메뉴 건너뛰기




Volumn 7, Issue 8, 2006, Pages 557-567

Breaking barriers to transcription elongation

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIN DEPENDENT KINASE 9; DNA; HEAT SHOCK PROTEIN 70; HISTONE; MESSENGER RNA; MYC PROTEIN; PROTEIN FOS; RNA POLYMERASE II; TRANSCRIPTION ELONGATION FACTOR; TRANSCRIPTION FACTOR IIB; TRANSCRIPTION FACTOR IIH;

EID: 33748314757     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm1981     Document Type: Review
Times cited : (406)

References (151)
  • 1
    • 0036545816 scopus 로고    scopus 로고
    • RNA polymerase II carboxy-terminal domain kinases: Emerging clues to their function
    • Prelich, G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot. Cell 1, 153-162 (2002).
    • (2002) Eukaryot. Cell , vol.1 , pp. 153-162
    • Prelich, G.1
  • 2
    • 5444225805 scopus 로고    scopus 로고
    • Elongation by RNA polymerase II: The short and long of it
    • Sims, R. J., Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437-2468 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 2437-2468
    • Sims, R.J.1    Belotserkovskaya, R.2    Reinberg, D.3
  • 3
    • 0142123203 scopus 로고    scopus 로고
    • Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock
    • Boehm, A. K., Saunders, A., Werner, J. & Lis, J. T. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell. Biol. 23, 7628-7637 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7628-7637
    • Boehm, A.K.1    Saunders, A.2    Werner, J.3    Lis, J.T.4
  • 4
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452-2460 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1    Cho, E.J.2    Buratowski, S.3
  • 5
    • 24744440133 scopus 로고    scopus 로고
    • Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans
    • Morris, D. P., Michelotti, G. A. & Schwinn, D. A. Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J. Biol. Chem. 280, 31368-31377 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 31368-31377
    • Morris, D.P.1    Michelotti, G.A.2    Schwinn, D.A.3
  • 6
    • 23944462969 scopus 로고    scopus 로고
    • Genome-wide map of nucleosome acetylation and methylation in yeast
    • Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517-527 (2005). Provides a high-resolution map of histone acetylation and methylation, normalized to nucleosome density, across the S. cerevisiae genome. This study also examines the correlation of particular histone acetyl and methyl marks with gene activity.
    • (2005) Cell , vol.122 , pp. 517-527
    • Pokholok, D.K.1
  • 7
    • 2542428546 scopus 로고    scopus 로고
    • Structure and mechanism of the RNA polymerase II transcription machinery
    • Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nature Struct. Mol. Biol. 11, 394-403 (2004).
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 394-403
    • Hahn, S.1
  • 8
    • 1942535198 scopus 로고    scopus 로고
    • RNA polymerase II structure: From core to functional complexes
    • Cramer, P. RNA polymerase II structure: from core to functional complexes. Curr. Opin. Genet. Dev. 14, 218-226 (2004).
    • (2004) Curr. Opin. Genet. Dev. , vol.14 , pp. 218-226
    • Cramer, P.1
  • 9
    • 0026577264 scopus 로고
    • Polymerase II promoter activation: Closed complex formation and ATP-driven start site opening
    • Wang, W., Carey, M. & Gralla, J. D. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255, 450-453 (1992).
    • (1992) Science , vol.255 , pp. 450-453
    • Wang, W.1    Carey, M.2    Gralla, J.D.3
  • 10
    • 0037073047 scopus 로고    scopus 로고
    • Promoter escape by RNA polymerase II
    • Dvir, A. Promoter escape by RNA polymerase II. Biochim. Biophys. Acta 1577, 208-223 (2002).
    • (2002) Biochim. Biophys. Acta , vol.1577 , pp. 208-223
    • Dvir, A.1
  • 11
    • 0037073077 scopus 로고    scopus 로고
    • Promoter clearance and escape in prokaryotes
    • Hsu, L. M. Promoter clearance and escape in prokaryotes. Biochim. Biophys. Acta 1577, 191-207 (2002).
    • (2002) Biochim. Biophys. Acta , vol.1577 , pp. 191-207
    • Hsu, L.M.1
  • 12
    • 0023138161 scopus 로고
    • Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes
    • Cai, H. & Luse, D. S. Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes. J. Biol. Chem. 262, 298-304 (1987).
    • (1987) J. Biol. Chem. , vol.262 , pp. 298-304
    • Cai, H.1    Luse, D.S.2
  • 13
    • 0031463993 scopus 로고    scopus 로고
    • Three transitions in the RNA polymerase II transcription complex during initiation
    • Holstege, F. C., Fiedler, U. & Timmers, H. T. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16, 7468-7480 (1997).
    • (1997) EMBO J , vol.16 , pp. 7468-7480
    • Holstege, F.C.1    Fiedler, U.2    Timmers, H.T.3
  • 14
    • 0034704112 scopus 로고    scopus 로고
    • A kinetic model for the early steps of RNA synthesis by human RNA polymerase II
    • Kugel, J. F. & Goodrich, J. A. A kinetic model for the early steps of RNA synthesis by human RNA polymerase II. J. Biol. Chem. 275, 40483-40491 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 40483-40491
    • Kugel, J.F.1    Goodrich, J.A.2
  • 15
    • 27144526242 scopus 로고    scopus 로고
    • A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation
    • Majovski, R. C., Khaperskyy, D. A., Ghazy, M. A. & Ponticelli, A. S. A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation. J. Biol. Chem. 280, 34917-34923 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 34917-34923
    • Majovski, R.C.1    Khaperskyy, D.A.2    Ghazy, M.A.3    Ponticelli, A.S.4
  • 16
    • 1942422184 scopus 로고    scopus 로고
    • Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: Implications for the mechanism of transcription initiation
    • Chen, B. S. & Hampsey, M. Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation. Mol. Cell. Biol. 24, 3983-3991 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3983-3991
    • Chen, B.S.1    Hampsey, M.2
  • 17
    • 1142274214 scopus 로고    scopus 로고
    • Structural basis of transcription: An RNA polymerase II-TFIIB cocrystal at 4. 5 Angstroms
    • Bushnell, D. A., Westover, K. D., Davis, R. E. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4. 5 Angstroms. Science 303, 983-988 (2004). Shows that the B-finger of TFIIB is inserted into the Pol II active site, and discusses the implications of this for transcription-start-site selection and promoter escape.
    • (2004) Science , vol.303 , pp. 983-988
    • Bushnell, D.A.1    Westover, K.D.2    Davis, R.E.3    Kornberg, R.D.4
  • 18
    • 0037610786 scopus 로고    scopus 로고
    • The initiation-elongation transition: Lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23
    • Pal, M. & Luse, D. S. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc. Natl Acad. Sci. USA 100, 5700-5705 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 5700-5705
    • Pal, M.1    Luse, D.S.2
  • 19
    • 33746303519 scopus 로고    scopus 로고
    • An 8 nucleotide RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation
    • 15 Jun (doi:10.1038/sj.emboj.7601197)
    • Hieb, A. R., Baran, S., Goodrich, J. A. & Kugel, J. F. An 8 nucleotide RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation. EMBO J. 15 Jun 2006 (doi:10.1038/sj.emboj.7601197).
    • (2006) EMBO J
    • Hieb, A.R.1    Baran, S.2    Goodrich, J.A.3    Kugel, J.F.4
  • 20
    • 21244484548 scopus 로고    scopus 로고
    • The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II
    • Pal, M., Ponticelli, A. S. & Luse, D. S. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol. Cell 19, 101-110 (2005). Ties together several observations from the authors' laboratories and other laboratories, and shows for the first time that transcription-bubble collapse is not only a consequence of promoter escape, but probably provides part of the driving force that is crucial for the transition to a stable elongation complex.
    • (2005) Mol. Cell , vol.19 , pp. 101-110
    • Pal, M.1    Ponticelli, A.S.2    Luse, D.S.3
  • 21
    • 1142310578 scopus 로고    scopus 로고
    • Structural basis of transcription: Separation of RNA from DNA by RNA polymerase II
    • Westover, K. D., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303, 1014-1016 (2004).
    • (2004) Science , vol.303 , pp. 1014-1016
    • Westover, K.D.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 22
    • 28844500614 scopus 로고    scopus 로고
    • The sequence at specific positions in the early transcribed region sets the rate of transcript synthesis by RNA polymerase II in vitro
    • Weaver, J. R., Kugel, J. F. & Goodrich, J. A. The sequence at specific positions in the early transcribed region sets the rate of transcript synthesis by RNA polymerase II in vitro. J. Biol. Chem. 280, 39860-39869 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 39860-39869
    • Weaver, J.R.1    Kugel, J.F.2    Goodrich, J.A.3
  • 23
    • 0037073048 scopus 로고    scopus 로고
    • Promoting elongation with transcript cleavage stimulatory factors
    • Fish, R. N. & Kane, C. M. Promoting elongation with transcript cleavage stimulatory factors. Biochim. Biophys. Acta 1577, 287-307 (2002).
    • (2002) Biochim. Biophys. Acta , vol.1577 , pp. 287-307
    • Fish, R.N.1    Kane, C.M.2
  • 24
    • 0037031891 scopus 로고    scopus 로고
    • RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides
    • Ujvari, A., Pal, M. & Luse, D. S. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J. Biol. Chem. 277, 32527-32537 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 32527-32537
    • Ujvari, A.1    Pal, M.2    Luse, D.S.3
  • 25
    • 30044431985 scopus 로고    scopus 로고
    • RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit
    • Ujvari, A. & Luse, D. S. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nature Struct. Mol. Biol. 13, 49-54 (2006).
    • (2006) Nature Struct. Mol. Biol. , vol.13 , pp. 49-54
    • Ujvari, A.1    Luse, D.S.2
  • 26
    • 0035971082 scopus 로고    scopus 로고
    • Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation
    • Orlicky, S. M., Tran, P. T., Sayre, M. H. & Edwards, A. M. Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276, 10097-10102 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 10097-10102
    • Orlicky, S.M.1    Tran, P.T.2    Sayre, M.H.3    Edwards, A.M.4
  • 27
    • 25844502003 scopus 로고    scopus 로고
    • The mammalian RNA polymerase II C-terminal domain interacts with RNA to suppress transcription-coupled 3′ end formation
    • Kaneko, S. & Manley, J. L. The mammalian RNA polymerase II C-terminal domain interacts with RNA to suppress transcription-coupled 3′ end formation. Mol. Cell 20, 91-103 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 91-103
    • Kaneko, S.1    Manley, J.L.2
  • 28
    • 0032459466 scopus 로고    scopus 로고
    • Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation
    • Lis, J. Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 63, 347-356 (1998).
    • (1998) Cold Spring Harb. Symp. Quant. Biol. , vol.63 , pp. 347-356
    • Lis, J.1
  • 29
    • 0026440184 scopus 로고
    • Promoter melting and TFIID complexes on Drosophila genes in vivo
    • Giardina, C., Perez-Riba, M. & Lis, J. T. Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes Dev. 6, 2190-2200 (1992).
    • (1992) Genes Dev. , vol.6 , pp. 2190-2200
    • Giardina, C.1    Perez-Riba, M.2    Lis, J.T.3
  • 30
    • 0022817308 scopus 로고
    • RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells
    • Gilmour, D. S. & Lis, J. T. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6, 3984-3989 (1986). First use of UV crosslinking and ChIP showing the presence of Pol II on the uninduced Hsp70 gene.
    • (1986) Mol. Cell. Biol. , vol.6 , pp. 3984-3989
    • Gilmour, D.S.1    Lis, J.T.2
  • 31
    • 0024282827 scopus 로고
    • The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged
    • Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795-804 (1988). Shows that Pol II present on the uninduced Hsp70 promoter is transcriptionally engaged and paused.
    • (1988) Cell , vol.54 , pp. 795-804
    • Rougvie, A.E.1    Lis, J.T.2
  • 32
    • 0027166316 scopus 로고
    • In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes
    • Rasmussen, E. B. & Lis, J. T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl Acad. Sci. USA 90, 7923-7927 (1993). Shows that capping predominantly occurs when the nascent mRNA is 20-30 nucleotides long.
    • (1993) Proc. Natl Acad. Sci. USA , vol.90 , pp. 7923-7927
    • Rasmussen, E.B.1    Lis, J.T.2
  • 33
    • 0032844742 scopus 로고    scopus 로고
    • Transcriptional regulation of the Igκ gene by promoter-proximal pausing of RNA polymerase II
    • Raschke, E. E., Albert, T. & Eick, D. Transcriptional regulation of the Igκ gene by promoter-proximal pausing of RNA polymerase II. J. Immunol. 163, 4375-4382 (1999).
    • (1999) J. Immunol. , vol.163 , pp. 4375-4382
    • Raschke, E.E.1    Albert, T.2    Eick, D.3
  • 34
    • 0032466791 scopus 로고    scopus 로고
    • Antitermination by bacteriophage λ Q protein
    • Roberts, J. W. et al. Antitermination by bacteriophage λ Q protein. Cold Spring Harb. Symp. Quant. Biol. 63, 319-325 (1998).
    • (1998) Cold Spring Harb. Symp. Quant. Biol. , vol.63 , pp. 319-325
    • Roberts, J.W.1
  • 35
    • 15744388341 scopus 로고    scopus 로고
    • A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation
    • Barboric, M. & Peterlin, B. M. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol. 3, e76 (2005).
    • (2005) PLoS Biol. , vol.3
    • Barboric, M.1    Peterlin, B.M.2
  • 36
    • 0025166038 scopus 로고
    • Postinitiation transcriptional control in Drosophila melanogaster
    • Rougvie, A. E. & Lis, J. T. Postinitiation transcriptional control in Drosophila melanogaster. Mol. Cell. Biol. 10, 6041-6045 (1990).
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 6041-6045
    • Rougvie, A.E.1    Lis, J.T.2
  • 37
    • 0027135208 scopus 로고
    • Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: Correlations with gene activity and transcript processing
    • Weeks, J. R., Hardin, S. E., Shen, J., Lee, J. M. & Greenleaf, A. L. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Genes Dev. 7, 2329-2344 (1993).
    • (1993) Genes Dev. , vol.7 , pp. 2329-2344
    • Weeks, J.R.1    Hardin, S.E.2    Shen, J.3    Lee, J.M.4    Greenleaf, A.L.5
  • 38
    • 23844519339 scopus 로고    scopus 로고
    • A high-resolution map of active promoters in the human genome
    • Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876-880 (2005).
    • (2005) Nature , vol.436 , pp. 876-880
    • Kim, T.H.1
  • 39
    • 0034111019 scopus 로고    scopus 로고
    • P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II
    • Price, D. H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20, 2629-2634 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2629-2634
    • Price, D.H.1
  • 40
    • 0032004953 scopus 로고    scopus 로고
    • Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
    • Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357-369 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 357-369
    • Hartzog, G.A.1    Wada, T.2    Handa, H.3    Winston, F.4
  • 41
    • 0037371682 scopus 로고    scopus 로고
    • Human transcription elongation factor NELF: Identification of novel subunits and reconstitution of the functionally active complex
    • Narita, T. et al. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol. Cell. Biol. 23, 1863-1873 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1863-1873
    • Narita, T.1
  • 42
    • 14844354625 scopus 로고    scopus 로고
    • Molecular characterization of Drosophila NELF
    • Wu, C. H. et al. Molecular characterization of Drosophila NELF. Nucleic Acids Res. 33, 1269-1279 (2005).
    • (2005) Nucleic Acids Res. , vol.33 , pp. 1269-1279
    • Wu, C.H.1
  • 43
    • 0034667949 scopus 로고    scopus 로고
    • High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: Roles in promoter proximal pausing and transcription elongation
    • Andrulis, E. D., Guzman, E., Doring, P., Werner, J. & Lis, J. T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635-2649 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2635-2649
    • Andrulis, E.D.1    Guzman, E.2    Doring, P.3    Werner, J.4    Lis, J.T.5
  • 44
    • 27244444725 scopus 로고    scopus 로고
    • A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS
    • Palangat, M., Renner, D. B., Price, D. H. & Landick, R. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc. Natl Acad. Sci. USA 102, 15036-15041 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 15036-15041
    • Palangat, M.1    Renner, D.B.2    Price, D.H.3    Landick, R.4
  • 45
    • 0346095303 scopus 로고    scopus 로고
    • Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element
    • Fujinaga, K. et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24, 787-795 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 787-795
    • Fujinaga, K.1
  • 46
    • 0034676431 scopus 로고    scopus 로고
    • A regulator of transcriptional elongation controls vertebrate neuronal development
    • Guo, S. et al. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature 408, 366-369 (2000).
    • (2000) Nature , vol.408 , pp. 366-369
    • Guo, S.1
  • 47
    • 0033986862 scopus 로고    scopus 로고
    • Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II
    • Rodriguez, C. R. et al. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol. Cell. Biol. 20, 104-112 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 104-112
    • Rodriguez, C.R.1
  • 48
    • 0033566042 scopus 로고    scopus 로고
    • Transcription elongation factor hSPT5 stimulates mRNA capping
    • Wen, Y. & Shatkin, A. J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 13, 1774-1779 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 1774-1779
    • Wen, Y.1    Shatkin, A.J.2
  • 49
    • 0037470160 scopus 로고    scopus 로고
    • Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control
    • Pei, Y., Schwer, B. & Shuman, S. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. J. Biol. Chem. 278, 7180-7188 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 7180-7188
    • Pei, Y.1    Schwer, B.2    Shuman, S.3
  • 50
    • 30744449491 scopus 로고    scopus 로고
    • P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation
    • Yamada, T. et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21, 227-237 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 227-237
    • Yamada, T.1
  • 51
    • 2442681755 scopus 로고    scopus 로고
    • Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II
    • Mandal, S. S. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl Acad. Sci. USA 101, 7572-7577 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 7572-7577
    • Mandal, S.S.1
  • 52
    • 11344268432 scopus 로고    scopus 로고
    • Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS
    • Adelman, K. et al. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17, 103-112 (2005).
    • (2005) Mol. Cell , vol.17 , pp. 103-112
    • Adelman, K.1
  • 53
    • 0036241663 scopus 로고    scopus 로고
    • Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo
    • Pokholok, D. K., Hannett, N. M. & Young, R. A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9, 799-809 (2002).
    • (2002) Mol. Cell , vol.9 , pp. 799-809
    • Pokholok, D.K.1    Hannett, N.M.2    Young, R.A.3
  • 54
    • 0036336890 scopus 로고    scopus 로고
    • The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo
    • Keegan, B. R. et al. The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo. Development 129, 1623-1632 (2002).
    • (2002) Development , vol.129 , pp. 1623-1632
    • Keegan, B.R.1
  • 55
    • 0037415686 scopus 로고    scopus 로고
    • Molecular evidence for a positive role of Spt4 in transcription elongation
    • Rondon, A. G., Garcia-Rubio, M., Gonzalez-Barrera, S. & Aguilera, A. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J. 22, 612-620 (2003).
    • (2003) EMBO J , vol.22 , pp. 612-620
    • Rondon, A.G.1    Garcia-Rubio, M.2    Gonzalez-Barrera, S.3    Aguilera, A.4
  • 56
    • 0034175631 scopus 로고    scopus 로고
    • P-TEFb kinase recruitment and function at heat shock loci
    • Lis, J. T., Mason, P., Peng, J., Price, D. H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792-803 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 792-803
    • Lis, J.T.1    Mason, P.2    Peng, J.3    Price, D.H.4    Werner, J.5
  • 57
    • 1642441939 scopus 로고    scopus 로고
    • Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes
    • Ni, Z., Schwartz, B. E., Werner, J., Suarez, J. R. & Lis, J. T. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell 13, 55-65 (2004).
    • (2004) Mol. Cell , vol.13 , pp. 55-65
    • Ni, Z.1    Schwartz, B.E.2    Werner, J.3    Suarez, J.R.4    Lis, J.T.5
  • 58
    • 0037102566 scopus 로고    scopus 로고
    • CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo
    • Shim, E. Y., Walker, A. K., Shi, Y. & Blackwell, T. K. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev. 16, 2135-2146 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 2135-2146
    • Shim, E.Y.1    Walker, A.K.2    Shi, Y.3    Blackwell, T.K.4
  • 59
    • 0035943710 scopus 로고    scopus 로고
    • Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo
    • Chao, S. H. & Price, D. H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31793-31799 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 31793-31799
    • Chao, S.H.1    Price, D.H.2
  • 60
    • 28644451014 scopus 로고    scopus 로고
    • P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes
    • Medlin, J. et al. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 24, 4154-4165 (2005).
    • (2005) EMBO J , vol.24 , pp. 4154-4165
    • Medlin, J.1
  • 61
    • 3242769187 scopus 로고    scopus 로고
    • Cellular control of gene expression by T-type cyclin/CDK9 complexes
    • Garriga, J. & Grana, X. Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337, 15-23 (2004).
    • (2004) Gene , vol.337 , pp. 15-23
    • Garriga, J.1    Grana, X.2
  • 62
    • 23744514308 scopus 로고    scopus 로고
    • The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription
    • Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523-534 (2005). Shows that P-TEFb can be recruited to genes through the bromodomain-containing protein BRD4, and provides evidence that BRD4-mediated recruitment of P-TEFb might be a general mechanism.
    • (2005) Mol. Cell , vol.19 , pp. 523-534
    • Jang, M.K.1
  • 63
    • 0032836135 scopus 로고    scopus 로고
    • Transcription elongation and human disease
    • Conaway, J. W. & Conaway, R. C. Transcription elongation and human disease. Annu. Rev. Biochem. 68, 301-319 (1999).
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 301-319
    • Conaway, J.W.1    Conaway, R.C.2
  • 64
    • 0033544966 scopus 로고    scopus 로고
    • Dual roles for transcription factor IIF in promoter escape by RNA polymerase II
    • Yan, Q., Moreland, R. J., Conaway, J. W. & Conaway, R. C. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 35668-35675 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 35668-35675
    • Yan, Q.1    Moreland, R.J.2    Conaway, J.W.3    Conaway, R.C.4
  • 65
    • 0036787862 scopus 로고    scopus 로고
    • RNA polymerase II elongation factors of Saccharomyces cerevisiae: A targeted proteomics approach
    • Krogan, N. J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol. 22, 6979-6992 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 6979-6992
    • Krogan, N.J.1
  • 66
    • 0029074137 scopus 로고
    • Recycling of the general transcription factors during RNA polymerase II transcription
    • Zawel, L., Kumar, K. P. & Reinberg, D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9, 1479-1490 (1995).
    • (1995) Genes Dev. , vol.9 , pp. 1479-1490
    • Zawel, L.1    Kumar, K.P.2    Reinberg, D.3
  • 67
    • 0032500581 scopus 로고    scopus 로고
    • Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form
    • Moreland, R. J., Hanas, J. S., Conaway, J. W. & Conaway, R. C. Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form. J. Biol. Chem. 273, 26610-26617 (1998).
    • (1998) J. Biol. Chem. , vol.273 , pp. 26610-26617
    • Moreland, R.J.1    Hanas, J.S.2    Conaway, J.W.3    Conaway, R.C.4
  • 68
    • 14244263596 scopus 로고    scopus 로고
    • Regulation of heat shock gene expression by RNA polymerase II elongation factor, Elongin A
    • Gerber, M. et al. Regulation of heat shock gene expression by RNA polymerase II elongation factor, Elongin A. J. Biol. Chem. 280, 4017-4020 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 4017-4020
    • Gerber, M.1
  • 69
    • 0035503319 scopus 로고    scopus 로고
    • Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo
    • Gerber, M., Ma, J., Dean, K., Eissenberg, J. C. & Shilatifard, A. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo. EMBO J. 20, 6104-6114 (2001).
    • (2001) EMBO J , vol.20 , pp. 6104-6114
    • Gerber, M.1    Ma, J.2    Dean, K.3    Eissenberg, J.C.4    Shilatifard, A.5
  • 70
    • 0141819093 scopus 로고    scopus 로고
    • Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
    • Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711-721 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 711-721
    • Huertas, P.1    Aguilera, A.2
  • 71
    • 0343116845 scopus 로고
    • Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome
    • Fleischmann, G. et al. Drosophila DNA topoisomerase I is associated with transcriptionally active regions of the genome. Proc. Natl Acad. Sci. USA 81, 6958-6962 (1984).
    • (1984) Proc. Natl Acad. Sci. USA , vol.81 , pp. 6958-6962
    • Fleischmann, G.1
  • 72
    • 0029947168 scopus 로고    scopus 로고
    • The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription
    • Ljungman, M. & Hanawalt, P. C. The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription. Carcinogenesis 17, 31-35 (1996).
    • (1996) Carcinogenesis , vol.17 , pp. 31-35
    • Ljungman, M.1    Hanawalt, P.C.2
  • 73
    • 26444508841 scopus 로고    scopus 로고
    • Single-nucleosome mapping of histone modifications in S. cerevisiae
    • Liu, C. L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3, e328 (2005). Provides a high-resolution map of 12 different histone acetylation and histone methylation modifications, normalized to nucleosome density, and in relation to gene activity, in a 0.5-Mb chromatin region in the genome of S. cerevisiae.
    • (2005) PLoS Biol. , vol.3
    • Liu, C.L.1
  • 74
    • 2442454683 scopus 로고    scopus 로고
    • Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome
    • Liang, G. et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. USA 101, 7357-7362 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 7357-7362
    • Liang, G.1
  • 75
    • 29144463657 scopus 로고    scopus 로고
    • Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: Analysis at c-fos and c-jun
    • Hazzalin, C. A. & Mahadevan, L. C. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun. PLoS Biol. 3, e393 (2005).
    • (2005) PLoS Biol. , vol.3
    • Hazzalin, C.A.1    Mahadevan, L.C.2
  • 76
    • 0037111879 scopus 로고    scopus 로고
    • Requirement of Hos2 histone deacetylase for gene activity in yeast
    • Wang, A., Kurdistani, S. K. & Grunstein, M. Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298, 1412-1414 (2002).
    • (2002) Science , vol.298 , pp. 1412-1414
    • Wang, A.1    Kurdistani, S.K.2    Grunstein, M.3
  • 77
    • 27744577727 scopus 로고    scopus 로고
    • Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription
    • Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581-592 (2005). Links Set2-mediated H3-K36 methylation with deacetylation in coding regions by the Rpd3S complex. Recruitment of the Rpd3S complex is probably through the chromodomain-containing subunit Eaf3.
    • (2005) Cell , vol.123 , pp. 581-592
    • Carrozza, M.J.1
  • 78
    • 0036809640 scopus 로고    scopus 로고
    • Transcriptional inhibition of genes with severe histone H3 hypoacetylation in the coding region
    • Kristjuhan, A. et al. Transcriptional inhibition of genes with severe histone H3 hypoacetylation in the coding region. Mol. Cell 10, 925-933 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 925-933
    • Kristjuhan, A.1
  • 79
    • 33745034833 scopus 로고    scopus 로고
    • Transcription impairment and cell migration defects in elongator-depleted cells: Implication for familial dysautonomia
    • Close, P. et al. Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol. Cell 22, 521-531 (2006).
    • (2006) Mol. Cell , vol.22 , pp. 521-531
    • Close, P.1
  • 80
    • 1542328272 scopus 로고    scopus 로고
    • The RNA polymerase II transcription cycle: Cycling through chromatin
    • Svejstrup, J. Q. The RNA polymerase II transcription cycle: cycling through chromatin. Biochim. Biophys. Acta 1677, 64-73 (2004).
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 64-73
    • Svejstrup, J.Q.1
  • 81
    • 0037022226 scopus 로고    scopus 로고
    • Human Elongator facilitates RNA polymerase II transcription through chromatin
    • Kim, J. H., Lane, W. S. & Reinberg, D. Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc. Natl Acad. Sci. USA 99, 1241-1246 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 1241-1246
    • Kim, J.H.1    Lane, W.S.2    Reinberg, D.3
  • 82
    • 2942518343 scopus 로고    scopus 로고
    • Mapping global histone acetylation patterns to gene expression
    • Kurdistani, S. K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721-733 (2004).
    • (2004) Cell , vol.117 , pp. 721-733
    • Kurdistani, S.K.1    Tavazoie, S.2    Grunstein, M.3
  • 83
    • 17244368913 scopus 로고    scopus 로고
    • Genomic characterization reveals a simple histone H4 acetylation code
    • Dion, M. F., Altschuler, S. J., Wu, L. F. & Rando, O. J. Genomic characterization reveals a simple histone H4 acetylation code. Proc. Natl Acad. Sci. USA 102, 5501-5506 (2005). Describes the effect on gene expression of different combinations of Lys to Arg substitutions at the four sites of acetylation on the histone H4 N-terminal tail in S. cerevisiae. Shows that, with the exception of H4-K16, the total number of acetyl marks, rather than the particular position of acetylation, is a crucial determinant of gene expression.
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 5501-5506
    • Dion, M.F.1    Altschuler, S.J.2    Wu, L.F.3    Rando, O.J.4
  • 84
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844-847 (2006).
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 85
    • 23944509075 scopus 로고    scopus 로고
    • The SET-domain protein superfamily: Protein lysine methyltransferases
    • Dillon, S. C., Zhang, X., Trievel, R. C. & Cheng, X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227 (2005).
    • (2005) Genome Biol. , vol.6 , pp. 227
    • Dillon, S.C.1    Zhang, X.2    Trievel, R.C.3    Cheng, X.4
  • 86
    • 1342268289 scopus 로고    scopus 로고
    • Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
    • Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biol. 6, 73-77 (2004).
    • (2004) Nature Cell Biol. , vol.6 , pp. 73-77
    • Schneider, R.1
  • 87
    • 10744224167 scopus 로고    scopus 로고
    • Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus
    • Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus. Mol. Cell 13, 587-597 (2004).
    • (2004) Mol. Cell , vol.13 , pp. 587-597
    • Hughes, C.M.1
  • 88
    • 0344022572 scopus 로고    scopus 로고
    • Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
    • Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709-719 (2003). Shows that Set1 interacts with the Ser5-phosphorylated CTD of Pol II and is recruited to the 5′ regions of genes, corresponding to the location of H3-K4 trimethylation. Also finds that Paf1C is important for Set1 recruitment.
    • (2003) Mol. Cell , vol.11 , pp. 709-719
    • Ng, H.H.1    Robert, F.2    Young, R.A.3    Struhl, K.4
  • 89
    • 20844443663 scopus 로고    scopus 로고
    • Global and Hox-specific roles for the MLL1 methyltransferase
    • Guenther, M. G. et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl Acad. Sci. USA 102, 8603-8608 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 8603-8608
    • Guenther, M.G.1
  • 90
    • 27144458417 scopus 로고    scopus 로고
    • Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide
    • Rao, B., Shibata, Y., Strahl, B. D. & Lieb, J. D. Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol. Cell. Biol. 25, 9447-9459 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 9447-9459
    • Rao, B.1    Shibata, Y.2    Strahl, B.D.3    Lieb, J.D.4
  • 91
    • 0037979272 scopus 로고    scopus 로고
    • Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II
    • Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207-4218 (2003). Shows that Set2 is detected at the coding regions of actively transcribing genes, and that Paf1 is required for Set2 recruitment and therefore for H3-K36 methylation.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 4207-4218
    • Krogan, N.J.1
  • 92
    • 0037336041 scopus 로고    scopus 로고
    • Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast
    • Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654-663 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 654-663
    • Xiao, T.1
  • 93
    • 0038719825 scopus 로고    scopus 로고
    • The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation
    • Schaft, D. et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 31, 2475-2482 (2003).
    • (2003) Nucleic Acids Res. , vol.31 , pp. 2475-2482
    • Schaft, D.1
  • 94
    • 16244384503 scopus 로고    scopus 로고
    • A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
    • Kizer, K. O. et al. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25, 3305-3316 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3305-3316
    • Kizer, K.O.1
  • 95
    • 13744259076 scopus 로고    scopus 로고
    • Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase
    • Shanower, G. A. et al. Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169, 173-184 (2005).
    • (2005) Genetics , vol.169 , pp. 173-184
    • Shanower, G.A.1
  • 96
    • 33645219388 scopus 로고    scopus 로고
    • Drosophila Paf1 modulates chromatin structure at actively transcribed genes
    • Adelman, K. et al. Drosophila Paf1 modulates chromatin structure at actively transcribed genes. Mol. Cell. Biol. 26, 250-260 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 250-260
    • Adelman, K.1
  • 97
    • 33646691283 scopus 로고    scopus 로고
    • Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II
    • Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703-717 (2006). Functionally links mammalian H2B-K120 ubiquitylation and Pol II transcription elongation.
    • (2006) Cell , vol.125 , pp. 703-717
    • Pavri, R.1
  • 98
    • 0942290540 scopus 로고    scopus 로고
    • Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B
    • Kao, C. F. et al. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev. 18, 184-195 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 184-195
    • Kao, C.F.1
  • 99
    • 27944454433 scopus 로고    scopus 로고
    • Monoubiquitination of human histone H2B: The factors involved and their roles in HOX gene regulation
    • Zhu, B. et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell 20, 601-611 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 601-611
    • Zhu, B.1
  • 100
    • 11844297340 scopus 로고    scopus 로고
    • Histone H2B ubiquitylation is associated with elongating RNA polymerase II
    • Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637-651 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 637-651
    • Xiao, T.1
  • 101
    • 0042470618 scopus 로고    scopus 로고
    • Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster
    • Nowak, S. J., Pai, C. Y. & Corces, V. G. Protein phosphatase 2A activity affects histone H3 phosphorylation and transcription in Drosophila melanogaster. Mol. Cell. Biol. 23, 6129-6138 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 6129-6138
    • Nowak, S.J.1    Pai, C.Y.2    Corces, V.G.3
  • 102
    • 0036682364 scopus 로고    scopus 로고
    • Gene silencing: Trans-histone regulatory pathway in chromatin
    • Briggs, S. D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).
    • (2002) Nature , vol.418 , pp. 498
    • Briggs, S.D.1
  • 103
    • 0037047323 scopus 로고    scopus 로고
    • Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6
    • Dover, J. et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol. Chem. 277, 28368-28371 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 28368-28371
    • Dover, J.1
  • 104
    • 0037019333 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast
    • Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104-108 (2002).
    • (2002) Nature , vol.418 , pp. 104-108
    • Sun, Z.W.1    Allis, C.D.2
  • 105
    • 0037144393 scopus 로고    scopus 로고
    • Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79
    • Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655-34657 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 34655-34657
    • Ng, H.H.1    Xu, R.M.2    Zhang, Y.3    Struhl, K.4
  • 106
    • 0033636595 scopus 로고    scopus 로고
    • Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation
    • Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905-915 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 905-915
    • Cheung, P.1
  • 107
    • 0033638105 scopus 로고    scopus 로고
    • Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14
    • Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell 5, 917-926 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 917-926
    • Lo, W.S.1
  • 108
    • 0034679625 scopus 로고    scopus 로고
    • Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation
    • Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714-3726 (2000).
    • (2000) EMBO J , vol.19 , pp. 3714-3726
    • Clayton, A.L.1    Rose, S.2    Barratt, M.J.3    Mahadevan, L.C.4
  • 109
    • 1642618325 scopus 로고    scopus 로고
    • Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex
    • Smith, S. T. et al. Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nature Cell Biol. 6, 162-167 (2004).
    • (2004) Nature Cell Biol. , vol.6 , pp. 162-167
    • Smith, S.T.1
  • 110
    • 20444397430 scopus 로고    scopus 로고
    • Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF
    • Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873-885 (2005).
    • (2005) Cell , vol.121 , pp. 873-885
    • Dou, Y.1
  • 111
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by sitespecific histone H3 methyltransferases
    • Rea, S. et al. Regulation of chromatin structure by sitespecific histone H3 methyltransferases. Nature 406, 593-599 (2000).
    • (2000) Nature , vol.406 , pp. 593-599
    • Rea, S.1
  • 112
    • 23044457643 scopus 로고    scopus 로고
    • The human PAF complex coordinates transcription with events downstream of RNA synthesis
    • Zhu, B. et al. The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev. 19, 1668-1673 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 1668-1673
    • Zhu, B.1
  • 113
    • 0042818412 scopus 로고    scopus 로고
    • The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p
    • Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739-24742 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 34739-124742
    • Wood, A.1    Schneider, J.2    Dover, J.3    Johnston, M.4    Shilatifard, A.5
  • 114
    • 0037524702 scopus 로고    scopus 로고
    • The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: Linking transcriptional elongation to histone methylation
    • Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721-729 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 721-729
    • Krogan, N.J.1
  • 115
    • 0344198456 scopus 로고    scopus 로고
    • Chromatin remodeling by ATP-dependent molecular machines
    • Lusser, A. & Kadonaga, J. T. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25, 1192-1200 (2003).
    • (2003) Bioessays , vol.25 , pp. 1192-1200
    • Lusser, A.1    Kadonaga, J.T.2
  • 116
    • 0038623298 scopus 로고    scopus 로고
    • Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation
    • Corey, L. L., Weirich, C. S., Benjamin, I. J. & Kingston, R. E. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 17, 1392-1401 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1392-1401
    • Corey, L.L.1    Weirich, C.S.2    Benjamin, I.J.3    Kingston, R.E.4
  • 117
    • 26444545490 scopus 로고    scopus 로고
    • Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density
    • Zhao, J., Herrera-Diaz, J. & Gross, D. S. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol. Cell. Biol. 25, 8985-8999 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 8985-8999
    • Zhao, J.1    Herrera-Diaz, J.2    Gross, D.S.3
  • 118
    • 0345016384 scopus 로고    scopus 로고
    • Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II
    • Morillon, A. et al. Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115, 425-435 (2003).
    • (2003) Cell , vol.115 , pp. 425-435
    • Morillon, A.1
  • 119
    • 0345698603 scopus 로고    scopus 로고
    • Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
    • Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846-1856 (2003).
    • (2003) EMBO J , vol.22 , pp. 1846-1856
    • Simic, R.1
  • 120
    • 0036790591 scopus 로고    scopus 로고
    • The Drosophila BRM complex facilitates global transcription by RNA polymerase II
    • Armstrong, J. A. et al. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J. 21, 5245-5254 (2002).
    • (2002) EMBO J , vol.21 , pp. 5245-5254
    • Armstrong, J.A.1
  • 121
    • 0029901861 scopus 로고    scopus 로고
    • CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes
    • Stokes, D. G., Tartof, K. D. & Perry, R. P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl Acad. Sci. USA 93, 7137-7142 (1996).
    • (1996) Proc. Natl Acad. Sci. USA , vol.93 , pp. 7137-7142
    • Stokes, D.G.1    Tartof, K.D.2    Perry, R.P.3
  • 122
    • 0034657071 scopus 로고    scopus 로고
    • The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor
    • Tran, H. G., Steger, D. J., Iyer, V. R. & Johnson, A. D. The chromo domain protein Chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19, 2323-2331 (2000).
    • (2000) EMBO J , vol.19 , pp. 2323-2331
    • Tran, H.G.1    Steger, D.J.2    Iyer, V.R.3    Johnson, A.D.4
  • 123
    • 17744371151 scopus 로고    scopus 로고
    • The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II
    • Srinivasan, S. et al. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132, 1623-1635 (2005).
    • (2005) Development , vol.132 , pp. 1623-1635
    • Srinivasan, S.1
  • 124
    • 27144544622 scopus 로고    scopus 로고
    • Assembly of variant histones into chromatin
    • Henikoff, S. & Ahmad, K. Assembly of variant histones into chromatin. Annu. Rev. Cell. Dev. Biol. 21, 133-153 (2005).
    • (2005) Annu. Rev. Cell. Dev. Biol. , vol.21 , pp. 133-153
    • Henikoff, S.1    Ahmad, K.2
  • 125
    • 0041828954 scopus 로고    scopus 로고
    • FACT facilitates transcription-dependent nucleosome alteration
    • Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090-1093 (2003).
    • (2003) Science , vol.301 , pp. 1090-1093
    • Belotserkovskaya, R.1
  • 126
    • 0029890667 scopus 로고    scopus 로고
    • Evidence that Spt6p controls chromatin structure by a direct interaction with histones
    • Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272, 1473-1476 (1996).
    • (1996) Science , vol.272 , pp. 1473-1476
    • Bortvin, A.1    Winston, F.2
  • 127
    • 0041828953 scopus 로고    scopus 로고
    • Transcription elongation factors repress transcription initiation from cryptic sites
    • Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096-1099 (2003).
    • (2003) Science , vol.301 , pp. 1096-1099
    • Kaplan, C.D.1    Laprade, L.2    Winston, F.3
  • 128
    • 0242579933 scopus 로고    scopus 로고
    • The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
    • Mason, P. B. & Struhl, K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol. 23, 8323-8333 (2003).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8323-8333
    • Mason, P.B.1    Struhl, K.2
  • 129
    • 0042830962 scopus 로고    scopus 로고
    • Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo
    • Saunders, A. et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301, 1094-1096 (2003).
    • (2003) Science , vol.301 , pp. 1094-1096
    • Saunders, A.1
  • 130
    • 0034667805 scopus 로고    scopus 로고
    • Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
    • Kaplan, C. D., Morris, J. R., Wu, C. & Winston, F. Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14, 2623-2634 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 2623-2634
    • Kaplan, C.D.1    Morris, J.R.2    Wu, C.3    Winston, F.4
  • 131
    • 11144357677 scopus 로고    scopus 로고
    • Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro
    • Endoh, M. et al. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol. Cell. Biol. 24, 3324-3336 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3324-3336
    • Endoh, M.1
  • 132
    • 12544260507 scopus 로고    scopus 로고
    • Interaction between transcription elongation factors and mRNA 3′-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus
    • Kaplan, C. D., Holland, M. J. & Winston, F. Interaction between transcription elongation factors and mRNA 3′-end formation at the Saccharomyces cerevisiae GAL10-GAL7 locus. J. Biol. Chem. 280, 913-922 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 913-922
    • Kaplan, C.D.1    Holland, M.J.2    Winston, F.3
  • 133
    • 23844472662 scopus 로고    scopus 로고
    • Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription
    • Swaminathan, V., Kishore, A. H., Febitha, K. K. & Kundu, T. K. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol. Cell. Biol. 25, 7534-7545 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7534-7545
    • Swaminathan, V.1    Kishore, A.H.2    Febitha, K.K.3    Kundu, T.K.4
  • 134
    • 2942550662 scopus 로고    scopus 로고
    • Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes
    • Adkins, M. W., Howar, S. R. & Tyler, J. K. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14, 657-666 (2004).
    • (2004) Mol. Cell , vol.14 , pp. 657-666
    • Adkins, M.W.1    Howar, S.R.2    Tyler, J.K.3
  • 135
    • 2942574467 scopus 로고    scopus 로고
    • Removal of promoter nucleosomes by disassembly rather than sliding in vivo
    • Boeger, H., Griesenbeck, J., Strattan, J. S. & Kornberg, R. D. Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Mol. Cell 14, 667-673 (2004).
    • (2004) Mol. Cell , vol.14 , pp. 667-673
    • Boeger, H.1    Griesenbeck, J.2    Strattan, J.S.3    Kornberg, R.D.4
  • 136
    • 0347539781 scopus 로고    scopus 로고
    • Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities
    • Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599-1606 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1599-1606
    • Bruno, M.1
  • 137
    • 15244358670 scopus 로고    scopus 로고
    • Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo
    • Mason, P. B. & Struhl, K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 17, 831-840 (2005). Distinguishes between Pol II elongation rate and processivity by studying the 'last wave' of transcription following transcriptional shut-down. Also examines the effects of different elongation-factor deletions on Pol II elongation rate and processivity, and shows that processivity can be uncoupled from elongation rate.
    • (2005) Mol. Cell , vol.17 , pp. 831-840
    • Mason, P.B.1    Struhl, K.2
  • 138
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh, B. P. et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121, 913-923 (2005).
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1
  • 139
    • 0037154967 scopus 로고    scopus 로고
    • Integrating mRNA processing with transcription
    • Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501-512 (2002).
    • (2002) Cell , vol.108 , pp. 501-512
    • Proudfoot, N.J.1    Furger, A.2    Dye, M.J.3
  • 140
    • 29544441415 scopus 로고    scopus 로고
    • Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA Polymerase II to the nascent transcript
    • Zhang, Z. & Gilmour, D. S. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA Polymerase II to the nascent transcript. Mol. Cell 21, 65-74 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 65-74
    • Zhang, Z.1    Gilmour, D.S.2
  • 141
    • 11144313138 scopus 로고    scopus 로고
    • A ribonucleolytic rat torpedoes RNA polymerase II
    • Luo, W. & Bentley, D. A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119, 911-914 (2004).
    • (2004) Cell , vol.119 , pp. 911-914
    • Luo, W.1    Bentley, D.2
  • 143
    • 0035893314 scopus 로고    scopus 로고
    • Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain
    • Cho, E. J., Kobor, M. S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319-3329 (2001).
    • (2001) Genes Dev. , vol.15 , pp. 3319-3329
    • Cho, E.J.1    Kobor, M.S.2    Kim, M.3    Greenblatt, J.4    Buratowski, S.5
  • 144
    • 0842324785 scopus 로고    scopus 로고
    • The nucleosome: From genomic organization to genomic regulation
    • Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259-272 (2004).
    • (2004) Cell , vol.116 , pp. 259-272
    • Khorasanizadeh, S.1
  • 145
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941-953 (2004).
    • (2004) Cell , vol.119 , pp. 941-953
    • Shi, Y.1
  • 146
    • 0027197863 scopus 로고
    • DNA melting on yeast RNA polymerase II promoters
    • Giardina, C. & Lis, J. T. DNA melting on yeast RNA polymerase II promoters. Science 261, 759-562 (1993).
    • (1993) Science , vol.261 , pp. 759-1562
    • Giardina, C.1    Lis, J.T.2
  • 147
    • 0033597339 scopus 로고    scopus 로고
    • Initially transcribed sequences strongly affect the extent of abortive initiation by RNA polymerase II
    • Keene, R. G. & Luse, D. S. Initially transcribed sequences strongly affect the extent of abortive initiation by RNA polymerase II. J. Biol. Chem. 274, 11526-11534 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 11526-11534
    • Keene, R.G.1    Luse, D.S.2
  • 148
    • 0034695456 scopus 로고    scopus 로고
    • Rad6-dependent ubiquitination of histone H2B in yeast
    • Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501-504 (2000).
    • (2000) Science , vol.287 , pp. 501-504
    • Robzyk, K.1    Recht, J.2    Osley, M.A.3
  • 149
    • 0037248593 scopus 로고    scopus 로고
    • A conserved RING finger protein required for histone H2B monoubiquitination and cell size control
    • Hwang, W. W. et al. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell 11, 261-266 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 261-266
    • Hwang, W.W.1
  • 150
    • 0037248944 scopus 로고    scopus 로고
    • Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter
    • Wood, A. et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol. Cell 11, 267-774 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 267-774
    • Wood, A.1
  • 151
    • 33646141366 scopus 로고    scopus 로고
    • Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II
    • Schwabish, M. A. & Struhl, K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol. Cell 22, 415-422 (2006).
    • (2006) Mol. Cell , vol.22 , pp. 415-422
    • Schwabish, M.A.1    Struhl, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.