-
1
-
-
0016221697
-
Chromatin structure: A repeating unit of histones and DNA
-
Kornberg RD. Chromatin structure: A repeating unit of histones and DNA. Science 1974;184:868-71.
-
(1974)
Science
, vol.184
, pp. 868-871
-
-
Kornberg, R.D.1
-
2
-
-
0033529565
-
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
-
Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98:285-94.
-
(1999)
Cell
, vol.98
, pp. 285-294
-
-
Kornberg, R.D.1
Lorch, Y.2
-
3
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 A resolution
-
Luger K, Mader AW, Richmond RK, etal. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-60.
-
(1997)
Nature
, vol.389
, pp. 251-260
-
-
Luger, K.1
Mader, A.W.2
Richmond, R.K.3
-
5
-
-
0034610814
-
The language of covalent histone modifications
-
Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5.
-
(2000)
Nature
, vol.403
, pp. 41-45
-
-
Strahl, B.D.1
Allis, C.D.2
-
6
-
-
0033080794
-
Chromatin disruption and modification
-
Wolffe AP, Hayes JJ. Chromatin disruption and modification. Nucleic Acids Res 1999;27:711-20.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 711-720
-
-
Wolffe, A.P.1
Hayes, J.J.2
-
7
-
-
78651162036
-
Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis
-
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis. Proc Natl Acad Sci USA 1964; 51:786-94.
-
(1964)
Proc Natl Acad Sci USA
, vol.51
, pp. 786-794
-
-
Allfrey, V.G.1
Faulkner, R.2
Mirsky, A.E.3
-
8
-
-
0014683539
-
Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms
-
Roeder RG, Rutter WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 1969;224:234-7.
-
(1969)
Nature
, vol.224
, pp. 234-237
-
-
Roeder, R.G.1
Rutter, W.J.2
-
9
-
-
0019333274
-
Multiple factors required for accurate initiation of transcription by purified RNA polymerase II
-
Matsui T, Segall J, Weil PA, et al. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 1980;255:11992-6.
-
(1980)
J Biol Chem
, vol.255
, pp. 11992-11996
-
-
Matsui, T.1
Segall, J.2
Weil, P.A.3
-
10
-
-
0019333262
-
Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III
-
Segall J, Matsui T, Roeder RG. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J Biol Chem 1980;255:11986-91.
-
(1980)
J Biol Chem
, vol.255
, pp. 11986-11991
-
-
Segall, J.1
Matsui, T.2
Roeder, R.G.3
-
11
-
-
0026645025
-
Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains
-
Berger SL, Pina B, Silverman N, et al. Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains. Cell 1992;70: 251-65.
-
(1992)
Cell
, vol.70
, pp. 251-265
-
-
Berger, S.L.1
Pina, B.2
Silverman, N.3
-
12
-
-
0028060030
-
Activation of cAMP and mitogen responsive genes relies on a common nuclear factor
-
Arias J, Alberts AS, Brindle P, et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 1994;370:226-9.
-
(1994)
Nature
, vol.370
, pp. 226-229
-
-
Arias, J.1
Alberts, A.S.2
Brindle, P.3
-
13
-
-
0028060029
-
Nuclear protein CBP is a coactivator for the transcription factor CREB
-
Kwok RP, Lundblad JR, Chrivia JC, et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994;370:223-6.
-
(1994)
Nature
, vol.370
, pp. 223-226
-
-
Kwok, R.P.1
Lundblad, J.R.2
Chrivia, J.C.3
-
14
-
-
0028246161
-
E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators
-
Arany Z, Sellers WR, Livingston DM, et al. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 1994;77:799-800.
-
(1994)
Cell
, vol.77
, pp. 799-800
-
-
Arany, Z.1
Sellers, W.R.2
Livingston, D.M.3
-
15
-
-
0032450899
-
Role of general and gene-specific cofactors in the regulation of eukaryotic transcription
-
Roeder RG. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harb Symp Quant Biol 1998;63:201-18.
-
(1998)
Cold Spring Harb Symp Quant Biol
, vol.63
, pp. 201-218
-
-
Roeder, R.G.1
-
17
-
-
0023955508
-
Changes in histone gene dosage alter transcription in yeast
-
Clark-Adams CD, Norris D, Osley MA, et al. Changes in histone gene dosage alter transcription in yeast. Genes Dev 1988;2:150-9.
-
(1988)
Genes Dev
, vol.2
, pp. 150-159
-
-
Clark-Adams, C.D.1
Norris, D.2
Osley, M.A.3
-
18
-
-
0024261583
-
Nucleosome loss activates yeast downstream promoters in vivo
-
Han M, Grunstein M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 1988;55:1137-45.
-
(1988)
Cell
, vol.55
, pp. 1137-1145
-
-
Han, M.1
Grunstein, M.2
-
19
-
-
0023663417
-
Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones
-
Lorch Y, LaPointe JW, Komberg RD. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 1987;49:203-10.
-
(1987)
Cell
, vol.49
, pp. 203-210
-
-
Lorch, Y.1
LaPointe, J.W.2
Komberg, R.D.3
-
20
-
-
0021233482
-
The role of stable complexes that repress and activate eucaryotic genes
-
Brown DD. The role of stable complexes that repress and activate eucaryotic genes. Cell 1984;37:359-65.
-
(1984)
Cell
, vol.37
, pp. 359-365
-
-
Brown, D.D.1
-
21
-
-
0023661185
-
Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II
-
Workman JL, Roeder RG. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 1987;51:613-22.
-
(1987)
Cell
, vol.51
, pp. 613-622
-
-
Workman, J.L.1
Roeder, R.G.2
-
22
-
-
0024280881
-
Extremely conserved histone H4N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast
-
Kayne PS, Kim UJ, Han M, et al. Extremely conserved histone H4N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 1988;55:27-39.
-
(1988)
Cell
, vol.55
, pp. 27-39
-
-
Kayne, P.S.1
Kim, U.J.2
Han, M.3
-
23
-
-
0025736044
-
Yeast histone H4 N-terminal sequence is required for promoter activation in vivo
-
Durrin LK, Mann RK, Kayne PS, et al. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 1991;65:1023-31.
-
(1991)
Cell
, vol.65
, pp. 1023-1031
-
-
Durrin, L.K.1
Mann, R.K.2
Kayne, P.S.3
-
24
-
-
0028885077
-
Identification of a gene encoding a yeast histone H4 acetyltransferase
-
Kleff S, Andrulis ED, Anderson CW, et al. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 1995;270:24674-77.
-
(1995)
J Biol Chem
, vol.270
, pp. 24674-24677
-
-
Kleff, S.1
Andrulis, E.D.2
Anderson, C.W.3
-
25
-
-
0029049102
-
An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei
-
Brownell JE, Allis CD. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci USA 1995;92: 6364-8.
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 6364-6368
-
-
Brownell, J.E.1
Allis, C.D.2
-
26
-
-
0029984469
-
Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation
-
Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843-51.
-
(1996)
Cell
, vol.84
, pp. 843-851
-
-
Brownell, J.E.1
Zhou, J.2
Ranalli, T.3
-
27
-
-
0034051227
-
Acetylation of histones and transcription-related factors
-
Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000;64: 435-59.
-
(2000)
Microbiol Mol Biol Rev
, vol.64
, pp. 435-459
-
-
Sterner, D.E.1
Berger, S.L.2
-
29
-
-
0038204415
-
The diverse functions of histone acetyltransferase complexes
-
Carrozza MJ, Utley RT, Workman JL, et al. The diverse functions of histone acetyltransferase complexes. Trends Genet 2003;19:321-9.
-
(2003)
Trends Genet
, vol.19
, pp. 321-329
-
-
Carrozza, M.J.1
Utley, R.T.2
Workman, J.L.3
-
30
-
-
32944469082
-
A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes
-
Kimura A, Matsubara K, Horikoshi M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem (Tokyo) 2005;138:647-662.
-
(2005)
J Biochem (Tokyo)
, vol.138
, pp. 647-662
-
-
Kimura, A.1
Matsubara, K.2
Horikoshi, M.3
-
31
-
-
0032526622
-
Cloning of Drosophila GCN5: Conserved features among metazoan GCN5 family members
-
Smith ER, Belote JM, Schiltz RL, et al. Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members. Nucleic Acids Res 1998; 26:2948-54.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 2948-2954
-
-
Smith, E.R.1
Belote, J.M.2
Schiltz, R.L.3
-
32
-
-
0031678679
-
Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates
-
Xu W, Edmondson DG, Roth SY. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 1998;18:5659-69.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 5659-5669
-
-
Xu, W.1
Edmondson, D.G.2
Roth, S.Y.3
-
33
-
-
0029665857
-
A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
-
Yang XJ, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996;382:319-24.
-
(1996)
Nature
, vol.382
, pp. 319-324
-
-
Yang, X.J.1
Ogryzko, V.V.2
Nishikawa, J.3
-
34
-
-
0032584196
-
ESA1 is a histone acetyltransferase that is essential for growth in yeast
-
Smith ER, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci USA 1998;95:3561-5.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 3561-3565
-
-
Smith, E.R.1
Eisen, A.2
Gu, W.3
-
35
-
-
0036843170
-
Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
-
Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002;32:370-7.
-
(2002)
Nat Genet
, vol.32
, pp. 370-377
-
-
Kimura, A.1
Umehara, T.2
Horikoshi, M.3
-
36
-
-
0036842129
-
Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
-
Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 2002;32:378-83.
-
(2002)
Nat Genet
, vol.32
, pp. 378-383
-
-
Suka, N.1
Luo, K.2
Grunstein, M.3
-
37
-
-
0037930802
-
Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex
-
Sutton A, Shia WJ, Band D, et al. Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 2003;278:16887-92.
-
(2003)
J Biol Chem
, vol.278
, pp. 16887-16892
-
-
Sutton, A.1
Shia, W.J.2
Band, D.3
-
38
-
-
0033590107
-
Sas3 is a histone acetyltransferase and requires a zinc finger motif
-
Takechi S, Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 1999;266:405-10.
-
(1999)
Biochem Biophys Res Commun
, vol.266
, pp. 405-410
-
-
Takechi, S.1
Nakayama, T.2
-
39
-
-
0030712311
-
Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60
-
Yamamoto T, Horikoshi M. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem 1997;272:30595-8.
-
(1997)
J Biol Chem
, vol.272
, pp. 30595-30598
-
-
Yamamoto, T.1
Horikoshi, M.2
-
40
-
-
0033551686
-
Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein
-
Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 1999;274:23027-34.
-
(1999)
J Biol Chem
, vol.274
, pp. 23027-23034
-
-
Iizuka, M.1
Stillman, B.2
-
41
-
-
0033215187
-
Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein
-
Champagne N, Bertos NR, Pelletier N, et al. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 1999;274: 28528-36.
-
(1999)
J Biol Chem
, vol.274
, pp. 28528-28536
-
-
Champagne, N.1
Bertos, N.R.2
Pelletier, N.3
-
42
-
-
0035905756
-
The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase
-
Champagne N, Pelletier N, Yang XJ. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 2001;20:404-9.
-
(2001)
Oncogene
, vol.20
, pp. 404-409
-
-
Champagne, N.1
Pelletier, N.2
Yang, X.J.3
-
43
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006;125: 497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
44
-
-
11144246904
-
Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities
-
Toleman C, Paterson AJ, Whisenhunt TR, et al. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J Biol Chem 2004;279: 53665-73.
-
(2004)
J Biol Chem
, vol.279
, pp. 53665-53673
-
-
Toleman, C.1
Paterson, A.J.2
Whisenhunt, T.R.3
-
45
-
-
0030891858
-
Mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila
-
Hilfiker A, Hilfiker-Kleiner D, Pannuti A, et al. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 1997;16:2054-60.
-
(1997)
EMBO J
, vol.16
, pp. 2054-2060
-
-
Hilfiker, A.1
Hilfiker-Kleiner, D.2
Pannuti, A.3
-
46
-
-
0033866836
-
Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila
-
Akhtar A, Becker PB. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 2000;5:367-75.
-
(2000)
Mol Cell
, vol.5
, pp. 367-375
-
-
Akhtar, A.1
Becker, P.B.2
-
47
-
-
0033973262
-
A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF
-
Neal KC, Pannuti A, Smith ER, et al. A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 2000;1490:170-4.
-
(2000)
Biochim Biophys Acta
, vol.1490
, pp. 170-174
-
-
Neal, K.C.1
Pannuti, A.2
Smith, E.R.3
-
48
-
-
0033988212
-
The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation
-
Smith ER, Pannuti A, Gu W, et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 2000;20:312-8.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 312-318
-
-
Smith, E.R.1
Pannuti, A.2
Gu, W.3
-
49
-
-
0033166761
-
A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme
-
Wittschieben BO, Otero G, de Bizemont T, et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 1999;4:123-8.
-
(1999)
Mol Cell
, vol.4
, pp. 123-128
-
-
Wittschieben, B.O.1
Otero, G.2
de Bizemont, T.3
-
50
-
-
0033579559
-
Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily
-
Angus-Hill ML, Dutnall RN, Tafrov ST, et al. Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J Mol Biol 1999;294:1311-25.
-
(1999)
J Mol Biol
, vol.294
, pp. 1311-1325
-
-
Angus-Hill, M.L.1
Dutnall, R.N.2
Tafrov, S.T.3
-
52
-
-
0030447943
-
The TAF(II)250 subunit of TFIID has histone acetyltransferase activity
-
Mizzen CA, Yang XJ, Kokubo T, et al. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 1996;87:1261-70.
-
(1996)
Cell
, vol.87
, pp. 1261-1270
-
-
Mizzen, C.A.1
Yang, X.J.2
Kokubo, T.3
-
53
-
-
0030606239
-
The transcriptional coactivators p300 and CBP are histone acetyltransferases
-
Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996;87:953-9.
-
(1996)
Cell
, vol.87
, pp. 953-959
-
-
Ogryzko, V.V.1
Schiltz, R.L.2
Russanova, V.3
-
54
-
-
0030480969
-
The CBP co-activator is a histone acetyltransferase
-
Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996;384:641-3.
-
(1996)
Nature
, vol.384
, pp. 641-643
-
-
Bannister, A.J.1
Kouzarides, T.2
-
55
-
-
0032907345
-
Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity
-
Kundu TK, Wang Z, Roeder RG. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 1999;19:1605-15.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 1605-1615
-
-
Kundu, T.K.1
Wang, Z.2
Roeder, R.G.3
-
56
-
-
0032744688
-
The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity
-
Hsieh YJ, Kundu TK, Wang Z, etal. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 1999;19:7697-704.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 7697-7704
-
-
Hsieh, Y.J.1
Kundu, T.K.2
Wang, Z.3
-
57
-
-
0030740253
-
Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300
-
Chen H, Lin RJ, Schiltz RL, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997;90:569-80.
-
(1997)
Cell
, vol.90
, pp. 569-580
-
-
Chen, H.1
Lin, R.J.2
Schiltz, R.L.3
-
58
-
-
0030768745
-
Steroid receptor coactivator-1 is a histone acetyltransferase
-
Spencer TE, Jenster G, Burcin MM, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997;389: 194-8.
-
(1997)
Nature
, vol.389
, pp. 194-198
-
-
Spencer, T.E.1
Jenster, G.2
Burcin, M.M.3
-
59
-
-
0034636554
-
ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation
-
Kawasaki H, Schiltz L, Chiu R, et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 2000;405:195-200.
-
(2000)
Nature
, vol.405
, pp. 195-200
-
-
Kawasaki, H.1
Schiltz, L.2
Chiu, R.3
-
60
-
-
0030954208
-
GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein
-
Neuwald AF, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 1997; 22:154-5.
-
(1997)
Trends Biochem Sci
, vol.22
, pp. 154-155
-
-
Neuwald, A.F.1
Landsman, D.2
-
62
-
-
9744255506
-
Structure and functions of the GNAT superfamily of acetyltransferases
-
Vetting MW, LP SdC, Yu M, et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 2005;433:212-26.
-
(2005)
Arch Biochem Biophys
, vol.433
, pp. 212-226
-
-
Vetting, M.W.1
Vetting, L.P.S.dC.2
Yu, M.3
-
63
-
-
0037242383
-
The MYST family of histone acetyltransferases
-
Utley RT, Cote J. The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 2003;274:203-36.
-
(2003)
Curr Top Microbiol Immunol
, vol.274
, pp. 203-236
-
-
Utley, R.T.1
Cote, J.2
-
64
-
-
0029741343
-
Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases
-
Reifsnyder C, Lowell J, Clarke A, et al. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 1996;14:42-9.
-
(1996)
Nat Genet
, vol.14
, pp. 42-49
-
-
Reifsnyder, C.1
Lowell, J.2
Clarke, A.3
-
65
-
-
0030939235
-
The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function
-
Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997; 145:923-34.
-
(1997)
Genetics
, vol.145
, pp. 923-934
-
-
Ehrenhofer-Murray, A.E.1
Rivier, D.H.2
Rine, J.3
-
66
-
-
0034682736
-
Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis
-
Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000;102:463-73.
-
(2000)
Cell
, vol.102
, pp. 463-473
-
-
Ikura, T.1
Ogryzko, V.V.2
Grigoriev, M.3
-
67
-
-
28444456705
-
The histone code at DNA breaks: A guide to repair?
-
van Attikum H, Gasser SM. The histone code at DNA breaks: A guide to repair? Nat Rev Mol Cell Biol 2005;6: 757-65.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 757-765
-
-
van Attikum, H.1
Gasser, S.M.2
-
68
-
-
31344462362
-
Regulation of replication licensing by acetyltransferase Hbo1
-
Iizuka M, Matsui T, Takisawa H, et al. Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 2006;26:1098-108.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 1098-1108
-
-
Iizuka, M.1
Matsui, T.2
Takisawa, H.3
-
69
-
-
0029932598
-
A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
-
Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996;272:408-11.
-
(1996)
Science
, vol.272
, pp. 408-411
-
-
Taunton, J.1
Hassig, C.A.2
Schreiber, S.L.3
-
70
-
-
1842578986
-
Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis
-
Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol 2004;338:17-31.
-
(2004)
J Mol Biol
, vol.338
, pp. 17-31
-
-
Gregoretti, I.V.1
Lee, Y.M.2
Goodson, H.V.3
-
71
-
-
0029856225
-
HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
-
Rundlett SE, Carmen AA, Kobayashi R, et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 1996;93:14503-8.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 14503-14508
-
-
Rundlett, S.E.1
Carmen, A.A.2
Kobayashi, R.3
-
72
-
-
0035890135
-
The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program
-
Pijnappel WW, Schaft D, Roguev A, et al. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 2001;15:2991-3004.
-
(2001)
Genes Dev
, vol.15
, pp. 2991-3004
-
-
Pijnappel, W.W.1
Schaft, D.2
Roguev, A.3
-
73
-
-
0037111879
-
Requirement of Hos2 histone deacetylase for gene activity in yeast
-
Wang A, Kurdistani SK, Grunstein M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 2002;298:1412-4.
-
(2002)
Science
, vol.298
, pp. 1412-1414
-
-
Wang, A.1
Kurdistani, S.K.2
Grunstein, M.3
-
74
-
-
0343416249
-
Histone deacetylases: Silencers for hire
-
Ng HH, Bird A. Histone deacetylases: Silencers for hire. Trends Biochem Sci 2000;25:121-6.
-
(2000)
Trends Biochem Sci
, vol.25
, pp. 121-126
-
-
Ng, H.H.1
Bird, A.2
-
75
-
-
0034704078
-
A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1
-
Underhill C, Qutob MS, Yee SP, et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000;275:40463-70.
-
(2000)
J Biol Chem
, vol.275
, pp. 40463-40470
-
-
Underhill, C.1
Qutob, M.S.2
Yee, S.P.3
-
76
-
-
0032539864
-
Characterization of a human RPD3 ortholog, HDAC3
-
Emiliani S, Fischle W, Van Lint C, et al. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci USA 1998;95:2795-800.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 2795-2800
-
-
Emiliani, S.1
Fischle, W.2
Van Lint, C.3
-
77
-
-
0034685766
-
Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor
-
Hu E, Chen Z, Fredrickson T, et al. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 2000; 275:15254-64.
-
(2000)
J Biol Chem
, vol.275
, pp. 15254-15264
-
-
Hu, E.1
Chen, Z.2
Fredrickson, T.3
-
78
-
-
0033607171
-
Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity
-
Carmen AA, Griffin PR, Calaycay JR, et al. Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc Natl Acad Sci USA 1999;96:12356-61.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 12356-12361
-
-
Carmen, A.A.1
Griffin, P.R.2
Calaycay, J.R.3
-
79
-
-
0033609055
-
Three proteins define a class of human histone deacetylases related to yeast Hda1p
-
Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 1999;96:4868-73.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 4868-4873
-
-
Grozinger, C.M.1
Hassig, C.A.2
Schreiber, S.L.3
-
80
-
-
0033568028
-
HDAC4 deacetylase associates with and represses the MEF2 transcription factor
-
Miska EA, Karlsson C, Langley E, et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 1999;18:5099-107.
-
(1999)
EMBO J
, vol.18
, pp. 5099-5107
-
-
Miska, E.A.1
Karlsson, C.2
Langley, E.3
-
81
-
-
0033957792
-
Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway
-
Huang EY, Zhang J, Miska EA, et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 2000;14: 45-54.
-
(2000)
Genes Dev
, vol.14
, pp. 45-54
-
-
Huang, E.Y.1
Zhang, J.2
Miska, E.A.3
-
82
-
-
0037161744
-
HDAC6 is a microtubule-associated deacetylase
-
Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455-8.
-
(2002)
Nature
, vol.417
, pp. 455-458
-
-
Hubbert, C.1
Guardiola, A.2
Shao, R.3
-
83
-
-
0033964223
-
Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression
-
Kao HY, Downes M, Ordentlich P, et al. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 2000;14:55-66.
-
(2000)
Genes Dev
, vol.14
, pp. 55-66
-
-
Kao, H.Y.1
Downes, M.2
Ordentlich, P.3
-
84
-
-
4744368147
-
Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity
-
Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 2004;279: 41966-74.
-
(2004)
J Biol Chem
, vol.279
, pp. 41966-41974
-
-
Kato, H.1
Tamamizu-Kato, S.2
Shibasaki, F.3
-
85
-
-
0037837745
-
Tip60 is a co-repressor for STAT3
-
Xiao H, Chung J, Kao HY, et al. Tip60 is a co-repressor for STAT3. J Biol Chem 2003;278:11197-204.
-
(2003)
J Biol Chem
, vol.278
, pp. 11197-11204
-
-
Xiao, H.1
Chung, J.2
Kao, H.Y.3
-
86
-
-
0035845539
-
Cloning and characterization of a histone deacetylase, HDAC9
-
Zhou X, Marks PA, Rifkind RA, et al. Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci USA 2001;98:10572-7.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10572-10577
-
-
Zhou, X.1
Marks, P.A.2
Rifkind, R.A.3
-
87
-
-
0037016696
-
Isolation and characterization of mammalian HDAC10, a novel histone deacetylase
-
Kao HY, Lee CH, Komarov A, et al. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem 2002;277:187-93.
-
(2002)
J Biol Chem
, vol.277
, pp. 187-193
-
-
Kao, H.Y.1
Lee, C.H.2
Komarov, A.3
-
88
-
-
0028841317
-
The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
-
Brachmann CB, Sherman JM, Devine SE, et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995;9:2888-902.
-
(1995)
Genes Dev
, vol.9
, pp. 2888-2902
-
-
Brachmann, C.B.1
Sherman, J.M.2
Devine, S.E.3
-
89
-
-
0035863153
-
A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast
-
Perrod S, Cockell MM, Laroche T, et al. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J 2001; 20:197-209.
-
(2001)
EMBO J
, vol.20
, pp. 197-209
-
-
Perrod, S.1
Cockell, M.M.2
Laroche, T.3
-
90
-
-
0022625954
-
Cloning and characterization of four SIR genes of Saccharomyces cerevisiae
-
Ivy JM, Klar AJ, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 1986;6:688-702.
-
(1986)
Mol Cell Biol
, vol.6
, pp. 688-702
-
-
Ivy, J.M.1
Klar, A.J.2
Hicks, J.B.3
-
91
-
-
0036261650
-
Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation
-
Hoppe GJ, Tanny JC, Rudner AD, et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 2002;22:4167-80.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 4167-4180
-
-
Hoppe, G.J.1
Tanny, J.C.2
Rudner, A.D.3
-
92
-
-
0033574603
-
Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity
-
Straight AF, Shou W, Dowd GJ, et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 1999;97:245-56.
-
(1999)
Cell
, vol.97
, pp. 245-256
-
-
Straight, A.F.1
Shou, W.2
Dowd, G.J.3
-
93
-
-
0033574594
-
Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex
-
Shou W, Seol JH, Shevchenko A, et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 1999;97:233-44.
-
(1999)
Cell
, vol.97
, pp. 233-244
-
-
Shou, W.1
Seol, J.H.2
Shevchenko, A.3
-
94
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260:273-9.
-
(1999)
Biochem Biophys Res Commun
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
95
-
-
0035913903
-
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
-
Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-59.
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Ng Eaton, E.3
-
96
-
-
0035913911
-
Negative control of p53 by Sir2alpha promotes cell survival under stress
-
Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107:137-48.
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.3
-
97
-
-
11444252265
-
BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression
-
Senawong T, Peterson VJ, Leid M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch Biochem Biophys 2005;434: 316-25.
-
(2005)
Arch Biochem Biophys
, vol.434
, pp. 316-325
-
-
Senawong, T.1
Peterson, V.J.2
Leid, M.3
-
98
-
-
0037405043
-
Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
-
Dryden SC, Nahhas FA, Nowak JE, et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003; 23:3173-85.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 3173-3185
-
-
Dryden, S.C.1
Nahhas, F.A.2
Nowak, J.E.3
-
99
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006;103:10224-9.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
Bunkenborg, J.2
Verdin, R.O.3
-
100
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006;103:10230-5.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
Lee, S.2
Denu, J.M.3
-
101
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793-8.
-
(2000)
Biochem Biophys Res Commun
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
102
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124:315-29.
-
(2006)
Cell
, vol.124
, pp. 315-329
-
-
Mostoslavsky, R.1
Chua, K.F.2
Lombard, D.B.3
-
103
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
-
Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006;20:1075-80.
-
(2006)
Genes Dev
, vol.20
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
-
104
-
-
0037067696
-
Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family
-
Gao L, Cueto MA, Asselbergs F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277:25748-55.
-
(2002)
J Biol Chem
, vol.277
, pp. 25748-25755
-
-
Gao, L.1
Cueto, M.A.2
Asselbergs, F.3
-
105
-
-
0035105035
-
TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
-
Wu J, Suka N, Carlson M, et al. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 2001;7:117-26.
-
(2001)
Mol Cell
, vol.7
, pp. 117-126
-
-
Wu, J.1
Suka, N.2
Carlson, M.3
-
106
-
-
16244366803
-
Class II histone deacetylases: From sequence to function, regulation, and clinical implication
-
Yang XJ, Gregoire S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Mol Cell Biol 2005;25:2873-84.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2873-2884
-
-
Yang, X.J.1
Gregoire, S.2
-
107
-
-
3943054839
-
The Sir2 funily of protein deacetylases
-
Blander G, Guarente L. The Sir2 funily of protein deacetylases. Annu Rev Biochem 2004;73:417-35.
-
(2004)
Annu Rev Biochem
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
108
-
-
0032540755
-
How do histone acetyltransferases select lysine residues in core histones?
-
Kimura A, Horikoshi M. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett 1998;431:131-3.
-
(1998)
FEBS Lett
, vol.431
, pp. 131-133
-
-
Kimura, A.1
Horikoshi, M.2
-
109
-
-
0033517354
-
Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide
-
Rojas JR, Trievel RC, Zhou J, et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 1999;401:93-8.
-
(1999)
Nature
, vol.401
, pp. 93-98
-
-
Rojas, J.R.1
Trievel, R.C.2
Zhou, J.3
-
110
-
-
0033529845
-
Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator
-
Trievel RC, Rojas JR, Sterner DE, et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA 1999;96: 8931-6.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 8931-8936
-
-
Trievel, R.C.1
Rojas, J.R.2
Sterner, D.E.3
-
111
-
-
0033168714
-
Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A
-
Clements A, Rojas JR, Trievel RC, et al. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J 1999;18:3521-32.
-
(1999)
EMBO J
, vol.18
, pp. 3521-3532
-
-
Clements, A.1
Rojas, J.R.2
Trievel, R.C.3
-
112
-
-
0033635283
-
Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases
-
Yan Y, Barlev NA, Haley RH et al. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell 2000;6:1195-205.
-
(2000)
Mol Cell
, vol.6
, pp. 1195-1205
-
-
Yan, Y.1
Barlev, N.A.2
Haley, R.H.3
-
113
-
-
0032555689
-
Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily
-
Dutnall RN, Tafrov ST, Sternglanz R, et al. Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 1998; 94:427-38.
-
(1998)
Cell
, vol.94
, pp. 427-438
-
-
Dutnall, R.N.1
Tafrov, S.T.2
Sternglanz, R.3
-
114
-
-
0141992114
-
Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase
-
Clements A, Poux AN, Lo WS, et al. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 2003;12:461-73.
-
(2003)
Mol Cell
, vol.12
, pp. 461-473
-
-
Clements, A.1
Poux, A.N.2
Lo, W.S.3
-
115
-
-
0030797585
-
Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
-
Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997;90:595-606.
-
(1997)
Cell
, vol.90
, pp. 595-606
-
-
Gu, W.1
Roeder, R.G.2
-
116
-
-
7044250740
-
Lysine acetylation and the bromodomain: A new partnership for signaling
-
Yang XJ. Lysine acetylation and the bromodomain: A new partnership for signaling. Bioessays 2004;26:1076-87.
-
(2004)
Bioessays
, vol.26
, pp. 1076-1087
-
-
Yang, X.J.1
-
117
-
-
28044471827
-
Acetylation and deacetylation of non-histone proteins
-
Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins. Gene 2005;363: 15-23.
-
(2005)
Gene
, vol.363
, pp. 15-23
-
-
Glozak, M.A.1
Sengupta, N.2
Zhang, X.3
-
118
-
-
20444427964
-
Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba
-
Marsh VL, Peak-Chew SY, Bell SD. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J Biol Chem 2005;280:21122-8.
-
(2005)
J Biol Chem
, vol.280
, pp. 21122-21128
-
-
Marsh, V.L.1
Peak-Chew, S.Y.2
Bell, S.D.3
-
119
-
-
0037169529
-
Global regulation of post-translational modifications on core histories
-
Galasinski SC, Louie DF, Gloor KK, et al. Global regulation of post-translational modifications on core histories. J Biol Chem 2002;277:2579-88.
-
(2002)
J Biol Chem
, vol.277
, pp. 2579-2588
-
-
Galasinski, S.C.1
Louie, D.F.2
Gloor, K.K.3
-
120
-
-
0141483484
-
Identification of novel histone post-translational modifications by peptide mass fingerprinting
-
Zhang L, Eugeni EE, Parthun MR, et al. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 2003;112:77-86.
-
(2003)
Chromosoma
, vol.112
, pp. 77-86
-
-
Zhang, L.1
Eugeni, E.E.2
Parthun, M.R.3
-
121
-
-
7544229161
-
Application of mass spectrometry to the identification and quantification of histone post-translational modifications
-
Freitas MA, Sklenar AR, Parthun MR. Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 2004;92:691-700.
-
(2004)
J Cell Biochem
, vol.92
, pp. 691-700
-
-
Freitas, M.A.1
Sklenar, A.R.2
Parthun, M.R.3
-
122
-
-
5644231221
-
Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS)
-
Medzihradszky KF, Zhang X, Chalkley RJ, et al. Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol Cell Proteomics 2004;3: 872-86.
-
(2004)
Mol Cell Proteomics
, vol.3
, pp. 872-886
-
-
Medzihradszky, K.F.1
Zhang, X.2
Chalkley, R.J.3
-
123
-
-
1642272372
-
Shotgun annotation of histone modifications: A new approach for streamlined characterization of proteins by top down mass spectrometry
-
Pesavento JJ, Kim YB, Taylor GK, et al. Shotgun annotation of histone modifications: A new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc 2004;126:3386-7.
-
(2004)
J Am Chem Soc
, vol.126
, pp. 3386-3387
-
-
Pesavento, J.J.1
Kim, Y.B.2
Taylor, G.K.3
-
124
-
-
1242342240
-
Histone H3.3 is enriched in covalent modifications associated with active chromatin
-
McKittrick E, Gafken PR, Ahmad K, et al. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 2004;101: 1525-30.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 1525-1530
-
-
McKittrick, E.1
Gafken, P.R.2
Ahmad, K.3
-
125
-
-
13544271154
-
Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications
-
Johnson L, Mollah S, Garcia BA, et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 2004;32:6511-8.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 6511-6518
-
-
Johnson, L.1
Mollah, S.2
Garcia, B.A.3
-
126
-
-
32344453899
-
Mass spectrometric characterization of human histone H3: A bird's eye view
-
Thomas CE, Kelleher NL, Mizzen CA. Mass spectrometric characterization of human histone H3: A bird's eye view. J Proteome Res 2006;3:240-7.
-
(2006)
J Proteome Res
, vol.3
, pp. 240-247
-
-
Thomas, C.E.1
Kelleher, N.L.2
Mizzen, C.A.3
-
127
-
-
23244448558
-
The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing
-
Zhou Y, Grummt I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 2005;15:1434-8.
-
(2005)
Curr Biol
, vol.15
, pp. 1434-1438
-
-
Zhou, Y.1
Grummt, I.2
-
128
-
-
0037164736
-
Crosstalk between CARM1 methylation and CBP acetylation on histone H3
-
Daujat S, Bauer UM, Shah V, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 2002;12:2090-7.
-
(2002)
Curr Biol
, vol.12
, pp. 2090-2097
-
-
Daujat, S.1
Bauer, U.M.2
Shah, V.3
-
129
-
-
0034387879
-
Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain
-
Hudson BP, Martinez-Yamout MA, Dyson HJ, et al. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain.J Mol Biol 2000;304:355-70.
-
(2000)
J Mol Biol
, vol.304
, pp. 355-370
-
-
Hudson, B.P.1
Martinez-Yamout, M.A.2
Dyson, H.J.3
-
130
-
-
0034669210
-
The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p
-
Owen DJ, Ornaghi P, Yang JC, et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000;19:6141-9.
-
(2000)
EMBO J
, vol.19
, pp. 6141-6149
-
-
Owen, D.J.1
Ornaghi, P.2
Yang, J.C.3
-
131
-
-
0033519641
-
Structure and ligand of a histone acetyltransferase bromodomain
-
Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999; 399:491-6.
-
(1999)
Nature
, vol.399
, pp. 491-496
-
-
Dhalluin, C.1
Carlson, J.E.2
Zeng, L.3
-
132
-
-
0036206045
-
Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain
-
Mujtaba S, He Y, Zeng L, et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 2002;9:575-86.
-
(2002)
Mol Cell
, vol.9
, pp. 575-586
-
-
Mujtaba, S.1
He, Y.2
Zeng, L.3
-
133
-
-
0034717183
-
Structure and function of a human TAFII250 double bromodomain module
-
Jacobson RH, Ladurner AG, King DS, et al. Structure and function of a human TAFII250 double bromodomain module. Science 2000;288:1422-5.
-
(2000)
Science
, vol.288
, pp. 1422-1425
-
-
Jacobson, R.H.1
Ladurner, A.G.2
King, D.S.3
-
134
-
-
1642564551
-
Selective recognition of acetylated histones by bromodomain proteins visualized in living cells
-
Kanno T, Kanno Y, Siegel RM, etal. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 2004;13:33-43.
-
(2004)
Mol Cell
, vol.13
, pp. 33-43
-
-
Kanno, T.1
Kanno, Y.2
Siegel, R.M.3
-
135
-
-
0035012326
-
p300 forms a stable, template-committed complex with chromatin: Role for the bromodomain
-
Manning ET, Ikehara T, Ito T, et al. p300 forms a stable, template-committed complex with chromatin: Role for the bromodomain. Mol Cell Biol 2001;21:3876-87.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3876-3887
-
-
Manning, E.T.1
Ikehara, T.2
Ito, T.3
-
136
-
-
0034934713
-
Interaction between acetylated MyoD and the bromodomain of CBP and/or p300
-
Polesskaya A, Naguibneva I, Duquet A, et al. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol Cell Biol 2001;21:5312-20.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 5312-5320
-
-
Polesskaya, A.1
Naguibneva, I.2
Duquet, A.3
-
137
-
-
0037383691
-
The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation
-
Deng Z, Chen CJ, Chamberlin M, et al. The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol 2003;23:2633-44.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 2633-2644
-
-
Deng, Z.1
Chen, C.J.2
Chamberlin, M.3
-
138
-
-
10744233648
-
Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation
-
Mujtaba S, He Y, Zeng L, et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 2004;13:251-63.
-
(2004)
Mol Cell
, vol.13
, pp. 251-263
-
-
Mujtaba, S.1
He, Y.2
Zeng, L.3
-
139
-
-
0041806599
-
The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis
-
Dey A, Chitsaz F, Abbasi A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 2003; 100:8758-63.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 8758-8763
-
-
Dey, A.1
Chitsaz, F.2
Abbasi, A.3
-
140
-
-
0042090936
-
Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein
-
Pivot-Pajot C, Caron C, Govin J, et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 2003;23:5354-65.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 5354-5365
-
-
Pivot-Pajot, C.1
Caron, C.2
Govin, J.3
-
141
-
-
33644960174
-
The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain
-
Peng C, Zhou J, Liu HY, et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem 2006;97:882-92.
-
(2006)
J Cell Biochem
, vol.97
, pp. 882-892
-
-
Peng, C.1
Zhou, J.2
Liu, H.Y.3
-
142
-
-
0036850346
-
Deciphering the transcriptional histone acetylation code for a human gene
-
Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 2002;111:381-92.
-
(2002)
Cell
, vol.111
, pp. 381-392
-
-
Agalioti, T.1
Chen, G.2
Thanos, D.3
-
143
-
-
0032911635
-
Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction
-
Sterner DE, Grant PA, Roberts SM, et al. Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 1999;19:86-98.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 86-98
-
-
Sterner, D.E.1
Grant, P.A.2
Roberts, S.M.3
-
144
-
-
1942535223
-
Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
-
Kasten M, Szerlong H, Erdjument-Bromage H, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 2004;23: 1348-59.
-
(2004)
EMBO J
, vol.23
, pp. 1348-1359
-
-
Kasten, M.1
Szerlong, H.2
Erdjument-Bromage, H.3
-
145
-
-
0037291760
-
Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries
-
Ladurner AG, Inouye C, Jain R, et al. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 2003; 11:365-76.
-
(2003)
Mol Cell
, vol.11
, pp. 365-376
-
-
Ladurner, A.G.1
Inouye, C.2
Jain, R.3
-
146
-
-
0037291695
-
Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation
-
Matangkasombut O, Buratowski S. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 2003;11:353-63.
-
(2003)
Mol Cell
, vol.11
, pp. 353-363
-
-
Matangkasombut, O.1
Buratowski, S.2
-
147
-
-
14844361808
-
Multisite protein modification and intramolecular signaling
-
Yang XJ. Multisite protein modification and intramolecular signaling. Oncogene 2005;24:1653-62.
-
(2005)
Oncogene
, vol.24
, pp. 1653-1662
-
-
Yang, X.J.1
-
148
-
-
0037436410
-
Chromatin fiber folding: Requirement for the histone H4 N-terminal tail
-
Do,rigo B, Schalch T, Bystricky K, et al. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 2003;327:85-96.
-
(2003)
J Mol Biol
, vol.327
, pp. 85-96
-
-
Dorigo, B.1
Schalch, T.2
Bystricky, K.3
-
149
-
-
0141929385
-
Binary switches and modification cassettes in histone biology and beyond
-
Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003;425:475-9.
-
(2003)
Nature
, vol.425
, pp. 475-479
-
-
Fischle, W.1
Wang, Y.2
Allis, C.D.3
-
150
-
-
33644853802
-
Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code
-
Nightingale KP, O'Neill LP, Turner BM. Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 2006; 16:125-36.
-
(2006)
Curr Opin Genet Dev
, vol.16
, pp. 125-136
-
-
Nightingale, K.P.1
O'Neill, L.P.2
Turner, B.M.3
-
151
-
-
0034700511
-
A role for Saccharomyces cerevisiae histone H2A in DNA repair
-
Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000;408:1001-4.
-
(2000)
Nature
, vol.408
, pp. 1001-1004
-
-
Downs, J.A.1
Lowndes, N.F.2
Jackson, S.P.3
-
152
-
-
10944267160
-
Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites
-
Downs JA, Allard S, Jobin-Robitaille O, et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 2004;16:979-90.
-
(2004)
Mol Cell
, vol.16
, pp. 979-990
-
-
Downs, J.A.1
Allard, S.2
Jobin-Robitaille, O.3
-
153
-
-
0037074010
-
Signaling network model of chromatin
-
Schreiber SL, Bernstein BE. Signaling network model of chromatin. Cell 2002;111:771-8.
-
(2002)
Cell
, vol.111
, pp. 771-778
-
-
Schreiber, S.L.1
Bernstein, B.E.2
-
154
-
-
28844475262
-
Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
-
Hirota T, Lipp JJ, Toh BH, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 2005;438:1176-80.
-
(2005)
Nature
, vol.438
, pp. 1176-1180
-
-
Hirota, T.1
Lipp, J.J.2
Toh, B.H.3
-
155
-
-
28844477653
-
Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
-
Fischle W, Tseng BS, Dormann HL, et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005;438:1116-22.
-
(2005)
Nature
, vol.438
, pp. 1116-1122
-
-
Fischle, W.1
Tseng, B.S.2
Dormann, H.L.3
-
157
-
-
32444434989
-
Histone H4-K16 acetylation controls chromatin structure and protein interactions
-
Shogren-Knaak M, Ishii H, Sun JM, et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006;311:844-7.
-
(2006)
Science
, vol.311
, pp. 844-847
-
-
Shogren-Knaak, M.1
Ishii, H.2
Sun, J.M.3
-
158
-
-
17244368913
-
Genomic characterization reveals a simple histone H4 acetylation code
-
Dion MF, Altschuler SJ, Wu LF, et al. Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 2005;102:5501-6.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 5501-5506
-
-
Dion, M.F.1
Altschuler, S.J.2
Wu, L.F.3
-
159
-
-
0343924289
-
Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
-
Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 1997;89:365-71.
-
(1997)
Cell
, vol.89
, pp. 365-371
-
-
Kadosh, D.1
Struhl, K.2
-
160
-
-
0034508137
-
Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription
-
Kuo MH, vom Baur E, Struhl K, et al. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 2000;6:1309-20.
-
(2000)
Mol Cell
, vol.6
, pp. 1309-1320
-
-
Kuo, M.H.1
vom Baur, E.2
Struhl, K.3
-
161
-
-
29444454191
-
Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling
-
Li B, Pattenden SG, Lee D, et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci USA 2005;102:18385-90.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 18385-18390
-
-
Li, B.1
Pattenden, S.G.2
Lee, D.3
-
162
-
-
31344480648
-
Mechanism of polymerase II transcription repression by the histone variant macroH2A
-
Doyen CM, An W, Angelov D, et al. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 2006;26:1156-64.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 1156-1164
-
-
Doyen, C.M.1
An, W.2
Angelov, D.3
-
163
-
-
23944495664
-
The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes
-
Sjolinder M, Bjork P, Soderberg E, et al. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 2005;19: 1871-84.
-
(2005)
Genes Dev
, vol.19
, pp. 1871-1884
-
-
Sjolinder, M.1
Bjork, P.2
Soderberg, E.3
-
164
-
-
23944462969
-
Genome-wide map of nucleosome acetylation and methylation in yeast
-
Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005;122:517-27.
-
(2005)
Cell
, vol.122
, pp. 517-527
-
-
Pokholok, D.K.1
Harbison, C.T.2
Levine, S.3
-
165
-
-
33644614845
-
Genome-wide patterns of histone modifications in fission yeast
-
Sinha I, Wiren M, Ekwall K. Genome-wide patterns of histone modifications in fission yeast. Chromosome Res 2006;14:95-105.
-
(2006)
Chromosome Res
, vol.14
, pp. 95-105
-
-
Sinha, I.1
Wiren, M.2
Ekwall, K.3
-
166
-
-
27744577727
-
Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
-
Carrozza MJ, Li B, Florens L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005;123:581-92.
-
(2005)
Cell
, vol.123
, pp. 581-592
-
-
Carrozza, M.J.1
Li, B.2
Florens, L.3
-
167
-
-
29144468972
-
Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
-
Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 2005;20:971-8.
-
(2005)
Mol Cell
, vol.20
, pp. 971-978
-
-
Joshi, A.A.1
Struhl, K.2
-
168
-
-
0034515772
-
Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase
-
Reid JL, Iyer VR, Brown PO, et al. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 2000;6: 1297-307.
-
(2000)
Mol Cell
, vol.6
, pp. 1297-1307
-
-
Reid, J.L.1
Iyer, V.R.2
Brown, P.O.3
-
169
-
-
20444375490
-
Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription
-
Morillon A, Karabetsou N, Nair A, et al. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol Cell 2005;18:723-34.
-
(2005)
Mol Cell
, vol.18
, pp. 723-734
-
-
Morillon, A.1
Karabetsou, N.2
Nair, A.3
-
170
-
-
27744587302
-
Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
-
Keogh MC, Kurdistani SK, Morris SA, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 2005;123: 593-605.
-
(2005)
Cell
, vol.123
, pp. 593-605
-
-
Keogh, M.C.1
Kurdistani, S.K.2
Morris, S.A.3
-
171
-
-
1842318607
-
Evidence that natural radio-activity is inadequate to explain the frequency of "natural" mutations
-
Muller HJ, Mott-Smith LM. Evidence that natural radio-activity is inadequate to explain the frequency of "natural" mutations. Proc Natl Acad Sci USA 1930;16:277-85.
-
(1930)
Proc Natl Acad Sci USA
, vol.16
, pp. 277-285
-
-
Muller, H.J.1
Mott-Smith, L.M.2
-
172
-
-
24344454298
-
Delving into the diversity of facultative heterochromatin: The epigenetics of the inactive X chromosome
-
Heard E. Delving into the diversity of facultative heterochromatin: The epigenetics of the inactive X chromosome. Curr Opin Genet Dev 2005;15:482-9.
-
(2005)
Curr Opin Genet Dev
, vol.15
, pp. 482-489
-
-
Heard, E.1
-
173
-
-
0030798245
-
Histone acetylation in chromatin structure and transcription
-
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997;389:349-52.
-
(1997)
Nature
, vol.389
, pp. 349-352
-
-
Grunstein, M.1
-
175
-
-
0037636027
-
The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
-
Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003;72: 481-516.
-
(2003)
Annu Rev Biochem
, vol.72
, pp. 481-516
-
-
Rusche, L.N.1
Kirchmaier, A.L.2
Rine, J.3
-
176
-
-
18944372806
-
Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations
-
P,irrotta V, Gross DS. Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations. Mol Cell 2005;18:395-8.
-
(2005)
Mol Cell
, vol.18
, pp. 395-398
-
-
Pirrotta, V.1
Gross, D.S.2
-
177
-
-
0036529517
-
Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe
-
Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002;30:1465-82.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 1465-1482
-
-
Huang, Y.1
-
178
-
-
27644589675
-
The diverse functions of histone lysine methylation
-
Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005;6:838-49.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 838-849
-
-
Martin, C.1
Zhang, Y.2
-
179
-
-
0036467996
-
Insulators: Many functions, many mechanisms
-
West AG, Gaszner M, Felsenfeld G. Insulators: Many functions, many mechanisms. Genes Dev 2002;16:271-88.
-
(2002)
Genes Dev
, vol.16
, pp. 271-288
-
-
West, A.G.1
Gaszner, M.2
Felsenfeld, G.3
-
180
-
-
19944430797
-
Genomic maps and comparative analysis of histone modifications in human and mouse
-
Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005;120:169-81.
-
(2005)
Cell
, vol.120
, pp. 169-181
-
-
Bernstein, B.E.1
Kamal, M.2
Lindblad-Toh, K.3
-
181
-
-
14644406272
-
Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping
-
Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 2005;19:542-52.
-
(2005)
Genes Dev
, vol.19
, pp. 542-552
-
-
Roh, T.Y.1
Cuddapah, S.2
Zhao, K.3
-
182
-
-
3042733279
-
Partition of distinct chromosomal regions: Negotiable border and fixed border
-
Kimura A, Horikoshi M. Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells 2004;9:499-508.
-
(2004)
Genes Cells
, vol.9
, pp. 499-508
-
-
Kimura, A.1
Horikoshi, M.2
-
183
-
-
8644240108
-
Recruitment of histone modifications by USF proteins at a vertebrate barrier element
-
West AG, Huang S, Gaszner M, et al. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol Cell 2004;16:453-63.
-
(2004)
Mol Cell
, vol.16
, pp. 453-463
-
-
West, A.G.1
Huang, S.2
Gaszner, M.3
-
184
-
-
2942679507
-
Form follows function: The genomic organization of cellular differentiation
-
Kosak ST, Groudine M. Form follows function: The genomic organization of cellular differentiation. Genes Dev 2004;18:1371-84.
-
(2004)
Genes Dev
, vol.18
, pp. 1371-1384
-
-
Kosak, S.T.1
Groudine, M.2
-
185
-
-
0037083376
-
Capturing chromosome conformation
-
Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation. Science 2002;295:1306-11.
-
(2002)
Science
, vol.295
, pp. 1306-1311
-
-
Dekker, J.1
Rippe, K.2
Dekker, M.3
-
187
-
-
0034704248
-
Genome-wide location and function of DNA binding proteins
-
Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins. Science 2000;290: 2306-9.
-
(2000)
Science
, vol.290
, pp. 2306-2309
-
-
Ren, B.1
Robert, F.2
Wyrick, J.J.3
-
188
-
-
3543008920
-
High-resolution genome-wide mapping of histone modifications
-
Roh TY, Ngau WC, Cui K, et al. High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 2004;22:1013-6.
-
(2004)
Nat Biotechnol
, vol.22
, pp. 1013-1016
-
-
Roh, T.Y.1
Ngau, W.C.2
Cui, K.3
-
189
-
-
2642570305
-
The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
-
Schubeler D, MacAlpine DM, Scalzo D, et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004;18:1263-71.
-
(2004)
Genes Dev
, vol.18
, pp. 1263-1271
-
-
Schubeler, D.1
MacAlpine, D.M.2
Scalzo, D.3
-
190
-
-
23844519339
-
A high-resolution map of active promoters in the human genome
-
Kim TH, Barrera LO, Zheng M, et al. A high-resolution map of active promoters in the human genome. Nature 2005;436:876-80.
-
(2005)
Nature
, vol.436
, pp. 876-880
-
-
Kim, T.H.1
Barrera, L.O.2
Zheng, M.3
-
191
-
-
26444575698
-
Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast
-
Wiren M, Silverstein RA, Sinha I, et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J 2005;24: 2906-18.
-
(2005)
EMBO J
, vol.24
, pp. 2906-2918
-
-
Wiren, M.1
Silverstein, R.A.2
Sinha, I.3
-
192
-
-
0037172993
-
Methylation of histone H3 Lys 4 in coding regions of active genes
-
Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 2002;99: 8695-700.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 8695-8700
-
-
Bernstein, B.E.1
Humphrey, E.L.2
Erlich, R.L.3
-
193
-
-
0037179716
-
Active genes are tri-methylated at K4 of histone H3
-
Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419:407-11.
-
(2002)
Nature
, vol.419
, pp. 407-411
-
-
Santos-Rosa, H.1
Schneider, R.2
Bannister, A.J.3
-
194
-
-
6344270167
-
Global position and recruitment of HATs and HDACs in the yeast genome
-
Robert F, Pokholok DK, Hannett NM, et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 2004;16:199-209.
-
(2004)
Mol Cell
, vol.16
, pp. 199-209
-
-
Robert, F.1
Pokholok, D.K.2
Hannett, N.M.3
-
195
-
-
23044498502
-
Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome
-
Cam HP, Sugiyama T, Chen ES, et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 2005;37:809-19.
-
(2005)
Nat Genet
, vol.37
, pp. 809-819
-
-
Cam, H.P.1
Sugiyama, T.2
Chen, E.S.3
-
196
-
-
2442454683
-
Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome
-
Liang G, Lin JC, Wei V, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 2004;101:7357-62.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 7357-7362
-
-
Liang, G.1
Lin, J.C.2
Wei, V.3
-
197
-
-
1342268289
-
Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
-
Schneider R, Bannister AJ, Myers FA, et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 2004;6:73-7.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 73-77
-
-
Schneider, R.1
Bannister, A.J.2
Myers, F.A.3
-
198
-
-
23744460663
-
Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias
-
Wirbelauer C, Bell O, Schubeler D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 2005;19:1761-6.
-
(2005)
Genes Dev
, vol.19
, pp. 1761-1766
-
-
Wirbelauer, C.1
Bell, O.2
Schubeler, D.3
-
199
-
-
0037123767
-
Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
-
Robyr D, Suka Y, Xenarios I, et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 2002;109:437-46.
-
(2002)
Cell
, vol.109
, pp. 437-446
-
-
Robyr, D.1
Suka, Y.2
Xenarios, I.3
-
200
-
-
3843103739
-
Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae
-
Martin AM, Pouchnik DJ, Walker JL, et al. Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae. Genetics 2004;167:1123-32.
-
(2004)
Genetics
, vol.167
, pp. 1123-1132
-
-
Martin, A.M.1
Pouchnik, D.J.2
Walker, J.L.3
|