메뉴 건너뛰기




Volumn 5, Issue 3, 2006, Pages 190-208

Simple histone acetylation plays a complex role in the regulation of gene expression

Author keywords

Chromatin; Histone acetylation; Transcription

Indexed keywords

DNA; HISTONE; HISTONE ACETYLTRANSFERASE;

EID: 33947536338     PISSN: 14739550     EISSN: 14774062     Source Type: Journal    
DOI: 10.1093/bfgp/ell032     Document Type: Review
Times cited : (115)

References (200)
  • 1
    • 0016221697 scopus 로고
    • Chromatin structure: A repeating unit of histones and DNA
    • Kornberg RD. Chromatin structure: A repeating unit of histones and DNA. Science 1974;184:868-71.
    • (1974) Science , vol.184 , pp. 868-871
    • Kornberg, R.D.1
  • 2
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98:285-94.
    • (1999) Cell , vol.98 , pp. 285-294
    • Kornberg, R.D.1    Lorch, Y.2
  • 3
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger K, Mader AW, Richmond RK, etal. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-60.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3
  • 5
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41-5.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 6
    • 0033080794 scopus 로고    scopus 로고
    • Chromatin disruption and modification
    • Wolffe AP, Hayes JJ. Chromatin disruption and modification. Nucleic Acids Res 1999;27:711-20.
    • (1999) Nucleic Acids Res , vol.27 , pp. 711-720
    • Wolffe, A.P.1    Hayes, J.J.2
  • 7
    • 78651162036 scopus 로고
    • Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis
    • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis. Proc Natl Acad Sci USA 1964; 51:786-94.
    • (1964) Proc Natl Acad Sci USA , vol.51 , pp. 786-794
    • Allfrey, V.G.1    Faulkner, R.2    Mirsky, A.E.3
  • 8
    • 0014683539 scopus 로고
    • Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms
    • Roeder RG, Rutter WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 1969;224:234-7.
    • (1969) Nature , vol.224 , pp. 234-237
    • Roeder, R.G.1    Rutter, W.J.2
  • 9
    • 0019333274 scopus 로고
    • Multiple factors required for accurate initiation of transcription by purified RNA polymerase II
    • Matsui T, Segall J, Weil PA, et al. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 1980;255:11992-6.
    • (1980) J Biol Chem , vol.255 , pp. 11992-11996
    • Matsui, T.1    Segall, J.2    Weil, P.A.3
  • 10
    • 0019333262 scopus 로고
    • Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III
    • Segall J, Matsui T, Roeder RG. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J Biol Chem 1980;255:11986-91.
    • (1980) J Biol Chem , vol.255 , pp. 11986-11991
    • Segall, J.1    Matsui, T.2    Roeder, R.G.3
  • 11
    • 0026645025 scopus 로고
    • Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains
    • Berger SL, Pina B, Silverman N, et al. Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains. Cell 1992;70: 251-65.
    • (1992) Cell , vol.70 , pp. 251-265
    • Berger, S.L.1    Pina, B.2    Silverman, N.3
  • 12
    • 0028060030 scopus 로고
    • Activation of cAMP and mitogen responsive genes relies on a common nuclear factor
    • Arias J, Alberts AS, Brindle P, et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 1994;370:226-9.
    • (1994) Nature , vol.370 , pp. 226-229
    • Arias, J.1    Alberts, A.S.2    Brindle, P.3
  • 13
    • 0028060029 scopus 로고
    • Nuclear protein CBP is a coactivator for the transcription factor CREB
    • Kwok RP, Lundblad JR, Chrivia JC, et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994;370:223-6.
    • (1994) Nature , vol.370 , pp. 223-226
    • Kwok, R.P.1    Lundblad, J.R.2    Chrivia, J.C.3
  • 14
    • 0028246161 scopus 로고
    • E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators
    • Arany Z, Sellers WR, Livingston DM, et al. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 1994;77:799-800.
    • (1994) Cell , vol.77 , pp. 799-800
    • Arany, Z.1    Sellers, W.R.2    Livingston, D.M.3
  • 15
    • 0032450899 scopus 로고    scopus 로고
    • Role of general and gene-specific cofactors in the regulation of eukaryotic transcription
    • Roeder RG. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harb Symp Quant Biol 1998;63:201-18.
    • (1998) Cold Spring Harb Symp Quant Biol , vol.63 , pp. 201-218
    • Roeder, R.G.1
  • 17
    • 0023955508 scopus 로고
    • Changes in histone gene dosage alter transcription in yeast
    • Clark-Adams CD, Norris D, Osley MA, et al. Changes in histone gene dosage alter transcription in yeast. Genes Dev 1988;2:150-9.
    • (1988) Genes Dev , vol.2 , pp. 150-159
    • Clark-Adams, C.D.1    Norris, D.2    Osley, M.A.3
  • 18
    • 0024261583 scopus 로고
    • Nucleosome loss activates yeast downstream promoters in vivo
    • Han M, Grunstein M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 1988;55:1137-45.
    • (1988) Cell , vol.55 , pp. 1137-1145
    • Han, M.1    Grunstein, M.2
  • 19
    • 0023663417 scopus 로고
    • Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones
    • Lorch Y, LaPointe JW, Komberg RD. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 1987;49:203-10.
    • (1987) Cell , vol.49 , pp. 203-210
    • Lorch, Y.1    LaPointe, J.W.2    Komberg, R.D.3
  • 20
    • 0021233482 scopus 로고
    • The role of stable complexes that repress and activate eucaryotic genes
    • Brown DD. The role of stable complexes that repress and activate eucaryotic genes. Cell 1984;37:359-65.
    • (1984) Cell , vol.37 , pp. 359-365
    • Brown, D.D.1
  • 21
    • 0023661185 scopus 로고
    • Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II
    • Workman JL, Roeder RG. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 1987;51:613-22.
    • (1987) Cell , vol.51 , pp. 613-622
    • Workman, J.L.1    Roeder, R.G.2
  • 22
    • 0024280881 scopus 로고
    • Extremely conserved histone H4N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast
    • Kayne PS, Kim UJ, Han M, et al. Extremely conserved histone H4N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 1988;55:27-39.
    • (1988) Cell , vol.55 , pp. 27-39
    • Kayne, P.S.1    Kim, U.J.2    Han, M.3
  • 23
    • 0025736044 scopus 로고
    • Yeast histone H4 N-terminal sequence is required for promoter activation in vivo
    • Durrin LK, Mann RK, Kayne PS, et al. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 1991;65:1023-31.
    • (1991) Cell , vol.65 , pp. 1023-1031
    • Durrin, L.K.1    Mann, R.K.2    Kayne, P.S.3
  • 24
    • 0028885077 scopus 로고
    • Identification of a gene encoding a yeast histone H4 acetyltransferase
    • Kleff S, Andrulis ED, Anderson CW, et al. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 1995;270:24674-77.
    • (1995) J Biol Chem , vol.270 , pp. 24674-24677
    • Kleff, S.1    Andrulis, E.D.2    Anderson, C.W.3
  • 25
    • 0029049102 scopus 로고
    • An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei
    • Brownell JE, Allis CD. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci USA 1995;92: 6364-8.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 6364-6368
    • Brownell, J.E.1    Allis, C.D.2
  • 26
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843-51.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1    Zhou, J.2    Ranalli, T.3
  • 27
    • 0034051227 scopus 로고    scopus 로고
    • Acetylation of histones and transcription-related factors
    • Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000;64: 435-59.
    • (2000) Microbiol Mol Biol Rev , vol.64 , pp. 435-459
    • Sterner, D.E.1    Berger, S.L.2
  • 29
    • 0038204415 scopus 로고    scopus 로고
    • The diverse functions of histone acetyltransferase complexes
    • Carrozza MJ, Utley RT, Workman JL, et al. The diverse functions of histone acetyltransferase complexes. Trends Genet 2003;19:321-9.
    • (2003) Trends Genet , vol.19 , pp. 321-329
    • Carrozza, M.J.1    Utley, R.T.2    Workman, J.L.3
  • 30
    • 32944469082 scopus 로고    scopus 로고
    • A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes
    • Kimura A, Matsubara K, Horikoshi M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem (Tokyo) 2005;138:647-662.
    • (2005) J Biochem (Tokyo) , vol.138 , pp. 647-662
    • Kimura, A.1    Matsubara, K.2    Horikoshi, M.3
  • 31
    • 0032526622 scopus 로고    scopus 로고
    • Cloning of Drosophila GCN5: Conserved features among metazoan GCN5 family members
    • Smith ER, Belote JM, Schiltz RL, et al. Cloning of Drosophila GCN5: conserved features among metazoan GCN5 family members. Nucleic Acids Res 1998; 26:2948-54.
    • (1998) Nucleic Acids Res , vol.26 , pp. 2948-2954
    • Smith, E.R.1    Belote, J.M.2    Schiltz, R.L.3
  • 32
    • 0031678679 scopus 로고    scopus 로고
    • Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates
    • Xu W, Edmondson DG, Roth SY. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 1998;18:5659-69.
    • (1998) Mol Cell Biol , vol.18 , pp. 5659-5669
    • Xu, W.1    Edmondson, D.G.2    Roth, S.Y.3
  • 33
    • 0029665857 scopus 로고    scopus 로고
    • A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
    • Yang XJ, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996;382:319-24.
    • (1996) Nature , vol.382 , pp. 319-324
    • Yang, X.J.1    Ogryzko, V.V.2    Nishikawa, J.3
  • 34
    • 0032584196 scopus 로고    scopus 로고
    • ESA1 is a histone acetyltransferase that is essential for growth in yeast
    • Smith ER, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci USA 1998;95:3561-5.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 3561-3565
    • Smith, E.R.1    Eisen, A.2    Gu, W.3
  • 35
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002;32:370-7.
    • (2002) Nat Genet , vol.32 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 36
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 2002;32:378-83.
    • (2002) Nat Genet , vol.32 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 37
    • 0037930802 scopus 로고    scopus 로고
    • Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex
    • Sutton A, Shia WJ, Band D, et al. Sas4 and Sas5 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. J Biol Chem 2003;278:16887-92.
    • (2003) J Biol Chem , vol.278 , pp. 16887-16892
    • Sutton, A.1    Shia, W.J.2    Band, D.3
  • 38
    • 0033590107 scopus 로고    scopus 로고
    • Sas3 is a histone acetyltransferase and requires a zinc finger motif
    • Takechi S, Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem Biophys Res Commun 1999;266:405-10.
    • (1999) Biochem Biophys Res Commun , vol.266 , pp. 405-410
    • Takechi, S.1    Nakayama, T.2
  • 39
    • 0030712311 scopus 로고    scopus 로고
    • Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60
    • Yamamoto T, Horikoshi M. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem 1997;272:30595-8.
    • (1997) J Biol Chem , vol.272 , pp. 30595-30598
    • Yamamoto, T.1    Horikoshi, M.2
  • 40
    • 0033551686 scopus 로고    scopus 로고
    • Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein
    • Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 1999;274:23027-34.
    • (1999) J Biol Chem , vol.274 , pp. 23027-23034
    • Iizuka, M.1    Stillman, B.2
  • 41
    • 0033215187 scopus 로고    scopus 로고
    • Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein
    • Champagne N, Bertos NR, Pelletier N, et al. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 1999;274: 28528-36.
    • (1999) J Biol Chem , vol.274 , pp. 28528-28536
    • Champagne, N.1    Bertos, N.R.2    Pelletier, N.3
  • 42
    • 0035905756 scopus 로고    scopus 로고
    • The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase
    • Champagne N, Pelletier N, Yang XJ. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 2001;20:404-9.
    • (2001) Oncogene , vol.20 , pp. 404-409
    • Champagne, N.1    Pelletier, N.2    Yang, X.J.3
  • 43
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006;125: 497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 44
    • 11144246904 scopus 로고    scopus 로고
    • Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities
    • Toleman C, Paterson AJ, Whisenhunt TR, et al. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J Biol Chem 2004;279: 53665-73.
    • (2004) J Biol Chem , vol.279 , pp. 53665-53673
    • Toleman, C.1    Paterson, A.J.2    Whisenhunt, T.R.3
  • 45
    • 0030891858 scopus 로고    scopus 로고
    • Mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila
    • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, et al. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 1997;16:2054-60.
    • (1997) EMBO J , vol.16 , pp. 2054-2060
    • Hilfiker, A.1    Hilfiker-Kleiner, D.2    Pannuti, A.3
  • 46
    • 0033866836 scopus 로고    scopus 로고
    • Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila
    • Akhtar A, Becker PB. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 2000;5:367-75.
    • (2000) Mol Cell , vol.5 , pp. 367-375
    • Akhtar, A.1    Becker, P.B.2
  • 47
    • 0033973262 scopus 로고    scopus 로고
    • A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF
    • Neal KC, Pannuti A, Smith ER, et al. A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 2000;1490:170-4.
    • (2000) Biochim Biophys Acta , vol.1490 , pp. 170-174
    • Neal, K.C.1    Pannuti, A.2    Smith, E.R.3
  • 48
    • 0033988212 scopus 로고    scopus 로고
    • The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation
    • Smith ER, Pannuti A, Gu W, et al. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 2000;20:312-8.
    • (2000) Mol Cell Biol , vol.20 , pp. 312-318
    • Smith, E.R.1    Pannuti, A.2    Gu, W.3
  • 49
    • 0033166761 scopus 로고    scopus 로고
    • A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme
    • Wittschieben BO, Otero G, de Bizemont T, et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 1999;4:123-8.
    • (1999) Mol Cell , vol.4 , pp. 123-128
    • Wittschieben, B.O.1    Otero, G.2    de Bizemont, T.3
  • 50
    • 0033579559 scopus 로고    scopus 로고
    • Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily
    • Angus-Hill ML, Dutnall RN, Tafrov ST, et al. Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J Mol Biol 1999;294:1311-25.
    • (1999) J Mol Biol , vol.294 , pp. 1311-1325
    • Angus-Hill, M.L.1    Dutnall, R.N.2    Tafrov, S.T.3
  • 51
    • 0033635271 scopus 로고    scopus 로고
    • Mediator-nucleosome interaction
    • Lorch Y, Beve J, Gustafsson CM, et al. Mediator-nucleosome interaction. Mol Cell 2000;6:197-201.
    • (2000) Mol Cell , vol.6 , pp. 197-201
    • Lorch, Y.1    Beve, J.2    Gustafsson, C.M.3
  • 52
    • 0030447943 scopus 로고    scopus 로고
    • The TAF(II)250 subunit of TFIID has histone acetyltransferase activity
    • Mizzen CA, Yang XJ, Kokubo T, et al. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 1996;87:1261-70.
    • (1996) Cell , vol.87 , pp. 1261-1270
    • Mizzen, C.A.1    Yang, X.J.2    Kokubo, T.3
  • 53
    • 0030606239 scopus 로고    scopus 로고
    • The transcriptional coactivators p300 and CBP are histone acetyltransferases
    • Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996;87:953-9.
    • (1996) Cell , vol.87 , pp. 953-959
    • Ogryzko, V.V.1    Schiltz, R.L.2    Russanova, V.3
  • 54
    • 0030480969 scopus 로고    scopus 로고
    • The CBP co-activator is a histone acetyltransferase
    • Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996;384:641-3.
    • (1996) Nature , vol.384 , pp. 641-643
    • Bannister, A.J.1    Kouzarides, T.2
  • 55
    • 0032907345 scopus 로고    scopus 로고
    • Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity
    • Kundu TK, Wang Z, Roeder RG. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 1999;19:1605-15.
    • (1999) Mol Cell Biol , vol.19 , pp. 1605-1615
    • Kundu, T.K.1    Wang, Z.2    Roeder, R.G.3
  • 56
    • 0032744688 scopus 로고    scopus 로고
    • The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity
    • Hsieh YJ, Kundu TK, Wang Z, etal. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 1999;19:7697-704.
    • (1999) Mol Cell Biol , vol.19 , pp. 7697-7704
    • Hsieh, Y.J.1    Kundu, T.K.2    Wang, Z.3
  • 57
    • 0030740253 scopus 로고    scopus 로고
    • Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300
    • Chen H, Lin RJ, Schiltz RL, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 1997;90:569-80.
    • (1997) Cell , vol.90 , pp. 569-580
    • Chen, H.1    Lin, R.J.2    Schiltz, R.L.3
  • 58
    • 0030768745 scopus 로고    scopus 로고
    • Steroid receptor coactivator-1 is a histone acetyltransferase
    • Spencer TE, Jenster G, Burcin MM, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997;389: 194-8.
    • (1997) Nature , vol.389 , pp. 194-198
    • Spencer, T.E.1    Jenster, G.2    Burcin, M.M.3
  • 59
    • 0034636554 scopus 로고    scopus 로고
    • ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation
    • Kawasaki H, Schiltz L, Chiu R, et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 2000;405:195-200.
    • (2000) Nature , vol.405 , pp. 195-200
    • Kawasaki, H.1    Schiltz, L.2    Chiu, R.3
  • 60
    • 0030954208 scopus 로고    scopus 로고
    • GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein
    • Neuwald AF, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 1997; 22:154-5.
    • (1997) Trends Biochem Sci , vol.22 , pp. 154-155
    • Neuwald, A.F.1    Landsman, D.2
  • 62
    • 9744255506 scopus 로고    scopus 로고
    • Structure and functions of the GNAT superfamily of acetyltransferases
    • Vetting MW, LP SdC, Yu M, et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 2005;433:212-26.
    • (2005) Arch Biochem Biophys , vol.433 , pp. 212-226
    • Vetting, M.W.1    Vetting, L.P.S.dC.2    Yu, M.3
  • 63
    • 0037242383 scopus 로고    scopus 로고
    • The MYST family of histone acetyltransferases
    • Utley RT, Cote J. The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 2003;274:203-36.
    • (2003) Curr Top Microbiol Immunol , vol.274 , pp. 203-236
    • Utley, R.T.1    Cote, J.2
  • 64
    • 0029741343 scopus 로고    scopus 로고
    • Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases
    • Reifsnyder C, Lowell J, Clarke A, et al. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 1996;14:42-9.
    • (1996) Nat Genet , vol.14 , pp. 42-49
    • Reifsnyder, C.1    Lowell, J.2    Clarke, A.3
  • 65
    • 0030939235 scopus 로고    scopus 로고
    • The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function
    • Ehrenhofer-Murray AE, Rivier DH, Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997; 145:923-34.
    • (1997) Genetics , vol.145 , pp. 923-934
    • Ehrenhofer-Murray, A.E.1    Rivier, D.H.2    Rine, J.3
  • 66
    • 0034682736 scopus 로고    scopus 로고
    • Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis
    • Ikura T, Ogryzko VV, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000;102:463-73.
    • (2000) Cell , vol.102 , pp. 463-473
    • Ikura, T.1    Ogryzko, V.V.2    Grigoriev, M.3
  • 67
    • 28444456705 scopus 로고    scopus 로고
    • The histone code at DNA breaks: A guide to repair?
    • van Attikum H, Gasser SM. The histone code at DNA breaks: A guide to repair? Nat Rev Mol Cell Biol 2005;6: 757-65.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 757-765
    • van Attikum, H.1    Gasser, S.M.2
  • 68
    • 31344462362 scopus 로고    scopus 로고
    • Regulation of replication licensing by acetyltransferase Hbo1
    • Iizuka M, Matsui T, Takisawa H, et al. Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 2006;26:1098-108.
    • (2006) Mol Cell Biol , vol.26 , pp. 1098-1108
    • Iizuka, M.1    Matsui, T.2    Takisawa, H.3
  • 69
    • 0029932598 scopus 로고    scopus 로고
    • A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
    • Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996;272:408-11.
    • (1996) Science , vol.272 , pp. 408-411
    • Taunton, J.1    Hassig, C.A.2    Schreiber, S.L.3
  • 70
    • 1842578986 scopus 로고    scopus 로고
    • Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis
    • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol 2004;338:17-31.
    • (2004) J Mol Biol , vol.338 , pp. 17-31
    • Gregoretti, I.V.1    Lee, Y.M.2    Goodson, H.V.3
  • 71
    • 0029856225 scopus 로고    scopus 로고
    • HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
    • Rundlett SE, Carmen AA, Kobayashi R, et al. HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 1996;93:14503-8.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 14503-14508
    • Rundlett, S.E.1    Carmen, A.A.2    Kobayashi, R.3
  • 72
    • 0035890135 scopus 로고    scopus 로고
    • The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program
    • Pijnappel WW, Schaft D, Roguev A, et al. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 2001;15:2991-3004.
    • (2001) Genes Dev , vol.15 , pp. 2991-3004
    • Pijnappel, W.W.1    Schaft, D.2    Roguev, A.3
  • 73
    • 0037111879 scopus 로고    scopus 로고
    • Requirement of Hos2 histone deacetylase for gene activity in yeast
    • Wang A, Kurdistani SK, Grunstein M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 2002;298:1412-4.
    • (2002) Science , vol.298 , pp. 1412-1414
    • Wang, A.1    Kurdistani, S.K.2    Grunstein, M.3
  • 74
    • 0343416249 scopus 로고    scopus 로고
    • Histone deacetylases: Silencers for hire
    • Ng HH, Bird A. Histone deacetylases: Silencers for hire. Trends Biochem Sci 2000;25:121-6.
    • (2000) Trends Biochem Sci , vol.25 , pp. 121-126
    • Ng, H.H.1    Bird, A.2
  • 75
    • 0034704078 scopus 로고    scopus 로고
    • A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1
    • Underhill C, Qutob MS, Yee SP, et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000;275:40463-70.
    • (2000) J Biol Chem , vol.275 , pp. 40463-40470
    • Underhill, C.1    Qutob, M.S.2    Yee, S.P.3
  • 77
    • 0034685766 scopus 로고    scopus 로고
    • Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor
    • Hu E, Chen Z, Fredrickson T, et al. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 2000; 275:15254-64.
    • (2000) J Biol Chem , vol.275 , pp. 15254-15264
    • Hu, E.1    Chen, Z.2    Fredrickson, T.3
  • 78
    • 0033607171 scopus 로고    scopus 로고
    • Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity
    • Carmen AA, Griffin PR, Calaycay JR, et al. Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc Natl Acad Sci USA 1999;96:12356-61.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 12356-12361
    • Carmen, A.A.1    Griffin, P.R.2    Calaycay, J.R.3
  • 79
    • 0033609055 scopus 로고    scopus 로고
    • Three proteins define a class of human histone deacetylases related to yeast Hda1p
    • Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 1999;96:4868-73.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 4868-4873
    • Grozinger, C.M.1    Hassig, C.A.2    Schreiber, S.L.3
  • 80
    • 0033568028 scopus 로고    scopus 로고
    • HDAC4 deacetylase associates with and represses the MEF2 transcription factor
    • Miska EA, Karlsson C, Langley E, et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 1999;18:5099-107.
    • (1999) EMBO J , vol.18 , pp. 5099-5107
    • Miska, E.A.1    Karlsson, C.2    Langley, E.3
  • 81
    • 0033957792 scopus 로고    scopus 로고
    • Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway
    • Huang EY, Zhang J, Miska EA, et al. Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 2000;14: 45-54.
    • (2000) Genes Dev , vol.14 , pp. 45-54
    • Huang, E.Y.1    Zhang, J.2    Miska, E.A.3
  • 82
    • 0037161744 scopus 로고    scopus 로고
    • HDAC6 is a microtubule-associated deacetylase
    • Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455-8.
    • (2002) Nature , vol.417 , pp. 455-458
    • Hubbert, C.1    Guardiola, A.2    Shao, R.3
  • 83
    • 0033964223 scopus 로고    scopus 로고
    • Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression
    • Kao HY, Downes M, Ordentlich P, et al. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 2000;14:55-66.
    • (2000) Genes Dev , vol.14 , pp. 55-66
    • Kao, H.Y.1    Downes, M.2    Ordentlich, P.3
  • 84
    • 4744368147 scopus 로고    scopus 로고
    • Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity
    • Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 2004;279: 41966-74.
    • (2004) J Biol Chem , vol.279 , pp. 41966-41974
    • Kato, H.1    Tamamizu-Kato, S.2    Shibasaki, F.3
  • 85
    • 0037837745 scopus 로고    scopus 로고
    • Tip60 is a co-repressor for STAT3
    • Xiao H, Chung J, Kao HY, et al. Tip60 is a co-repressor for STAT3. J Biol Chem 2003;278:11197-204.
    • (2003) J Biol Chem , vol.278 , pp. 11197-11204
    • Xiao, H.1    Chung, J.2    Kao, H.Y.3
  • 86
    • 0035845539 scopus 로고    scopus 로고
    • Cloning and characterization of a histone deacetylase, HDAC9
    • Zhou X, Marks PA, Rifkind RA, et al. Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci USA 2001;98:10572-7.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 10572-10577
    • Zhou, X.1    Marks, P.A.2    Rifkind, R.A.3
  • 87
    • 0037016696 scopus 로고    scopus 로고
    • Isolation and characterization of mammalian HDAC10, a novel histone deacetylase
    • Kao HY, Lee CH, Komarov A, et al. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem 2002;277:187-93.
    • (2002) J Biol Chem , vol.277 , pp. 187-193
    • Kao, H.Y.1    Lee, C.H.2    Komarov, A.3
  • 88
    • 0028841317 scopus 로고
    • The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
    • Brachmann CB, Sherman JM, Devine SE, et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 1995;9:2888-902.
    • (1995) Genes Dev , vol.9 , pp. 2888-2902
    • Brachmann, C.B.1    Sherman, J.M.2    Devine, S.E.3
  • 89
    • 0035863153 scopus 로고    scopus 로고
    • A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast
    • Perrod S, Cockell MM, Laroche T, et al. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J 2001; 20:197-209.
    • (2001) EMBO J , vol.20 , pp. 197-209
    • Perrod, S.1    Cockell, M.M.2    Laroche, T.3
  • 90
    • 0022625954 scopus 로고
    • Cloning and characterization of four SIR genes of Saccharomyces cerevisiae
    • Ivy JM, Klar AJ, Hicks JB. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 1986;6:688-702.
    • (1986) Mol Cell Biol , vol.6 , pp. 688-702
    • Ivy, J.M.1    Klar, A.J.2    Hicks, J.B.3
  • 91
    • 0036261650 scopus 로고    scopus 로고
    • Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation
    • Hoppe GJ, Tanny JC, Rudner AD, et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 2002;22:4167-80.
    • (2002) Mol Cell Biol , vol.22 , pp. 4167-4180
    • Hoppe, G.J.1    Tanny, J.C.2    Rudner, A.D.3
  • 92
    • 0033574603 scopus 로고    scopus 로고
    • Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity
    • Straight AF, Shou W, Dowd GJ, et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 1999;97:245-56.
    • (1999) Cell , vol.97 , pp. 245-256
    • Straight, A.F.1    Shou, W.2    Dowd, G.J.3
  • 93
    • 0033574594 scopus 로고    scopus 로고
    • Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex
    • Shou W, Seol JH, Shevchenko A, et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 1999;97:233-44.
    • (1999) Cell , vol.97 , pp. 233-244
    • Shou, W.1    Seol, J.H.2    Shevchenko, A.3
  • 94
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260:273-9.
    • (1999) Biochem Biophys Res Commun , vol.260 , pp. 273-279
    • Frye, R.A.1
  • 95
    • 0035913903 scopus 로고    scopus 로고
    • hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-59.
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1    Dessain, S.K.2    Ng Eaton, E.3
  • 96
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2alpha promotes cell survival under stress
    • Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107:137-48.
    • (2001) Cell , vol.107 , pp. 137-148
    • Luo, J.1    Nikolaev, A.Y.2    Imai, S.3
  • 97
    • 11444252265 scopus 로고    scopus 로고
    • BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression
    • Senawong T, Peterson VJ, Leid M. BCL11A-dependent recruitment of SIRT1 to a promoter template in mammalian cells results in histone deacetylation and transcriptional repression. Arch Biochem Biophys 2005;434: 316-25.
    • (2005) Arch Biochem Biophys , vol.434 , pp. 316-325
    • Senawong, T.1    Peterson, V.J.2    Leid, M.3
  • 98
    • 0037405043 scopus 로고    scopus 로고
    • Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
    • Dryden SC, Nahhas FA, Nowak JE, et al. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 2003; 23:3173-85.
    • (2003) Mol Cell Biol , vol.23 , pp. 3173-3185
    • Dryden, S.C.1    Nahhas, F.A.2    Nowak, J.E.3
  • 99
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006;103:10224-9.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3
  • 100
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 2006;103:10230-5.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 101
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793-8.
    • (2000) Biochem Biophys Res Commun , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 102
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124:315-29.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 103
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006;20:1075-80.
    • (2006) Genes Dev , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3
  • 104
    • 0037067696 scopus 로고    scopus 로고
    • Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family
    • Gao L, Cueto MA, Asselbergs F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277:25748-55.
    • (2002) J Biol Chem , vol.277 , pp. 25748-25755
    • Gao, L.1    Cueto, M.A.2    Asselbergs, F.3
  • 105
    • 0035105035 scopus 로고    scopus 로고
    • TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast
    • Wu J, Suka N, Carlson M, et al. TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 2001;7:117-26.
    • (2001) Mol Cell , vol.7 , pp. 117-126
    • Wu, J.1    Suka, N.2    Carlson, M.3
  • 106
    • 16244366803 scopus 로고    scopus 로고
    • Class II histone deacetylases: From sequence to function, regulation, and clinical implication
    • Yang XJ, Gregoire S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Mol Cell Biol 2005;25:2873-84.
    • (2005) Mol Cell Biol , vol.25 , pp. 2873-2884
    • Yang, X.J.1    Gregoire, S.2
  • 107
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 funily of protein deacetylases
    • Blander G, Guarente L. The Sir2 funily of protein deacetylases. Annu Rev Biochem 2004;73:417-35.
    • (2004) Annu Rev Biochem , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 108
    • 0032540755 scopus 로고    scopus 로고
    • How do histone acetyltransferases select lysine residues in core histones?
    • Kimura A, Horikoshi M. How do histone acetyltransferases select lysine residues in core histones? FEBS Lett 1998;431:131-3.
    • (1998) FEBS Lett , vol.431 , pp. 131-133
    • Kimura, A.1    Horikoshi, M.2
  • 109
    • 0033517354 scopus 로고    scopus 로고
    • Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide
    • Rojas JR, Trievel RC, Zhou J, et al. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 1999;401:93-8.
    • (1999) Nature , vol.401 , pp. 93-98
    • Rojas, J.R.1    Trievel, R.C.2    Zhou, J.3
  • 110
    • 0033529845 scopus 로고    scopus 로고
    • Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator
    • Trievel RC, Rojas JR, Sterner DE, et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA 1999;96: 8931-6.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 8931-8936
    • Trievel, R.C.1    Rojas, J.R.2    Sterner, D.E.3
  • 111
    • 0033168714 scopus 로고    scopus 로고
    • Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A
    • Clements A, Rojas JR, Trievel RC, et al. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J 1999;18:3521-32.
    • (1999) EMBO J , vol.18 , pp. 3521-3532
    • Clements, A.1    Rojas, J.R.2    Trievel, R.C.3
  • 112
    • 0033635283 scopus 로고    scopus 로고
    • Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases
    • Yan Y, Barlev NA, Haley RH et al. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell 2000;6:1195-205.
    • (2000) Mol Cell , vol.6 , pp. 1195-1205
    • Yan, Y.1    Barlev, N.A.2    Haley, R.H.3
  • 113
    • 0032555689 scopus 로고    scopus 로고
    • Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily
    • Dutnall RN, Tafrov ST, Sternglanz R, et al. Structure of the histone acetyltransferase Hat1: A paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 1998; 94:427-38.
    • (1998) Cell , vol.94 , pp. 427-438
    • Dutnall, R.N.1    Tafrov, S.T.2    Sternglanz, R.3
  • 114
    • 0141992114 scopus 로고    scopus 로고
    • Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase
    • Clements A, Poux AN, Lo WS, et al. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 2003;12:461-73.
    • (2003) Mol Cell , vol.12 , pp. 461-473
    • Clements, A.1    Poux, A.N.2    Lo, W.S.3
  • 115
    • 0030797585 scopus 로고    scopus 로고
    • Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain
    • Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997;90:595-606.
    • (1997) Cell , vol.90 , pp. 595-606
    • Gu, W.1    Roeder, R.G.2
  • 116
    • 7044250740 scopus 로고    scopus 로고
    • Lysine acetylation and the bromodomain: A new partnership for signaling
    • Yang XJ. Lysine acetylation and the bromodomain: A new partnership for signaling. Bioessays 2004;26:1076-87.
    • (2004) Bioessays , vol.26 , pp. 1076-1087
    • Yang, X.J.1
  • 117
    • 28044471827 scopus 로고    scopus 로고
    • Acetylation and deacetylation of non-histone proteins
    • Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins. Gene 2005;363: 15-23.
    • (2005) Gene , vol.363 , pp. 15-23
    • Glozak, M.A.1    Sengupta, N.2    Zhang, X.3
  • 118
    • 20444427964 scopus 로고    scopus 로고
    • Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba
    • Marsh VL, Peak-Chew SY, Bell SD. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J Biol Chem 2005;280:21122-8.
    • (2005) J Biol Chem , vol.280 , pp. 21122-21128
    • Marsh, V.L.1    Peak-Chew, S.Y.2    Bell, S.D.3
  • 119
    • 0037169529 scopus 로고    scopus 로고
    • Global regulation of post-translational modifications on core histories
    • Galasinski SC, Louie DF, Gloor KK, et al. Global regulation of post-translational modifications on core histories. J Biol Chem 2002;277:2579-88.
    • (2002) J Biol Chem , vol.277 , pp. 2579-2588
    • Galasinski, S.C.1    Louie, D.F.2    Gloor, K.K.3
  • 120
    • 0141483484 scopus 로고    scopus 로고
    • Identification of novel histone post-translational modifications by peptide mass fingerprinting
    • Zhang L, Eugeni EE, Parthun MR, et al. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 2003;112:77-86.
    • (2003) Chromosoma , vol.112 , pp. 77-86
    • Zhang, L.1    Eugeni, E.E.2    Parthun, M.R.3
  • 121
    • 7544229161 scopus 로고    scopus 로고
    • Application of mass spectrometry to the identification and quantification of histone post-translational modifications
    • Freitas MA, Sklenar AR, Parthun MR. Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 2004;92:691-700.
    • (2004) J Cell Biochem , vol.92 , pp. 691-700
    • Freitas, M.A.1    Sklenar, A.R.2    Parthun, M.R.3
  • 122
    • 5644231221 scopus 로고    scopus 로고
    • Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS)
    • Medzihradszky KF, Zhang X, Chalkley RJ, et al. Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol Cell Proteomics 2004;3: 872-86.
    • (2004) Mol Cell Proteomics , vol.3 , pp. 872-886
    • Medzihradszky, K.F.1    Zhang, X.2    Chalkley, R.J.3
  • 123
    • 1642272372 scopus 로고    scopus 로고
    • Shotgun annotation of histone modifications: A new approach for streamlined characterization of proteins by top down mass spectrometry
    • Pesavento JJ, Kim YB, Taylor GK, et al. Shotgun annotation of histone modifications: A new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc 2004;126:3386-7.
    • (2004) J Am Chem Soc , vol.126 , pp. 3386-3387
    • Pesavento, J.J.1    Kim, Y.B.2    Taylor, G.K.3
  • 124
    • 1242342240 scopus 로고    scopus 로고
    • Histone H3.3 is enriched in covalent modifications associated with active chromatin
    • McKittrick E, Gafken PR, Ahmad K, et al. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 2004;101: 1525-30.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 1525-1530
    • McKittrick, E.1    Gafken, P.R.2    Ahmad, K.3
  • 125
    • 13544271154 scopus 로고    scopus 로고
    • Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications
    • Johnson L, Mollah S, Garcia BA, et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 2004;32:6511-8.
    • (2004) Nucleic Acids Res , vol.32 , pp. 6511-6518
    • Johnson, L.1    Mollah, S.2    Garcia, B.A.3
  • 126
    • 32344453899 scopus 로고    scopus 로고
    • Mass spectrometric characterization of human histone H3: A bird's eye view
    • Thomas CE, Kelleher NL, Mizzen CA. Mass spectrometric characterization of human histone H3: A bird's eye view. J Proteome Res 2006;3:240-7.
    • (2006) J Proteome Res , vol.3 , pp. 240-247
    • Thomas, C.E.1    Kelleher, N.L.2    Mizzen, C.A.3
  • 127
    • 23244448558 scopus 로고    scopus 로고
    • The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing
    • Zhou Y, Grummt I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 2005;15:1434-8.
    • (2005) Curr Biol , vol.15 , pp. 1434-1438
    • Zhou, Y.1    Grummt, I.2
  • 128
    • 0037164736 scopus 로고    scopus 로고
    • Crosstalk between CARM1 methylation and CBP acetylation on histone H3
    • Daujat S, Bauer UM, Shah V, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 2002;12:2090-7.
    • (2002) Curr Biol , vol.12 , pp. 2090-2097
    • Daujat, S.1    Bauer, U.M.2    Shah, V.3
  • 129
    • 0034387879 scopus 로고    scopus 로고
    • Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain
    • Hudson BP, Martinez-Yamout MA, Dyson HJ, et al. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain.J Mol Biol 2000;304:355-70.
    • (2000) J Mol Biol , vol.304 , pp. 355-370
    • Hudson, B.P.1    Martinez-Yamout, M.A.2    Dyson, H.J.3
  • 130
    • 0034669210 scopus 로고    scopus 로고
    • The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p
    • Owen DJ, Ornaghi P, Yang JC, et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000;19:6141-9.
    • (2000) EMBO J , vol.19 , pp. 6141-6149
    • Owen, D.J.1    Ornaghi, P.2    Yang, J.C.3
  • 131
    • 0033519641 scopus 로고    scopus 로고
    • Structure and ligand of a histone acetyltransferase bromodomain
    • Dhalluin C, Carlson JE, Zeng L, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999; 399:491-6.
    • (1999) Nature , vol.399 , pp. 491-496
    • Dhalluin, C.1    Carlson, J.E.2    Zeng, L.3
  • 132
    • 0036206045 scopus 로고    scopus 로고
    • Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain
    • Mujtaba S, He Y, Zeng L, et al. Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 2002;9:575-86.
    • (2002) Mol Cell , vol.9 , pp. 575-586
    • Mujtaba, S.1    He, Y.2    Zeng, L.3
  • 133
    • 0034717183 scopus 로고    scopus 로고
    • Structure and function of a human TAFII250 double bromodomain module
    • Jacobson RH, Ladurner AG, King DS, et al. Structure and function of a human TAFII250 double bromodomain module. Science 2000;288:1422-5.
    • (2000) Science , vol.288 , pp. 1422-1425
    • Jacobson, R.H.1    Ladurner, A.G.2    King, D.S.3
  • 134
    • 1642564551 scopus 로고    scopus 로고
    • Selective recognition of acetylated histones by bromodomain proteins visualized in living cells
    • Kanno T, Kanno Y, Siegel RM, etal. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 2004;13:33-43.
    • (2004) Mol Cell , vol.13 , pp. 33-43
    • Kanno, T.1    Kanno, Y.2    Siegel, R.M.3
  • 135
    • 0035012326 scopus 로고    scopus 로고
    • p300 forms a stable, template-committed complex with chromatin: Role for the bromodomain
    • Manning ET, Ikehara T, Ito T, et al. p300 forms a stable, template-committed complex with chromatin: Role for the bromodomain. Mol Cell Biol 2001;21:3876-87.
    • (2001) Mol Cell Biol , vol.21 , pp. 3876-3887
    • Manning, E.T.1    Ikehara, T.2    Ito, T.3
  • 136
    • 0034934713 scopus 로고    scopus 로고
    • Interaction between acetylated MyoD and the bromodomain of CBP and/or p300
    • Polesskaya A, Naguibneva I, Duquet A, et al. Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol Cell Biol 2001;21:5312-20.
    • (2001) Mol Cell Biol , vol.21 , pp. 5312-5320
    • Polesskaya, A.1    Naguibneva, I.2    Duquet, A.3
  • 137
    • 0037383691 scopus 로고    scopus 로고
    • The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation
    • Deng Z, Chen CJ, Chamberlin M, et al. The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol 2003;23:2633-44.
    • (2003) Mol Cell Biol , vol.23 , pp. 2633-2644
    • Deng, Z.1    Chen, C.J.2    Chamberlin, M.3
  • 138
    • 10744233648 scopus 로고    scopus 로고
    • Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation
    • Mujtaba S, He Y, Zeng L, et al. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 2004;13:251-63.
    • (2004) Mol Cell , vol.13 , pp. 251-263
    • Mujtaba, S.1    He, Y.2    Zeng, L.3
  • 139
    • 0041806599 scopus 로고    scopus 로고
    • The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis
    • Dey A, Chitsaz F, Abbasi A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 2003; 100:8758-63.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 8758-8763
    • Dey, A.1    Chitsaz, F.2    Abbasi, A.3
  • 140
    • 0042090936 scopus 로고    scopus 로고
    • Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein
    • Pivot-Pajot C, Caron C, Govin J, et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 2003;23:5354-65.
    • (2003) Mol Cell Biol , vol.23 , pp. 5354-5365
    • Pivot-Pajot, C.1    Caron, C.2    Govin, J.3
  • 141
    • 33644960174 scopus 로고    scopus 로고
    • The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain
    • Peng C, Zhou J, Liu HY, et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J Cell Biochem 2006;97:882-92.
    • (2006) J Cell Biochem , vol.97 , pp. 882-892
    • Peng, C.1    Zhou, J.2    Liu, H.Y.3
  • 142
    • 0036850346 scopus 로고    scopus 로고
    • Deciphering the transcriptional histone acetylation code for a human gene
    • Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 2002;111:381-92.
    • (2002) Cell , vol.111 , pp. 381-392
    • Agalioti, T.1    Chen, G.2    Thanos, D.3
  • 143
    • 0032911635 scopus 로고    scopus 로고
    • Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction
    • Sterner DE, Grant PA, Roberts SM, et al. Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol Cell Biol 1999;19:86-98.
    • (1999) Mol Cell Biol , vol.19 , pp. 86-98
    • Sterner, D.E.1    Grant, P.A.2    Roberts, S.M.3
  • 144
    • 1942535223 scopus 로고    scopus 로고
    • Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14
    • Kasten M, Szerlong H, Erdjument-Bromage H, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 2004;23: 1348-59.
    • (2004) EMBO J , vol.23 , pp. 1348-1359
    • Kasten, M.1    Szerlong, H.2    Erdjument-Bromage, H.3
  • 145
    • 0037291760 scopus 로고    scopus 로고
    • Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries
    • Ladurner AG, Inouye C, Jain R, et al. Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 2003; 11:365-76.
    • (2003) Mol Cell , vol.11 , pp. 365-376
    • Ladurner, A.G.1    Inouye, C.2    Jain, R.3
  • 146
    • 0037291695 scopus 로고    scopus 로고
    • Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation
    • Matangkasombut O, Buratowski S. Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 2003;11:353-63.
    • (2003) Mol Cell , vol.11 , pp. 353-363
    • Matangkasombut, O.1    Buratowski, S.2
  • 147
    • 14844361808 scopus 로고    scopus 로고
    • Multisite protein modification and intramolecular signaling
    • Yang XJ. Multisite protein modification and intramolecular signaling. Oncogene 2005;24:1653-62.
    • (2005) Oncogene , vol.24 , pp. 1653-1662
    • Yang, X.J.1
  • 148
    • 0037436410 scopus 로고    scopus 로고
    • Chromatin fiber folding: Requirement for the histone H4 N-terminal tail
    • Do,rigo B, Schalch T, Bystricky K, et al. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 2003;327:85-96.
    • (2003) J Mol Biol , vol.327 , pp. 85-96
    • Dorigo, B.1    Schalch, T.2    Bystricky, K.3
  • 149
    • 0141929385 scopus 로고    scopus 로고
    • Binary switches and modification cassettes in histone biology and beyond
    • Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature 2003;425:475-9.
    • (2003) Nature , vol.425 , pp. 475-479
    • Fischle, W.1    Wang, Y.2    Allis, C.D.3
  • 150
    • 33644853802 scopus 로고    scopus 로고
    • Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code
    • Nightingale KP, O'Neill LP, Turner BM. Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 2006; 16:125-36.
    • (2006) Curr Opin Genet Dev , vol.16 , pp. 125-136
    • Nightingale, K.P.1    O'Neill, L.P.2    Turner, B.M.3
  • 151
    • 0034700511 scopus 로고    scopus 로고
    • A role for Saccharomyces cerevisiae histone H2A in DNA repair
    • Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 2000;408:1001-4.
    • (2000) Nature , vol.408 , pp. 1001-1004
    • Downs, J.A.1    Lowndes, N.F.2    Jackson, S.P.3
  • 152
    • 10944267160 scopus 로고    scopus 로고
    • Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites
    • Downs JA, Allard S, Jobin-Robitaille O, et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 2004;16:979-90.
    • (2004) Mol Cell , vol.16 , pp. 979-990
    • Downs, J.A.1    Allard, S.2    Jobin-Robitaille, O.3
  • 153
    • 0037074010 scopus 로고    scopus 로고
    • Signaling network model of chromatin
    • Schreiber SL, Bernstein BE. Signaling network model of chromatin. Cell 2002;111:771-8.
    • (2002) Cell , vol.111 , pp. 771-778
    • Schreiber, S.L.1    Bernstein, B.E.2
  • 154
    • 28844475262 scopus 로고    scopus 로고
    • Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin
    • Hirota T, Lipp JJ, Toh BH, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 2005;438:1176-80.
    • (2005) Nature , vol.438 , pp. 1176-1180
    • Hirota, T.1    Lipp, J.J.2    Toh, B.H.3
  • 155
    • 28844477653 scopus 로고    scopus 로고
    • Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
    • Fischle W, Tseng BS, Dormann HL, et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005;438:1116-22.
    • (2005) Nature , vol.438 , pp. 1116-1122
    • Fischle, W.1    Tseng, B.S.2    Dormann, H.L.3
  • 157
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak M, Ishii H, Sun JM, et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006;311:844-7.
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1    Ishii, H.2    Sun, J.M.3
  • 158
    • 17244368913 scopus 로고    scopus 로고
    • Genomic characterization reveals a simple histone H4 acetylation code
    • Dion MF, Altschuler SJ, Wu LF, et al. Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 2005;102:5501-6.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 5501-5506
    • Dion, M.F.1    Altschuler, S.J.2    Wu, L.F.3
  • 159
    • 0343924289 scopus 로고    scopus 로고
    • Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters
    • Kadosh D, Struhl K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 1997;89:365-71.
    • (1997) Cell , vol.89 , pp. 365-371
    • Kadosh, D.1    Struhl, K.2
  • 160
    • 0034508137 scopus 로고    scopus 로고
    • Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription
    • Kuo MH, vom Baur E, Struhl K, et al. Gcn4 activator targets Gcn5 histone acetyltransferase to specific promoters independently of transcription. Mol Cell 2000;6:1309-20.
    • (2000) Mol Cell , vol.6 , pp. 1309-1320
    • Kuo, M.H.1    vom Baur, E.2    Struhl, K.3
  • 161
    • 29444454191 scopus 로고    scopus 로고
    • Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling
    • Li B, Pattenden SG, Lee D, et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci USA 2005;102:18385-90.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 18385-18390
    • Li, B.1    Pattenden, S.G.2    Lee, D.3
  • 162
    • 31344480648 scopus 로고    scopus 로고
    • Mechanism of polymerase II transcription repression by the histone variant macroH2A
    • Doyen CM, An W, Angelov D, et al. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 2006;26:1156-64.
    • (2006) Mol Cell Biol , vol.26 , pp. 1156-1164
    • Doyen, C.M.1    An, W.2    Angelov, D.3
  • 163
    • 23944495664 scopus 로고    scopus 로고
    • The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes
    • Sjolinder M, Bjork P, Soderberg E, et al. The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 2005;19: 1871-84.
    • (2005) Genes Dev , vol.19 , pp. 1871-1884
    • Sjolinder, M.1    Bjork, P.2    Soderberg, E.3
  • 164
    • 23944462969 scopus 로고    scopus 로고
    • Genome-wide map of nucleosome acetylation and methylation in yeast
    • Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005;122:517-27.
    • (2005) Cell , vol.122 , pp. 517-527
    • Pokholok, D.K.1    Harbison, C.T.2    Levine, S.3
  • 165
    • 33644614845 scopus 로고    scopus 로고
    • Genome-wide patterns of histone modifications in fission yeast
    • Sinha I, Wiren M, Ekwall K. Genome-wide patterns of histone modifications in fission yeast. Chromosome Res 2006;14:95-105.
    • (2006) Chromosome Res , vol.14 , pp. 95-105
    • Sinha, I.1    Wiren, M.2    Ekwall, K.3
  • 166
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza MJ, Li B, Florens L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 2005;123:581-92.
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1    Li, B.2    Florens, L.3
  • 167
    • 29144468972 scopus 로고    scopus 로고
    • Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
    • Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 2005;20:971-8.
    • (2005) Mol Cell , vol.20 , pp. 971-978
    • Joshi, A.A.1    Struhl, K.2
  • 168
    • 0034515772 scopus 로고    scopus 로고
    • Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase
    • Reid JL, Iyer VR, Brown PO, et al. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 2000;6: 1297-307.
    • (2000) Mol Cell , vol.6 , pp. 1297-1307
    • Reid, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 169
    • 20444375490 scopus 로고    scopus 로고
    • Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription
    • Morillon A, Karabetsou N, Nair A, et al. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol Cell 2005;18:723-34.
    • (2005) Mol Cell , vol.18 , pp. 723-734
    • Morillon, A.1    Karabetsou, N.2    Nair, A.3
  • 170
    • 27744587302 scopus 로고    scopus 로고
    • Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex
    • Keogh MC, Kurdistani SK, Morris SA, et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 2005;123: 593-605.
    • (2005) Cell , vol.123 , pp. 593-605
    • Keogh, M.C.1    Kurdistani, S.K.2    Morris, S.A.3
  • 171
    • 1842318607 scopus 로고
    • Evidence that natural radio-activity is inadequate to explain the frequency of "natural" mutations
    • Muller HJ, Mott-Smith LM. Evidence that natural radio-activity is inadequate to explain the frequency of "natural" mutations. Proc Natl Acad Sci USA 1930;16:277-85.
    • (1930) Proc Natl Acad Sci USA , vol.16 , pp. 277-285
    • Muller, H.J.1    Mott-Smith, L.M.2
  • 172
    • 24344454298 scopus 로고    scopus 로고
    • Delving into the diversity of facultative heterochromatin: The epigenetics of the inactive X chromosome
    • Heard E. Delving into the diversity of facultative heterochromatin: The epigenetics of the inactive X chromosome. Curr Opin Genet Dev 2005;15:482-9.
    • (2005) Curr Opin Genet Dev , vol.15 , pp. 482-489
    • Heard, E.1
  • 173
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997;389:349-52.
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 174
  • 175
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • Rusche LN, Kirchmaier AL, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003;72: 481-516.
    • (2003) Annu Rev Biochem , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 176
    • 18944372806 scopus 로고    scopus 로고
    • Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations
    • P,irrotta V, Gross DS. Epigenetic silencing mechanisms in budding yeast and fruit fly: Different paths, same destinations. Mol Cell 2005;18:395-8.
    • (2005) Mol Cell , vol.18 , pp. 395-398
    • Pirrotta, V.1    Gross, D.S.2
  • 177
    • 0036529517 scopus 로고    scopus 로고
    • Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe
    • Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002;30:1465-82.
    • (2002) Nucleic Acids Res , vol.30 , pp. 1465-1482
    • Huang, Y.1
  • 178
    • 27644589675 scopus 로고    scopus 로고
    • The diverse functions of histone lysine methylation
    • Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005;6:838-49.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 838-849
    • Martin, C.1    Zhang, Y.2
  • 179
    • 0036467996 scopus 로고    scopus 로고
    • Insulators: Many functions, many mechanisms
    • West AG, Gaszner M, Felsenfeld G. Insulators: Many functions, many mechanisms. Genes Dev 2002;16:271-88.
    • (2002) Genes Dev , vol.16 , pp. 271-288
    • West, A.G.1    Gaszner, M.2    Felsenfeld, G.3
  • 180
    • 19944430797 scopus 로고    scopus 로고
    • Genomic maps and comparative analysis of histone modifications in human and mouse
    • Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005;120:169-81.
    • (2005) Cell , vol.120 , pp. 169-181
    • Bernstein, B.E.1    Kamal, M.2    Lindblad-Toh, K.3
  • 181
    • 14644406272 scopus 로고    scopus 로고
    • Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping
    • Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 2005;19:542-52.
    • (2005) Genes Dev , vol.19 , pp. 542-552
    • Roh, T.Y.1    Cuddapah, S.2    Zhao, K.3
  • 182
    • 3042733279 scopus 로고    scopus 로고
    • Partition of distinct chromosomal regions: Negotiable border and fixed border
    • Kimura A, Horikoshi M. Partition of distinct chromosomal regions: negotiable border and fixed border. Genes Cells 2004;9:499-508.
    • (2004) Genes Cells , vol.9 , pp. 499-508
    • Kimura, A.1    Horikoshi, M.2
  • 183
    • 8644240108 scopus 로고    scopus 로고
    • Recruitment of histone modifications by USF proteins at a vertebrate barrier element
    • West AG, Huang S, Gaszner M, et al. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol Cell 2004;16:453-63.
    • (2004) Mol Cell , vol.16 , pp. 453-463
    • West, A.G.1    Huang, S.2    Gaszner, M.3
  • 184
    • 2942679507 scopus 로고    scopus 로고
    • Form follows function: The genomic organization of cellular differentiation
    • Kosak ST, Groudine M. Form follows function: The genomic organization of cellular differentiation. Genes Dev 2004;18:1371-84.
    • (2004) Genes Dev , vol.18 , pp. 1371-1384
    • Kosak, S.T.1    Groudine, M.2
  • 185
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation. Science 2002;295:1306-11.
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3
  • 187
    • 0034704248 scopus 로고    scopus 로고
    • Genome-wide location and function of DNA binding proteins
    • Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins. Science 2000;290: 2306-9.
    • (2000) Science , vol.290 , pp. 2306-2309
    • Ren, B.1    Robert, F.2    Wyrick, J.J.3
  • 188
    • 3543008920 scopus 로고    scopus 로고
    • High-resolution genome-wide mapping of histone modifications
    • Roh TY, Ngau WC, Cui K, et al. High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 2004;22:1013-6.
    • (2004) Nat Biotechnol , vol.22 , pp. 1013-1016
    • Roh, T.Y.1    Ngau, W.C.2    Cui, K.3
  • 189
    • 2642570305 scopus 로고    scopus 로고
    • The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
    • Schubeler D, MacAlpine DM, Scalzo D, et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004;18:1263-71.
    • (2004) Genes Dev , vol.18 , pp. 1263-1271
    • Schubeler, D.1    MacAlpine, D.M.2    Scalzo, D.3
  • 190
    • 23844519339 scopus 로고    scopus 로고
    • A high-resolution map of active promoters in the human genome
    • Kim TH, Barrera LO, Zheng M, et al. A high-resolution map of active promoters in the human genome. Nature 2005;436:876-80.
    • (2005) Nature , vol.436 , pp. 876-880
    • Kim, T.H.1    Barrera, L.O.2    Zheng, M.3
  • 191
    • 26444575698 scopus 로고    scopus 로고
    • Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast
    • Wiren M, Silverstein RA, Sinha I, et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J 2005;24: 2906-18.
    • (2005) EMBO J , vol.24 , pp. 2906-2918
    • Wiren, M.1    Silverstein, R.A.2    Sinha, I.3
  • 192
    • 0037172993 scopus 로고    scopus 로고
    • Methylation of histone H3 Lys 4 in coding regions of active genes
    • Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 2002;99: 8695-700.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 8695-8700
    • Bernstein, B.E.1    Humphrey, E.L.2    Erlich, R.L.3
  • 193
    • 0037179716 scopus 로고    scopus 로고
    • Active genes are tri-methylated at K4 of histone H3
    • Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419:407-11.
    • (2002) Nature , vol.419 , pp. 407-411
    • Santos-Rosa, H.1    Schneider, R.2    Bannister, A.J.3
  • 194
    • 6344270167 scopus 로고    scopus 로고
    • Global position and recruitment of HATs and HDACs in the yeast genome
    • Robert F, Pokholok DK, Hannett NM, et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol Cell 2004;16:199-209.
    • (2004) Mol Cell , vol.16 , pp. 199-209
    • Robert, F.1    Pokholok, D.K.2    Hannett, N.M.3
  • 195
    • 23044498502 scopus 로고    scopus 로고
    • Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome
    • Cam HP, Sugiyama T, Chen ES, et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 2005;37:809-19.
    • (2005) Nat Genet , vol.37 , pp. 809-819
    • Cam, H.P.1    Sugiyama, T.2    Chen, E.S.3
  • 196
    • 2442454683 scopus 로고    scopus 로고
    • Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome
    • Liang G, Lin JC, Wei V, et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 2004;101:7357-62.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 7357-7362
    • Liang, G.1    Lin, J.C.2    Wei, V.3
  • 197
    • 1342268289 scopus 로고    scopus 로고
    • Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
    • Schneider R, Bannister AJ, Myers FA, et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 2004;6:73-7.
    • (2004) Nat Cell Biol , vol.6 , pp. 73-77
    • Schneider, R.1    Bannister, A.J.2    Myers, F.A.3
  • 198
    • 23744460663 scopus 로고    scopus 로고
    • Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias
    • Wirbelauer C, Bell O, Schubeler D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 2005;19:1761-6.
    • (2005) Genes Dev , vol.19 , pp. 1761-1766
    • Wirbelauer, C.1    Bell, O.2    Schubeler, D.3
  • 199
    • 0037123767 scopus 로고    scopus 로고
    • Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases
    • Robyr D, Suka Y, Xenarios I, et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 2002;109:437-46.
    • (2002) Cell , vol.109 , pp. 437-446
    • Robyr, D.1    Suka, Y.2    Xenarios, I.3
  • 200
    • 3843103739 scopus 로고    scopus 로고
    • Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae
    • Martin AM, Pouchnik DJ, Walker JL, et al. Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae. Genetics 2004;167:1123-32.
    • (2004) Genetics , vol.167 , pp. 1123-1132
    • Martin, A.M.1    Pouchnik, D.J.2    Walker, J.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.