.1    Marzi, S.2    Pan, D.3
  • 24
    • 0024789671 scopus 로고
    • Site-directed mutagenesis of Escherichia coli translation initiation factors. Identification of the amino acids involved in ribosomal binding and recycling of IF1
    • Gualerzi CO, Spurio R, La Teana A, et al. Site-directed mutagenesis of Escherichia coli translation initiation factors. Identification of the amino acids involved in ribosomal binding and recycling of IF1. Protein Eng 1989;3:133-8
    • (1989) Protein Eng , vol.3 , pp. 133-138
    • Gualerzi, C.O.1    Spurio, R.2    La Teana, A.3
  • 25
    • 28544446738 scopus 로고    scopus 로고
    • Conformational transition of initiation factor 2 from the GTP- to GDP-state visualized on the ribosome
    • Myasnikov AG, Marzi S, Simonetti A, et al. Conformational transition of initiation factor 2 from the GTP- to GDP-state visualized on the ribosome. Nat Struct Mol Biol 2005;12:1145-9
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 1145-1149
    • Myasnikov, A.G.1    Marzi, S.2    Simonetti, A.3
  • 26
    • 20444365142 scopus 로고    scopus 로고
    • The cryo-EM structure of the translation initiation complex from Escherichia coli
    • Allen GS, Zavialov A, Gursky R, et al. The cryo-EM structure of the translation initiation complex from Escherichia coli. Cell 2005;121:703-12
    • (2005) Cell , vol.121 , pp. 703-712
    • Allen, G.S.1    Zavialov, A.2    Gursky, R.3
  • 27
    • 0034723404 scopus 로고    scopus 로고
    • The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2
    • Spurio R, Brandi L, Caserta E, et al. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 2000;275:2447-54
    • (2000) J Biol Chem , vol.275 , pp. 2447-2454
    • Spurio, R.1    Brandi, L.2    Caserta, E.3
  • 28
    • 0034597006 scopus 로고    scopus 로고
    • Mapping the fMet-tRNA binding site of initiation factor IF2
    • Guenneugues M, Meunier S, Boelens R, et al. Mapping the fMet-tRNA binding site of initiation factor IF2. EMBO J 2000;19:5233-49
    • (2000) EMBO J , vol.19 , pp. 5233-5249
    • Guenneugues, M.1    Meunier, S.2    Boelens, R.3
  • 29
    • 33748314478 scopus 로고    scopus 로고
    • Translation initiation factor IF2 interacts with the 30S subunit via two separate binding sites
    • Caserta E, Tomsic J, Spurio R, et al. Translation initiation factor IF2 interacts with the 30S subunit via two separate binding sites. J Mol Biol 2006;362:787-99
    • (2006) J Mol Biol , vol.362 , pp. 787-799
    • Caserta, E.1    Tomsic, J.2    Spurio, R.3
  • 32
    • 1642564526 scopus 로고    scopus 로고
    • Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: The universally conserved residues G693 and C795 regulate P-site RNA binding
    • Dinos G, Wilson DN, Teraoka Y, et al. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol Cell 2004;13:113-24
    • (2004) Mol Cell , vol.13 , pp. 113-124
    • Dinos, G.1    Wilson, D.N.2    Teraoka, Y.3
  • 33
    • 0013868347 scopus 로고
    • N-formylmethionyl-sRNA as the initiator of protein synthesis
    • Adams JM, Capecchi MR. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc Natl Acad Sci USA 1966;55:147-55
    • (1966) Proc Natl Acad Sci USA , vol.55 , pp. 147-155
    • Adams, J.M.1    Capecchi, M.R.2
  • 34
    • 0013916734 scopus 로고
    • Initiation of E. coli proteins
    • Capecchi MR. Initiation of E. coli proteins. Proc Natl Acad Sci USA 1966;55:1517-24
    • (1966) Proc Natl Acad Sci USA , vol.55 , pp. 1517-1524
    • Capecchi, M.R.1
  • 36
    • 0033579427 scopus 로고    scopus 로고
    • Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features
    • Mechulam Y, Schmitt E, Maveyraud L, et al. Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. J Mol Biol 1999;294:1287-97
    • (1999) J Mol Biol , vol.294 , pp. 1287-1297
    • Mechulam, Y.1    Schmitt, E.2    Maveyraud, L.3
  • 37
    • 0037195239 scopus 로고    scopus 로고
    • Structure and function of the C terminal domain of methionyl-tRNA synthetase
    • Crepin T, Schmitt E, Blanquet S, et al. Structure and function of the C terminal domain of methionyl-tRNA synthetase. Biochemistry 2002;41:13003-11
    • (2002) Biochemistry , vol.41 , pp. 13003-13011
    • Crepin, T.1    Schmitt, E.2    Blanquet, S.3
  • 39
    • 0014030712 scopus 로고
    • Formylmethionyl-tRNA dependence of amino acid incorporation in extracts of trimethoprim-treated Escherichia coli
    • Eisenstadt J, Lengyel P. Formylmethionyl-tRNA dependence of amino acid incorporation in extracts of trimethoprim-treated Escherichia coli. Science 1966;154:524-7
    • (1966) Science , vol.154 , pp. 524-527
    • Eisenstadt, J.1    Lengyel, P.2
  • 40
    • 0031002773 scopus 로고    scopus 로고
    • Analysis in yeast of antimalaria drugs that target the dihydrofolate reductase of Plasmodium falciparum
    • Wooden JM, Hartwell LH, Vasquez B, et al. Analysis in yeast of antimalaria drugs that target the dihydrofolate reductase of Plasmodium falciparum. Mol Biochem Parasitol 1997;85:25-40
    • (1997) Mol Biochem Parasitol , vol.85 , pp. 25-40
    • Wooden, J.M.1    Hartwell, L.H.2    Vasquez, B.3
  • 41
    • 0028053015 scopus 로고
    • Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation
    • Mazel D, Pochet S, Marliere P. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J 1994;13:914-23
    • (1994) EMBO J , vol.13 , pp. 914-923
    • Mazel, D.1    Pochet, S.2    Marliere, P.3
  • 42
    • 0033936704 scopus 로고    scopus 로고
    • Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents
    • Giglione C, Pierre M, Meinnel T. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol 2000;36:1197-205
    • (2000) Mol Microbiol , vol.36 , pp. 1197-1205
    • Giglione, C.1    Pierre, M.2    Meinnel, T.3
  • 43
    • 0035885234 scopus 로고    scopus 로고
    • Deformylase as a novel antibacterial target
    • Yuan Z, Trias J, White RJ. Deformylase as a novel antibacterial target. Drug Discov Today 2001;6:954-61
    • (2001) Drug Discov Today , vol.6 , pp. 954-961
    • Yuan, Z.1    Trias, J.2    White, R.J.3
  • 44
    • 0035143273 scopus 로고    scopus 로고
    • Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor
    • Clements JM, Beckett RP, Brown A, et al. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob Agents Chemother 2001;45:563-70
    • (2001) Antimicrob Agents Chemother , vol.45 , pp. 563-570
    • Clements, J.M.1    Beckett, R.P.2    Brown, A.3
  • 45
    • 9144268506 scopus 로고    scopus 로고
    • Peptide deformylase inhibitors as antibacterial agents: Identification of VRC3375, a proline-3-alkylsuccinyl hydroxamate derivative, by using an integrated combinatorial and medicinal chemistry approach
    • Chen D, Hackbarth C, Ni ZJ, et al. Peptide deformylase inhibitors as antibacterial agents: identification of VRC3375, a proline-3-alkylsuccinyl hydroxamate derivative, by using an integrated combinatorial and medicinal chemistry approach. Antimicrob Agents Chemother 2004;48:250-61
    • (2004) Antimicrob Agents Chemother , vol.48 , pp. 250-261
    • Chen, D.1    Hackbarth, C.2    Ni, Z.J.3
  • 46
    • 0036230288 scopus 로고    scopus 로고
    • Methionine in and out of proteins: Targets for drug design
    • Vaughan MD, Sampson PB, Honek JF. Methionine in and out of proteins: targets for drug design. Curr Med Chem 2002;9:385-409
    • (2002) Curr Med Chem , vol.9 , pp. 385-409
    • Vaughan, M.D.1    Sampson, P.B.2    Honek, J.F.3
  • 47
    • 23044443508 scopus 로고    scopus 로고
    • Development and validation of a whole-cell inhibition assay for bacterial methionine aminopeptidase by surace-enhanced laser desorption ionization-time of flight mass spectrometry
    • Greis KD, Zhou S, Siehnel R, et al. Development and validation of a whole-cell inhibition assay for bacterial methionine aminopeptidase by surace-enhanced laser desorption ionization-time of flight mass spectrometry. Antimicrob Agents Chemother 2005;49:3428-34
    • (2005) Antimicrob Agents Chemother , vol.49 , pp. 3428-3434
    • Greis, K.D.1    Zhou, S.2    Siehnel, R.3
  • 48
    • 19244385826 scopus 로고
    • Inhibitors of protein synthesis
    • Vazquez D. Inhibitors of protein synthesis. Mol Biol Biochem Biophys 1979;30:1-312
    • (1979) Mol Biol Biochem Biophys , vol.30 , pp. 1-312
    • Vazquez, D.1
  • 49
    • 0003291306 scopus 로고
    • Inhibitors of protein synthesis
    • Weissbach H, Pestka S, editors, Academic Press: New York, San Francisco, London;
    • Pestka S. Inhibitors of protein synthesis. In: Weissbach H, Pestka S, editors, Molecular mechanism of protein biosynthesis. Academic Press: New York, San Francisco, London; 1977. p. 467-553
    • (1977) Molecular mechanism of protein biosynthesis , pp. 467-553
    • Pestka, S.1
  • 50
    • 84951602541 scopus 로고
    • The antibiotic sensitivity spectra of ribosomes from the Thermoproteales: Phylogenetic depth and distribution of antibiotic binding sites
    • Altamura S, Sanz JL, Amils R, et al. The antibiotic sensitivity spectra of ribosomes from the Thermoproteales: phylogenetic depth and distribution of antibiotic binding sites. Syst Appl Microbiol 1988;10:218-25
    • (1988) Syst Appl Microbiol , vol.10 , pp. 218-225
    • Altamura, S.1    Sanz, J.L.2    Amils, R.3
  • 51
    • 0014945742 scopus 로고
    • Effect of edeine on aminoacyl-tRNA binding to ribosomes and its relationship to ribosomal binding sites
    • Szer W, Kurylo-Borowska Z. Effect of edeine on aminoacyl-tRNA binding to ribosomes and its relationship to ribosomal binding sites. Biochim Biophys Acta 1970;224:477-86
    • (1970) Biochim Biophys Acta , vol.224 , pp. 477-486
    • Szer, W.1    Kurylo-Borowska, Z.2
  • 52
    • 0034704217 scopus 로고    scopus 로고
    • The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit
    • Brodersen DE, Clemons WM Jr, Carter AP, et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000;103:1143-54
    • (2000) Cell , vol.103 , pp. 1143-1154
    • Brodersen, D.E.1    Clemons Jr, W.M.2    Carter, A.P.3
  • 53
    • 17744377418 scopus 로고    scopus 로고
    • Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3
    • Pioletti M, Schluenzen F, Harms J, et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 2001;20:1829-39
    • (2001) EMBO J , vol.20 , pp. 1829-1839
    • Pioletti, M.1    Schluenzen, F.2    Harms, J.3
  • 54
    • 0023238983 scopus 로고
    • Interaction of antibiotics with functional sites in 16S ribosomal RNA
    • Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987;327:389-94
    • (1987) Nature , vol.327 , pp. 389-394
    • Moazed, D.1    Noller, H.F.2
  • 55
    • 33750488430 scopus 로고    scopus 로고
    • Structural basis for mRNA and tRNA positioning on the ribosome
    • Berk V, Zhang W, Pai RD, Cate JHD. Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 2006;103:15830-4
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 15830-15834
    • Berk, V.1    Zhang, W.2    Pai, R.D.3    Cate, J.H.D.4
  • 56
    • 33748582906 scopus 로고    scopus 로고
    • Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements
    • Korostolev A, Trakhanov S, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 2006;126:1065-77
    • (2006) Cell , vol.126 , pp. 1065-1077
    • Korostolev, A.1    Trakhanov, S.2    Laurberg, M.3    Noller, H.F.4
  • 57
    • 0018198353 scopus 로고
    • Migration of 40S ribosomal subunits on messenger RNA in the presence of edeine
    • Kozak M, Shatkin AJ. Migration of 40S ribosomal subunits on messenger RNA in the presence of edeine. J Biol Chem 1978;253:6568-77
    • (1978) J Biol Chem , vol.253 , pp. 6568-6577
    • Kozak, M.1    Shatkin, A.J.2
  • 58
    • 0025799785 scopus 로고
    • Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA
    • Woodcock J, Moazed D, Cannon M, et al. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J 1991;10:3099-103
    • (1991) EMBO J , vol.10 , pp. 3099-3103
    • Woodcock, J.1    Moazed, D.2    Cannon, M.3
  • 59
    • 0030660210 scopus 로고    scopus 로고
    • Pactamycin resistance mutations in functional sites of 16S rRNA
    • Mankin AS. Pactamycin resistance mutations in functional sites of 16S rRNA. J Mol Biol 1997;274:8-15
    • (1997) J Mol Biol , vol.274 , pp. 8-15
    • Mankin, A.S.1
  • 60
    • 0025070318 scopus 로고
    • Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA
    • Moazed D, Noller HF. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16S rRNA. J Mol Biol 1990;211:135-45
    • (1990) J Mol Biol , vol.211 , pp. 135-145
    • Moazed, D.1    Noller, H.F.2
  • 61
    • 0014498223 scopus 로고
    • Inhibition by pactamycin of the initiation of protein synthesis. Effect on the 30S ribosomal subunit
    • Cohen LB, Goldberg IH, Herner AE. Inhibition by pactamycin of the initiation of protein synthesis. Effect on the 30S ribosomal subunit. Biochemistry 1969;8:1327-35
    • (1969) Biochemistry , vol.8 , pp. 1327-1335
    • Cohen, L.B.1    Goldberg, I.H.2    Herner, A.E.3
  • 62
    • 33749531968 scopus 로고    scopus 로고
    • The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation
    • Schluenzen F, Takemoto C, Wilson DN, et al. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 2006;13:871-8
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 871-878
    • Schluenzen, F.1    Takemoto, C.2    Wilson, D.N.3
  • 63
    • 0016754034 scopus 로고
    • The binding of kasugamycin to the Escherichia coli ribosomes
    • Okuyama A, Tanaka N, Komai T. The binding of kasugamycin to the Escherichia coli ribosomes. J Antibiot 1975;28:903-5
    • (1975) J Antibiot , vol.28 , pp. 903-905
    • Okuyama, A.1    Tanaka, N.2    Komai, T.3
  • 65
    • 0018690149 scopus 로고
    • Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis
    • Poldermans B, Goosen N, Van Knippenberg PH. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis. J Biol Chem 1979;254:9085-9
    • (1979) J Biol Chem , vol.254 , pp. 9085-9089
    • Poldermans, B.1    Goosen, N.2    Van Knippenberg, P.H.3
  • 66
    • 33749527393 scopus 로고    scopus 로고
    • Structural analysis of kasugamycin inhibition of translation
    • Schuwirth BS, Day JM, Hau CW, et al. Structural analysis of kasugamycin inhibition of translation. Nat Struct Mol Biol 2006;13:879-86
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 879-886
    • Schuwirth, B.S.1    Day, J.M.2    Hau, C.W.3
  • 67
    • 0033569631 scopus 로고    scopus 로고
    • Isolation of Kasugamycin resistant mutants in the 16S rRNA of E. coli
    • Vila-Sanjurjo A, Squires CL, Dahlberg AE. Isolation of Kasugamycin resistant mutants in the 16S rRNA of E. coli. J Mol Biol 1999;293:1-8
    • (1999) J Mol Biol , vol.293 , pp. 1-8
    • Vila-Sanjurjo, A.1    Squires, C.L.2    Dahlberg, A.E.3
  • 68
    • 0036035334 scopus 로고    scopus 로고
    • Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin
    • Moll I, Bläsi U. Differential inhibition of 30S and 70S translation initiation complexes on leaderless mRNA by kasugamycin. Biochem Biophys Res Commun 2002;297:1021-6
    • (2002) Biochem Biophys Res Commun , vol.297 , pp. 1021-1026
    • Moll, I.1    Bläsi, U.2
  • 69
    • 33645227437 scopus 로고    scopus 로고
    • Novel tetrapepride inhibitors of bacterial protein synthesis produced by a Streptomyces sp
    • Brandi L, Lazzarini A, Cavaletti L, et al. Novel tetrapepride inhibitors of bacterial protein synthesis produced by a Streptomyces sp. Biochemistry 2006;45:3692-702
    • (2006) Biochemistry , vol.45 , pp. 3692-3702
    • Brandi, L.1    Lazzarini, A.2    Cavaletti, L.3
  • 70
    • 34548075002 scopus 로고    scopus 로고
    • Methods for identifying compounds that specifically target translation
    • Brandi L, Fabbretti A, Milon P, et al. Methods for identifying compounds that specifically target translation. Methods Enzymol 2007;431:229-67
    • (2007) Methods Enzymol , vol.431 , pp. 229-267
    • Brandi, L.1    Fabbretti, A.2    Milon, P.3
  • 71
    • 0023741257 scopus 로고
    • The allosteric three-site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton and viomycin
    • Hausner TP, Geigenmüller U, Nierhaus KH. The allosteric three-site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton and viomycin. J Biol Chem 1988;263:13103-11
    • (1988) J Biol Chem , vol.263 , pp. 13103-13111
    • Hausner, T.P.1    Geigenmüller, U.2    Nierhaus, K.H.3
  • 72
    • 0023722010 scopus 로고
    • Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA
    • Moazed D, Robertson JM, Noller HF. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 1988;334:362-64
    • (1988) Nature , vol.334 , pp. 362-364
    • Moazed, D.1    Robertson, J.M.2    Noller, H.F.3
  • 73
    • 0002331708 scopus 로고
    • Recognition sites for antibiotics within rRNA
    • Hill WE, Dahlberg A, Garrett RA, et al, editors, ASM Press: Washington DC;
    • Cundliffe E. Recognition sites for antibiotics within rRNA. In: Hill WE, Dahlberg A, Garrett RA, et al., editors, The ribosome. ASM Press: Washington DC; 1990. p. 479-90
    • (1990) The ribosome , pp. 479-490
    • Cundliffe, E.1
  • 74
    • 0032548821 scopus 로고    scopus 로고
    • The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre
    • Porse BT, Leviev I, Mankin AS, Garrett RA. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol 1998;276:391-404
    • (1998) J Mol Biol , vol.276 , pp. 391-404
    • Porse, B.T.1    Leviev, I.2    Mankin, A.S.3    Garrett, R.A.4
  • 75
    • 0033578321 scopus 로고    scopus 로고
    • Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome
    • Rodnina MV, Savelsbergh A, Matassova NB, et al. Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. Proc Natl Acad Sci USA 1999;96:9586-90
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 9586-9590
    • Rodnina, M.V.1    Savelsbergh, A.2    Matassova, N.B.3
  • 76
    • 0036301166 scopus 로고    scopus 로고
    • Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome
    • Cameron DM, Thompson J, March PE, et al. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J Mol Biol 2002;319:27-35
    • (2002) J Mol Biol , vol.319 , pp. 27-35
    • Cameron, D.M.1    Thompson, J.2    March, P.E.3
  • 77
    • 0346493093 scopus 로고    scopus 로고
    • The translation initiation functions of IF2: Targets for thiostrepton inhibition
    • Brandi L, Marzi S, Fabbretti A, et al. The translation initiation functions of IF2: targets for thiostrepton inhibition. J Mol Biol 2004;335:881-94
    • (2004) J Mol Biol , vol.335 , pp. 881-894
    • Brandi, L.1    Marzi, S.2    Fabbretti, A.3
  • 78
    • 0038045324 scopus 로고    scopus 로고
    • The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose
    • Treede I, Jakobsen L, Kirpekar F, et al. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 2003;49:309-18
    • (2003) Mol Microbiol , vol.49 , pp. 309-318
    • Treede, I.1    Jakobsen, L.2    Kirpekar, F.3
  • 79
    • 0034052755 scopus 로고    scopus 로고
    • Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram positive and Gram-negative bacteria
    • McNicholas PM, Najarian DJ, Mann PA, et al. Evernimicin binds exclusively to the 50S ribosomal subunit and inhibits translation in cell-free systems derived from both Gram positive and Gram-negative bacteria. Antimicrob Agents Chemother 2000;44:1121-6
    • (2000) Antimicrob Agents Chemother , vol.44 , pp. 1121-1126
    • McNicholas, P.M.1    Najarian, D.J.2    Mann, P.A.3
  • 80
    • 0035957387 scopus 로고    scopus 로고
    • A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit
    • Belova L, Tenson T, Xiong L, et al. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. Proc Natl Acad Sci USA 2001;98:3726-31
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3726-3731
    • Belova, L.1    Tenson, T.2    Xiong, L.3
  • 81
    • 0035385073 scopus 로고    scopus 로고
    • Ribosomal antibiotics
    • Mankin AS. Ribosomal antibiotics. Mol Biol 2001;35:509-20
    • (2001) Mol Biol , vol.35 , pp. 509-520
    • Mankin, A.S.1
  • 82
    • 0033735291 scopus 로고    scopus 로고
    • Evernimicin (SCH27899) inhibits a novel ribosome target site: Analysis of 23S ribosomal DNA mutants
    • Adrian PV, Mendrick C, Loebenberg D. Evernimicin (SCH27899) inhibits a novel ribosome target site: analysis of 23S ribosomal DNA mutants. Antimicrob Agents Chemother 2000;44:3101-06
    • (2000) Antimicrob Agents Chemother , vol.44 , pp. 3101-3106
    • Adrian, P.V.1    Mendrick, C.2    Loebenberg, D.3
  • 83
    • 0036839695 scopus 로고    scopus 로고
    • Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA
    • Kofoed CB, Vester B. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob Agents Chemother 2002;46:3339-42
    • (2002) Antimicrob Agents Chemother , vol.46 , pp. 3339-3342
    • Kofoed, C.B.1    Vester, B.2
  • 84
    • 0034426125 scopus 로고    scopus 로고
    • Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (avilamycin and evernimicin)
    • Aarestrup FM, Jensen LB. Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (avilamycin and evernimicin). Antimicrob Agents Chemother 2000;44:3425-27
    • (2000) Antimicrob Agents Chemother , vol.44 , pp. 3425-3427
    • Aarestrup, F.M.1    Jensen, L.B.2
  • 85
    • 0033996649 scopus 로고    scopus 로고
    • Mutations in ribosomal protein L16 conferring reduced susceptibility to evernimicin (SCH27899): Implications for mechanism of action
    • Adrian PV, Zhao W, Black TA, et al. Mutations in ribosomal protein L16 conferring reduced susceptibility to evernimicin (SCH27899): implications for mechanism of action. Antimicrob Agents Chemother 2000;44:732-8
    • (2000) Antimicrob Agents Chemother , vol.44 , pp. 732-738
    • Adrian, P.V.1    Zhao, W.2    Black, T.A.3
  • 86
    • 0035169172 scopus 로고    scopus 로고
    • Effects of mutations in ribosomal protein L16 on susceptibility and accumulation of evernimicin
    • McNicholas PM, Mann PA, Najarian DJ, et al. Effects of mutations in ribosomal protein L16 on susceptibility and accumulation of evernimicin. Antimicrob Agents Chemother 2001;45:79-83
    • (2001) Antimicrob Agents Chemother , vol.45 , pp. 79-83
    • McNicholas, P.M.1    Mann, P.A.2    Najarian, D.J.3
  • 87
    • 0034637111 scopus 로고    scopus 로고
    • The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution
    • Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 2000; 289:905-20
    • (2000) Science , vol.289 , pp. 905-920
    • Ban, N.1    Nissen, P.2    Hansen, J.3
  • 88
    • 0035977093 scopus 로고    scopus 로고
    • High resolution structure of the large ribosomal subunit from a mesophilic eubacterium
    • Harms J, Schluenzen F, Zarivach R, et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 2001;107:679-88
    • (2001) Cell , vol.107 , pp. 679-688
    • Harms, J.1    Schluenzen, F.2    Zarivach, R.3
  • 89
    • 0034786898 scopus 로고    scopus 로고
    • EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance
    • Mann PA, Xiong L, Mankin AS, et al. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol Microbiol 2001;41:1349-56
    • (2001) Mol Microbiol , vol.41 , pp. 1349-1356
    • Mann, P.A.1    Xiong, L.2    Mankin, A.S.3
  • 90
    • 0034903857 scopus 로고    scopus 로고
    • Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA
    • La Teana A, Gualerzi CO, Dahlberg AE. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. RNA 2001;7:1173-9
    • (2001) RNA , vol.7 , pp. 1173-1179
    • La Teana, A.1    Gualerzi, C.O.2    Dahlberg, A.E.3
  • 91
    • 0041806480 scopus 로고    scopus 로고
    • Ribosomal localization of translation initiation factor IF2
    • Marzi S, Knight W, Brandi L, et al. Ribosomal localization of translation initiation factor IF2. RNA 2003;9:958-69
    • (2003) RNA , vol.9 , pp. 958-969
    • Marzi, S.1    Knight, W.2    Brandi, L.3
  • 93
    • 34247562698 scopus 로고    scopus 로고
    • The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria
    • Leach KL, Swaney SM, Colca JR, et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 2007;26:393-402
    • (2007) Mol Cell , vol.26 , pp. 393-402
    • Leach, K.L.1    Swaney, S.M.2    Colca, J.R.3
  • 94
    • 0030773903 scopus 로고    scopus 로고
    • The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin
    • Lin AH, Murray RW, Vidmar TJ, Marotti KR. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother 1997;41:2127-31
    • (1997) Antimicrob Agents Chemother , vol.41 , pp. 2127-2131
    • Lin, A.H.1    Murray, R.W.2    Vidmar, T.J.3    Marotti, K.R.4
  • 95
    • 0033032414 scopus 로고    scopus 로고
    • Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors
    • Matassova NB, Rodnina MV, Endermann R, et al. Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. RNA 1999;5:939-46
    • (1999) RNA , vol.5 , pp. 939-946
    • Matassova, N.B.1    Rodnina, M.V.2    Endermann, R.3
  • 97
    • 0037821645 scopus 로고    scopus 로고
    • Cross-linking in the living cell locates the site of action of Oxazolidinone antibiotics
    • Colca JR, McDonald WG, Waldon DJ, et al. Cross-linking in the living cell locates the site of action of Oxazolidinone antibiotics. J Biol Chem 2003;278:21972-9
    • (2003) J Biol Chem , vol.278 , pp. 21972-21979
    • Colca, J.R.1    McDonald, W.G.2    Waldon, D.J.3
  • 98
    • 0036384314 scopus 로고    scopus 로고
    • The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo
    • Thompson J, O'Connor M, Mills JA, Dahlberg AE. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J Mol Biol 2002;322:273-9
    • (2002) J Mol Biol , vol.322 , pp. 273-279
    • Thompson, J.1    O'Connor, M.2    Mills, J.A.3    Dahlberg, A.E.4
  • 99
    • 0036210596 scopus 로고    scopus 로고
    • Oxazolidinone antibiotics target the P-site on Escherichia coli ribosomes
    • Aoki H, Ke L, Poppe SM, et al. Oxazolidinone antibiotics target the P-site on Escherichia coli ribosomes. Antimicrob Agents Chemother 2002;46:1080-5
    • (2002) Antimicrob Agents Chemother , vol.46 , pp. 1080-1085
    • Aoki, H.1    Ke, L.2    Poppe, S.M.3
  • 100
    • 0035813105 scopus 로고    scopus 로고
    • Oxazolidinones mechanism of action: Inhibition of the first peptide bond formation
    • Patel U, Yan YP, Hobbs FW Jr, et al. Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. J Biol Chem 2001;276:37199-205
    • (2001) J Biol Chem , vol.276 , pp. 37199-37205
    • Patel, U.1    Yan, Y.P.2    Hobbs Jr, F.W.3
  • 101
    • 29044436081 scopus 로고    scopus 로고
    • Species-specific antibiotic-ribosome interactions: Implications for drug development
    • Wilson DN, Harms JM, Nierhaus KH, et al. Species-specific antibiotic-ribosome interactions: implications for drug development. Biol Chem 2005;386:1239-52
    • (2005) Biol Chem , vol.386 , pp. 1239-1252
    • Wilson, D.N.1    Harms, J.M.2    Nierhaus, K.H.3
  • 102
    • 35348895336 scopus 로고    scopus 로고
    • Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria
    • Milon P, Konevega AL, Peske F, et al. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. Methods Enzymol 2007;430:1-30
    • (2007) Methods Enzymol , vol.430 , pp. 1-30
    • Milon, P.1    Konevega, A.L.2    Peske, F.3
  • 103
    • 34249084617 scopus 로고    scopus 로고
    • Coniothyrione, a chlorocyclopentandienyl-benzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology
    • Ondeyka JG, Zink D, Basilio A, et al. Coniothyrione, a chlorocyclopentandienyl-benzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology. J Nat Prod 2007;70:668-70
    • (2007) J Nat Prod , vol.70 , pp. 668-670
    • Ondeyka, J.G.1    Zink, D.2    Basilio, A.3
  • 104
    • 35148830920 scopus 로고    scopus 로고
    • Simultaneous screening of multiple bacterial tRNA synthetases using an Escherichia coli S30-based transcription and translation assay
    • Dermyer M, Wise SC, Braden T, Holler TP. Simultaneous screening of multiple bacterial tRNA synthetases using an Escherichia coli S30-based transcription and translation assay. Assay Drug Dev Technol 2007;5:515-21
    • (2007) Assay Drug Dev Technol , vol.5 , pp. 515-521
    • Dermyer, M.1    Wise, S.C.2    Braden, T.3    Holler, T.P.4
  • 105
    • 43949116478 scopus 로고    scopus 로고
    • Assays for the identification of inhibitors targeting specific translational steps
    • Brandi L, Dresios J, Gualerzi CO. Assays for the identification of inhibitors targeting specific translational steps. Methods Mol Med 2008;142:87-105
    • (2008) Methods Mol Med , vol.142 , pp. 87-105
    • Brandi, L.1    Dresios, J.2    Gualerzi, C.O.3
  • 106
    • 2342507638 scopus 로고    scopus 로고
    • Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032
    • Riedlinger J, Reicke A, Zähner H, et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 2004;57:271-9
    • (2004) J Antibiot , vol.57 , pp. 271-279
    • Riedlinger, J.1    Reicke, A.2    Zähner, H.3
  • 107
    • 26944493400 scopus 로고    scopus 로고
    • Metagenomics-based drug discovery and marine microbial diversity
    • Li X, Qin L. Metagenomics-based drug discovery and marine microbial diversity. Trends Biotech 2005;23:539-43
    • (2005) Trends Biotech , vol.23 , pp. 539-543
    • Li, X.1    Qin, L.2
  • 108
    • 33645465733 scopus 로고    scopus 로고
    • Antibiotics and the ribosome
    • Tenson T, Mankin A. Antibiotics and the ribosome. Mol Microbiol 2006;59:1664-77
    • (2006) Mol Microbiol , vol.59 , pp. 1664-1677
    • Tenson, T.1    Mankin, A.2
  • 109
    • 36749068384 scopus 로고    scopus 로고
    • Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome
    • Korostelev A, Trakhanov S, Asahara H, et al. Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc Natl Acad Sci USA 2007;104:16840-3
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 16840-16843
    • Korostelev, A.1    Trakhanov, S.2    Asahara, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.