-
1
-
-
0024461376
-
Osteoclastic bone resorption by a polarized vacuolar proton pump
-
Blair, H. C., Teitelbaum, S. L., Ghiselli, R. & Gluck, S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245, 855-857 (1989).
-
(1989)
Science
, vol.245
, pp. 855-857
-
-
Blair, H.C.1
Teitelbaum, S.L.2
Ghiselli, R.3
Gluck, S.4
-
2
-
-
0018891088
-
Successful bone-marrow transplantation for infantile malignant osteopetrosis
-
Coccia, P. F. et al. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N. Engl. J. Med. 302, 701-708 (1980).
-
(1980)
N. Engl. J. Med.
, vol.302
, pp. 701-708
-
-
Coccia, P.F.1
-
3
-
-
0025049142
-
Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells
-
Udagawa, N. et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl Acad. Sci. USA 87, 7260-7264 (1990).
-
(1990)
Proc. Natl. Acad. Sci. USA
, vol.87
, pp. 7260-7264
-
-
Udagawa, N.1
-
4
-
-
0021877714
-
Carbonic anhydrase 11 deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification
-
Sly, W. S. et al. Carbonic anhydrase 11 deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N. Engl. J. Med. 313, 139-145 (1985).
-
(1985)
N. Engl. J. Med.
, vol.313
, pp. 139-145
-
-
Sly, W.S.1
-
5
-
-
0030933226
-
Osteopetrosis in mice lacking haematopoietic transcription factor PU.1
-
Tondravi, M. M. et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81-84 (1997).
-
(1997)
Nature
, vol.386
, pp. 81-84
-
-
Tondravi, M.M.1
-
6
-
-
0033135651
-
Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1
-
Henkel, G. W., McKercher, S. R., Leenen, P. J. M. & Maki, R. A. Commitment to the monocytic lineage occurs in the absence of the transcription factor PU.1. Blood 93, 2849-2858 (1999).
-
(1999)
Blood
, vol.93
, pp. 2849-2858
-
-
Henkel, G.W.1
McKercher, S.R.2
Leenen, P.J.M.3
Maki, R.A.4
-
7
-
-
0035965217
-
Genetic and physical interactions between microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation
-
Luchin, A. et al. Genetic and physical interactions between microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J. Biol. Chem. 276, 36703-36710 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36703-36710
-
-
Luchin, A.1
-
8
-
-
0033082496
-
TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors
-
Rehli, M., Lichanska, A., Cassady, A. I., Ostrowski, M. C. & Hume, D. A. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J. Immunol. 162, 1559-1565 (1999).
-
(1999)
J. Immunol.
, vol.162
, pp. 1559-1565
-
-
Rehli, M.1
Lichanska, A.2
Cassady, A.I.3
Ostrowski, M.C.4
Hume, D.A.5
-
9
-
-
0016811449
-
Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells
-
Walker, D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190, 784-785 (1975).
-
(1975)
Science
, vol.190
, pp. 784-785
-
-
Walker, D.G.1
-
10
-
-
0016700933
-
Spleen cells transmit osteopetrosis in mice
-
Walker, D. G. Spleen cells transmit osteopetrosis in mice. Science 190, 785-787 (1975).
-
(1975)
Science
, vol.190
, pp. 785-787
-
-
Walker, D.G.1
-
11
-
-
0022007383
-
Fusion disability of embryonic osteoclast precursor cells and macrophages in the microphthalmic osteopetrotic mouse
-
Thesingh, C. W. & Scherft, J. P. Fusion disability of embryonic osteoclast precursor cells and macrophages in the microphthalmic osteopetrotic mouse. Bone 6, 43-52 (1985).
-
(1985)
Bone
, vol.6
, pp. 43-52
-
-
Thesingh, C.W.1
Scherft, J.P.2
-
12
-
-
0034052945
-
The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts
-
Luchin, A. et al. The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J. Bone Miner. Res. 15, 451-460 (2000).
-
(2000)
J. Bone Miner. Res.
, vol.15
, pp. 451-460
-
-
Luchin, A.1
-
13
-
-
18444418797
-
Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability
-
McGill, G. G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707-718 (2002).
-
(2002)
Cell
, vol.109
, pp. 707-718
-
-
McGill, G.G.1
-
14
-
-
0028091741
-
Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences
-
Steingrimsson, E. et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nature Genet. 8, 256-263 (1994).
-
(1994)
Nature Genet.
, vol.8
, pp. 256-263
-
-
Steingrimsson, E.1
-
15
-
-
0032473407
-
Age-resolving osteopetrosis: A rat model implicating microphthalmia and the related transcription factor TFE3
-
Weilbaecher, K. N. et al. Age-resolving osteopetrosis: a rat model implicating microphthalmia and the related transcription factor TFE3. J. Exp. Med. 187, 775-785 (1998).
-
(1998)
J. Exp. Med.
, vol.187
, pp. 775-785
-
-
Weilbaecher, K.N.1
-
16
-
-
0028789866
-
Insight into the microphthalmia gene
-
Moore, K. J. Insight into the microphthalmia gene. Trends Genet. 11, 442-448 (1995).
-
(1995)
Trends Genet.
, vol.11
, pp. 442-448
-
-
Moore, K.J.1
-
17
-
-
0028879371
-
Mild osteopetrosis in the microphthalmia-oak ridge mouse: A model for intermediate autosomal recessive osteopetrosis in humans
-
Nii, A., Steingrimsson, E., Copeland, N. G., Jenkins, N. A. & Ward, J. M. Mild osteopetrosis in the microphthalmia-oak ridge mouse: a model for intermediate autosomal recessive osteopetrosis in humans. Am. J. Pathol. 147, 1871-1882 (1995).
-
(1995)
Am. J. Pathol.
, vol.147
, pp. 1871-1882
-
-
Nii, A.1
Steingrimsson, E.2
Copeland, N.G.3
Jenkins, N.A.4
Ward, J.M.5
-
18
-
-
0029149487
-
Bone metabolism in the osteopetrotic rat mutation microphthalmia blanc
-
Cielinski, M. J. & Marks, S. C. Bone metabolism in the osteopetrotic rat mutation microphthalmia blanc. Bone 16, 567-574 (1995).
-
(1995)
Bone
, vol.16
, pp. 567-574
-
-
Cielinski, M.J.1
Marks, S.C.2
-
19
-
-
0036547433
-
A role for cell-surface CSF-1 in osteoblast-mediated osteoclastogenesis
-
Yao, G.-Q., Sun, B. H., Weir, E. C. & Insogna, K. L. A role for cell-surface CSF-1 in osteoblast-mediated osteoclastogenesis. Calcif. Tissue Int. 70, 339-346 (2002).
-
(2002)
Calcif. Tissue Int.
, vol.70
, pp. 339-346
-
-
Yao, G.-Q.1
Sun, B.H.2
Weir, E.C.3
Insogna, K.L.4
-
20
-
-
0025332897
-
The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene
-
Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442-444 (1990).
-
(1990)
Nature
, vol.345
, pp. 442-444
-
-
Yoshida, H.1
-
21
-
-
0008348421
-
Granulocyte/macrophage colony-stimulating factor and interleukin-3 correct osteopetrosis in mice with osteopetrosis mutation
-
Myint, Y. Y. et al. Granulocyte/macrophage colony-stimulating factor and interleukin-3 correct osteopetrosis in mice with osteopetrosis mutation. Am. J. Pathol. 154, 553-566 (1999).
-
(1999)
Am. J. Pathol.
, vol.154
, pp. 553-566
-
-
Myint, Y.Y.1
-
22
-
-
0033584243
-
Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption
-
Niida, S. et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J. Exp. Med. 190, 293-298 (1999).
-
(1999)
J. Exp. Med.
, vol.190
, pp. 293-298
-
-
Niida, S.1
-
23
-
-
0030734791
-
Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts
-
Insogna, K. L. et al. Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J. Clin. Invest. 100, 2476-2485 (1997).
-
(1997)
J. Clin. Invest.
, vol.100
, pp. 2476-2485
-
-
Insogna, K.L.1
-
24
-
-
0034456444
-
Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1
-
Grey, A., Chen, Y., Paliwal, I., Carlberg, K. & Insogna, K. Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141, 2129-2138 (2000).
-
(2000)
Endocrinology
, vol.141
, pp. 2129-2138
-
-
Grey, A.1
Chen, Y.2
Paliwal, I.3
Carlberg, K.4
Insogna, K.5
-
25
-
-
0036092801
-
Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
-
Dai, X.-M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111-120 (2002).
-
(2002)
Blood
, vol.99
, pp. 111-120
-
-
Dai, X.-M.1
-
26
-
-
0036892127
-
Tyrosines 559 and 807 in the cytoplasmic tail of the m-csf receptor play distinct roles in osteoclast differentiation and function
-
Feng, X. et al. Tyrosines 559 and 807 in the cytoplasmic tail of the m-csf receptor play distinct roles in osteoclast differentiation and function. Endocrinology 143, 4868-4874 (2002).
-
(2002)
Endocrinology
, vol.143
, pp. 4868-4874
-
-
Feng, X.1
-
27
-
-
0032540319
-
Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation
-
Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176 (1998). Perhaps the most important study of osteoclastogenesis, in which RANKL (OPGL) is shown to be the main osteoclastogenic cytokine both in vitro and in vivo.
-
(1998)
Cell
, vol.93
, pp. 165-176
-
-
Lacey, D.L.1
-
28
-
-
0032584208
-
Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL
-
Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597-3602 (1998).
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 3597-3602
-
-
Yasuda, H.1
-
29
-
-
12944262423
-
RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism
-
Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA 97, 1566-1571 (2000).
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 1566-1571
-
-
Li, J.1
-
30
-
-
0031005576
-
Osteoprotegerin: A novel secreted protein involved in the regulation of bone density
-
Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309-319 (1997). This important paper identifies OPG as an anti-osteoclastogenic molecule the overexpression of which leads to osteopetrosis, and the administration of which prevents experimental post-menopausal osteoporosis.
-
(1997)
Cell
, vol.89
, pp. 309-319
-
-
Simonet, W.S.1
-
31
-
-
0034882731
-
Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts
-
Thomas, G. P., Baker, S. U. K., Eisman, J. A. & Gardiner, E. M. Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J. Endocrinol. 170, 451-460 (2001).
-
(2001)
J. Endocrinol.
, vol.170
, pp. 451-460
-
-
Thomas, G.P.1
Baker, S.U.K.2
Eisman, J.A.3
Gardiner, E.M.4
-
32
-
-
0032079445
-
Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification
-
Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260-1268 (1998).
-
(1998)
Genes Dev.
, vol.12
, pp. 1260-1268
-
-
Bucay, N.1
-
33
-
-
0034019171
-
RANKing the importance of measles virus in Paget's disease
-
Ross, F. P. RANKing the importance of measles virus in Paget's disease. J. Clin. Invest. 105, 555-558 (2000).
-
(2000)
J. Clin. Invest.
, vol.105
, pp. 555-558
-
-
Ross, F.P.1
-
34
-
-
0033582819
-
Activation of NF-κB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-κB-inducing kinase
-
Darnay, B. G., Ni, J., Moore, P. A. & Aggarwal, B. B. Activation of NF-κB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-κB-inducing kinase. J. Biol. Chem. 274, 7724-7731 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 7724-7731
-
-
Darnay, B.G.1
Ni, J.2
Moore, P.A.3
Aggarwal, B.B.4
-
35
-
-
0032545465
-
The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signalling mechanisms of receptor activator of NFκB, a member of the TNFR superfamily
-
Galibert, L. et al. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signalling mechanisms of receptor activator of NFκB, a member of the TNFR superfamily. J. Biol. Chem. 273, 34120-34127 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 34120-34127
-
-
Galibert, L.1
-
36
-
-
0037113931
-
A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function
-
Armstrong, A. P. et al. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 277, 44347-44356 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44347-44356
-
-
Armstrong, A.P.1
-
37
-
-
0033561039
-
TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling
-
Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015-1024 (1999),
-
(1999)
Genes Dev.
, vol.13
, pp. 1015-1024
-
-
Lomaga, M.A.1
-
38
-
-
6544270833
-
Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice
-
Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353-362 (1999).
-
(1999)
Genes Cells
, vol.4
, pp. 353-362
-
-
Naito, A.1
-
39
-
-
18444390259
-
Distinct molecular mechanism for initiating TRAF6 signalling
-
Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447 (2002).
-
(2002)
Nature
, vol.418
, pp. 443-447
-
-
Ye, H.1
-
40
-
-
0033519221
-
The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts
-
Burgess, T. L. et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527-538 (1999).
-
(1999)
J. Cell Biol.
, vol.145
, pp. 527-538
-
-
Burgess, T.L.1
-
41
-
-
0037174944
-
Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator
-
Ishida, N. et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 277, 41147-41156 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 41147-41156
-
-
Ishida, N.1
-
42
-
-
18744366041
-
Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
-
Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901 (2002).
-
(2002)
Dev. Cell
, vol.3
, pp. 889-901
-
-
Takayanagi, H.1
-
43
-
-
15444357762
-
Requirement for NFκB in osteoclast and B-cell development
-
Franzoso, G. et al. Requirement for NFκB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496 (1997). This study establishes the NFκB-signalling pathway as essential for osteoclastogenesis and shows that the event requires either the p50 or p52 subunit of the transcription complex.
-
(1997)
Genes Dev.
, vol.11
, pp. 3482-3496
-
-
Franzoso, G.1
-
44
-
-
0032502353
-
Activation of NFκB is involved in the survival of osteoclasts promoted by interleukin-1
-
Jimi, E. et al. Activation of NFκB is involved in the survival of osteoclasts promoted by interleukin-1. J. Biol. Chem. 273, 8799-8805 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 8799-8805
-
-
Jimi, E.1
-
45
-
-
0034707671
-
Reciprocal role of ERK and NFκB pathways in survival and activation of osteoclasts
-
Miyazaki, T. et al. Reciprocal role of ERK and NFκB pathways in survival and activation of osteoclasts. J. Cell Biol. 148, 333-342 (2000).
-
(2000)
J. Cell Biol.
, vol.148
, pp. 333-342
-
-
Miyazaki, T.1
-
46
-
-
0035839615
-
TAT fusion proteins containing tyrosine 42-deleted IκBα arrest osteoclastogenesis
-
Abu-Amer, Y., Dowdy, S. F., Ross, F. P., Clohisy, J. C. & Teitelbaum, S. L. TAT fusion proteins containing tyrosine 42-deleted IκBα arrest osteoclastogenesis. J. Biol. Chem. 276, 30499-30503 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30499-30503
-
-
Abu-Amer, Y.1
Dowdy, S.F.2
Ross, F.P.3
Clohisy, J.C.4
Teitelbaum, S.L.5
-
47
-
-
0037113034
-
JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms
-
David, J.-P., Sabapathy, K., Hoffmann, O., Idarraga, M. H. & Wagner, E. F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms. J. Cell Sci. 115, 4317-4325 (2002).
-
(2002)
J. Cell Sci.
, vol.115
, pp. 4317-4325
-
-
David, J.-P.1
Sabapathy, K.2
Hoffmann, O.3
Idarraga, M.H.4
Wagner, E.F.5
-
48
-
-
0028173214
-
c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling
-
Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443-448 (1994).
-
(1994)
Science
, vol.266
, pp. 443-448
-
-
Grigoriadis, A.E.1
-
49
-
-
0035889132
-
Bifurcation of osteoclasts and dendritic cells from common progenitors
-
Miyamoto, T. et al. Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 98, 2544-2554 (2001).
-
(2001)
Blood
, vol.98
, pp. 2544-2554
-
-
Miyamoto, T.1
-
50
-
-
0033621698
-
Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation
-
Matsuo, K. et al. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nature Genet. 24, 184-187 (2000). In this study, the authors establish that RANKL recruits osteoclasts in an AP-1 dependent manner in which c-Fos, which is required for osteoclastogenesis, induces the transcription of Fosl1.
-
(2000)
Nature Genet.
, vol.24
, pp. 184-187
-
-
Matsuo, K.1
-
51
-
-
0034312317
-
Fra-1 replaces c-Fos-dependent functions in mice
-
Fleischmann, A. et al. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev. 14, 2695-2700 (2000).
-
(2000)
Genes Dev.
, vol.14
, pp. 2695-2700
-
-
Fleischmann, A.1
-
52
-
-
0033621890
-
Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts
-
McHugh, K. P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433-440 (2000). The authors establish that the αvβ3 integrin is a candidate anti-osteoporosis therapeutic target, as mice with their β3 gene deleted have dysfunctional osteoclasts and develop osteopetrosis.
-
(2000)
J. Clin. Invest.
, vol.105
, pp. 433-440
-
-
McHugh, K.P.1
-
53
-
-
0030924375
-
A peptidomimetic antagonist of the αvβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo
-
Engleman, V. W. et al. A peptidomimetic antagonist of the αvβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J. Clin. Invest. 99, 2284-2292 (1997).
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 2284-2292
-
-
Engleman, V.W.1
-
54
-
-
0026842999
-
Osteoclast adhesion and resorption: The role of podosomes
-
Aubin, J. E. Osteoclast adhesion and resorption: the role of podosomes. J. Bone Miner. Res. 7, 365-368 (1992).
-
(1992)
J. Bone Miner. Res.
, vol.7
, pp. 365-368
-
-
Aubin, J.E.1
-
55
-
-
0035015396
-
A Glanzmann's mutation of the β3 integrin gene specifically impairs osteoclast function
-
Feng, X. et al. A Glanzmann's mutation of the β3 integrin gene specifically impairs osteoclast function. J. Clin. Invest. 107, 1137-1144 (2001).
-
(2001)
J. Clin. Invest.
, vol.107
, pp. 1137-1144
-
-
Feng, X.1
-
56
-
-
0037332596
-
c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation
-
Faccio, R., Zallone, A., Ross, F. P. & Teitelbaum, S. L. c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation. J. Clin. Invest. 111, 749-758 (2003).
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 749-758
-
-
Faccio, R.1
Zallone, A.2
Ross, F.P.3
Teitelbaum, S.L.4
-
57
-
-
0035825121
-
Cbl associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility
-
Sanjay, A. et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, αvβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol. 152, 181-196 (2001).
-
(2001)
J. Cell Biol.
, vol.152
, pp. 181-196
-
-
Sanjay, A.1
-
58
-
-
0034865951
-
Podosomes in osteoclast-like cells: Structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin αvβ3
-
Pfaff, M. & Jurdic, P. Podosomes in osteoclast-like cells: structural analysis and cooperative roles of paxillin, proline-rich tyrosine kinase 2 (Pyk2) and integrin αvβ3. J. Cell Sci. 114, 2775-2786 (2001).
-
(2001)
J. Cell Sci.
, vol.114
, pp. 2775-2786
-
-
Pfaff, M.1
Jurdic, P.2
-
59
-
-
0035831497
-
Inhibition of osteoclast function by adenovirus expressing antisense protein-tyrosine kinase 2
-
Duong, L. T. et al. Inhibition of osteoclast function by adenovirus expressing antisense protein-tyrosine kinase 2. J. Biol. Chem. 276, 7484-7492 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 7484-7492
-
-
Duong, L.T.1
-
60
-
-
0035860713
-
Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins
-
Yokouchi, M. et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J. Biol. Chem. 276,35185-35193 (2001).
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 35185-35193
-
-
Yokouchi, M.1
-
61
-
-
0033169024
-
The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation
-
Lee, P. S. W. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616-3628 (1999).
-
(1999)
EMBO J.
, vol.18
, pp. 3616-3628
-
-
Lee, P.S.W.1
-
62
-
-
0032890156
-
CSF-1 stimulated multiubiquitination of the CSF-1 receptor and of Cbl follows their tyrosine phosphorylation and association with other signaling proteins
-
Wang, Y., Yeung, Y.-G. & Stanley, E. R. CSF-1 stimulated multiubiquitination of the CSF-1 receptor and of Cbl follows their tyrosine phosphorylation and association with other signaling proteins. J. Cell. Biochem. 72, 119-134 (1999).
-
(1999)
J. Cell. Biochem.
, vol.72
, pp. 119-134
-
-
Wang, Y.1
Yeung, Y.-G.2
Stanley, E.R.3
-
63
-
-
0026023289
-
Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice
-
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693-702 (1991).
-
(1991)
Cell
, vol.64
, pp. 693-702
-
-
Soriano, P.1
Montgomery, C.2
Geske, R.3
Bradley, A.4
-
64
-
-
0026612467
-
Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice
-
Boyce, B. F., Yoneda, T., Lowe, C., Soriano, P. & Mundy, G. R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J. Clin. Invest. 90, 1622-1627 (1992).
-
(1992)
J. Clin. Invest.
, vol.90
, pp. 1622-1627
-
-
Boyce, B.F.1
Yoneda, T.2
Lowe, C.3
Soriano, P.4
Mundy, G.R.5
-
66
-
-
0032168740
-
PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of α(v)β3 integrin, and phosphorylated by src kinase
-
Duong, L. T. et al. PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of α(v)β3 integrin, and phosphorylated by src kinase. J. Clin. Invest. 102, 881-892 (1998).
-
(1998)
J. Clin. Invest.
, vol.102
, pp. 881-892
-
-
Duong, L.T.1
-
67
-
-
0028109441
-
Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes
-
Mattsson, J. P. et al. Isolation and reconstitution of a vacuolar-type proton pump of osteoclast membranes. J. Biol. Chem. 269, 24979-24982 (1994).
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 24979-24982
-
-
Mattsson, J.P.1
-
68
-
-
0034284970
-
Bone resorption by osteoclasts
-
Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504-1508 (2000).
-
(2000)
Science
, vol.289
, pp. 1504-1508
-
-
Teitelbaum, S.L.1
-
69
-
-
0001690310
-
Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification
-
Sly, W. S., Hewett-Emmett, D., Whyte, M. P., Yu, Y.-S. & Tashian, R. E. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc. Natl Acad. Sci. USA 80, 2752-2756 (1983).
-
(1983)
Proc. Natl. Acad. Sci. USA
, vol.80
, pp. 2752-2756
-
-
Sly, W.S.1
Hewett-Emmett, D.2
Whyte, M.P.3
Yu, Y.-S.4
Tashian, R.E.5
-
70
-
-
0034641590
-
+-ATPase cause infantile malignant osteopetrosis
-
+-ATPase cause infantile malignant osteopetrosis. Hum. Mol. Genet. 9, 2059-2063 (2000).
-
(2000)
Hum. Mol. Genet.
, vol.9
, pp. 2059-2063
-
-
Komak, U.1
-
71
-
-
0036169599
-
+-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis
-
+-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone 30, 436-439 (2002).
-
(2002)
Bone
, vol.30
, pp. 436-439
-
-
Michigami, T.1
-
72
-
-
0033946477
-
Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis
-
+ATPase.
-
(2000)
Nature Genet.
, vol.25
, pp. 343-346
-
-
Frattini, A.1
-
73
-
-
18344407785
-
The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants
-
Scimeca, J.-C. et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26, 207-213 (2000).
-
(2000)
Bone
, vol.26
, pp. 207-213
-
-
Scimeca, J.-C.1
-
74
-
-
0032748995
-
Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification
-
Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nature Genet. 23, 447-451 (2000).
-
(2000)
Nature Genet.
, vol.23
, pp. 447-451
-
-
Li, Y.P.1
Chen, W.2
Liang, Y.3
Li, E.4
Stashenko, P.5
-
75
-
-
0030947860
-
Substrate recognition by osteoclast precursors induces s-crc/microtubule association
-
Abu-Amer, Y., Ross, F. P., Schlesinger, P., Tondravi, M. M. & Teitelbaum, S. L. Substrate recognition by osteoclast precursors induces s-crc/microtubule association. J. Cell Biol. 137, 247-258 (1997).
-
(1997)
J. Cell Biol.
, vol.137
, pp. 247-258
-
-
Abu-Amer, Y.1
Ross, F.P.2
Schlesinger, P.3
Tondravi, M.M.4
Teitelbaum, S.L.5
-
76
-
-
0030802421
-
Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption
-
Schlesinger, P. H., Blair, H. C., Teitelbaum, S. L. & Edwards, J. C. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J. Biol. Chem. 272, 18636-18643 (1997).
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 18636-18643
-
-
Schlesinger, P.H.1
Blair, H.C.2
Teitelbaum, S.L.3
Edwards, J.C.4
-
77
-
-
0035951282
-
Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man
-
Kornak, U. et al. Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205-215 (2001). The authors establish that mice and humans that lack a chloride channel in the osteoclast ruffled membrane fail to acidify the resorptive microenvironment, and so develop osteopetrosis.
-
(2001)
Cell
, vol.104
, pp. 205-215
-
-
Kornak, U.1
-
78
-
-
0029809357
-
Pycnodysostosis, a lysosomal disease caused by cathepsin-K deficiency
-
Gelb, B. D., Shi, G. P., Chapman, H. A. & Desnick, R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin-K deficiency. Science 273, 1236-1238 (1996).
-
(1996)
Science
, vol.273
, pp. 1236-1238
-
-
Gelb, B.D.1
Shi, G.P.2
Chapman, H.A.3
Desnick, R.J.4
-
79
-
-
0032506007
-
Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice
-
Saftig, P. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl Acad. Sci. USA 95, 13453-13458 (1998). Consistent with the fact that cathepsin K deficiency is responsible for the bone-sclerosing disorder pycnodysostosis, the authors find mice that lack the enzyme have osteopetrosis owing to the failure of osteoclasts to degrade the collagenous component of bone.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 13453-13458
-
-
Saftig, P.1
-
80
-
-
0032714266
-
Determination of bone markers in pycnodysostosis: Effects of cathepsin-K deficiency on bone matrix degradation
-
Nishi, Y. et al. Determination of bone markers in pycnodysostosis: effects of cathepsin-K deficiency on bone matrix degradation. J. Bone Miner. Res. 14, 1902-1908 (1999).
-
(1999)
J. Bone Miner. Res.
, vol.14
, pp. 1902-1908
-
-
Nishi, Y.1
-
81
-
-
0035826866
-
Linking osteopetrosis and pycnodysostosis: Regulation of cathepsin-K expression by the microphthalmia transcription factor family
-
Motyckova, G. et al. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin-K expression by the microphthalmia transcription factor family. Proc. Natl Acad. Sci. USA 98, 5798-5803 (2001).
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 5798-5803
-
-
Motyckova, G.1
-
82
-
-
0035109071
-
Human osteoclast cathepsin-K is processed intracellularly prior to attachment and bone resorption
-
Dodds, R. A. et al. Human osteoclast cathepsin-K is processed intracellularly prior to attachment and bone resorption. J. Bone Miner. Res. 16, 478-486 (2001).
-
(2001)
J. Bone Miner. Res.
, vol.16
, pp. 478-486
-
-
Dodds, R.A.1
-
83
-
-
0033610853
-
The collagenolytic activity of cathepsin-K is unique among mammalian proteinases
-
Garnero, P. et al. The collagenolytic activity of cathepsin-K is unique among mammalian proteinases. J. Biol. Chem. 273, 32347-32352 (1998).
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 32347-32352
-
-
Garnero, P.1
-
84
-
-
0034803277
-
cathepsin-K, osteoclastic resorption, and osteoporosis therapy
-
Zaidi, M., Troen, B., Moonga, B. S. & Abe, E. cathepsin-K, osteoclastic resorption, and osteoporosis therapy. J. Bone Miner. Res. 16, 1747-1749 (2001).
-
(2001)
J. Bone Miner. Res.
, vol.16
, pp. 1747-1749
-
-
Zaidi, M.1
Troen, B.2
Moonga, B.S.3
Abe, E.4
-
85
-
-
0036255616
-
A potent small molecule, nonpeptide inhibitor of cathepsin-K (SB 331750) prevents bone matrix resorption in the ovariectomized rat
-
Lark, M. W. et al. A potent small molecule, nonpeptide inhibitor of cathepsin-K (SB 331750) prevents bone matrix resorption in the ovariectomized rat. Bone 30, 746-753 (2002).
-
(2002)
Bone
, vol.30
, pp. 746-753
-
-
Lark, M.W.1
-
86
-
-
0030714605
-
A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function
-
Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179 (1997).
-
(1997)
Nature
, vol.390
, pp. 175-179
-
-
Anderson, D.M.1
-
87
-
-
0033987358
-
Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis
-
Hughes, A. E. et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nature Genet. 24, 45-48 (2000). This report provided the first evidence for mutations in RANK and documented their capacity to lead to enhanced osteoclastogenesis by autonomous activation of signals downstream of RANK.
-
(2000)
Nature Genet.
, vol.24
, pp. 45-48
-
-
Hughes, A.E.1
-
88
-
-
0031778038
-
Paget's disease of bone: Evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity
-
Haslam, S. I. et al. Paget's disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J. Bone Miner. Res. 13, 911-917 (1998).
-
(1998)
J. Bone Miner. Res.
, vol.13
, pp. 911-917
-
-
Haslam, S.I.1
-
89
-
-
0036133351
-
Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis
-
Whyte, M. P. & Hughes, A. E. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J. Bone Miner. Res. 17, 26-29 (2002).
-
(2002)
J. Bone Miner. Res.
, vol.17
, pp. 26-29
-
-
Whyte, M.P.1
Hughes, A.E.2
-
90
-
-
0037130183
-
Osteoprotegerin deficiency and juvenile Paget's disease
-
Whyte, M. P. et al. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 347, 175-184 (2002). The authors elegantly show that deletion of the gene for OPG in humans, which is the decoy receptor for RANKL, results in greatly increased activation of RANK and hence bone resorption.
-
(2002)
N. Engl. J. Med.
, vol.347
, pp. 175-184
-
-
Whyte, M.P.1
-
91
-
-
0037078972
-
Osteoprotegerin deficiency and juvenile Paget's disease
-
Hofbauer, L. C. & Schoppet, M. Osteoprotegerin deficiency and juvenile Paget's disease. N. Engl. J. Med. 347, 1622-1623 (2002).
-
(2002)
N. Engl. J. Med.
, vol.347
, pp. 1622-1623
-
-
Hofbauer, L.C.1
Schoppet, M.2
-
92
-
-
18544371504
-
A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype
-
Cundy, T. et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet. 11, 2119-2127 (2002).
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 2119-2127
-
-
Cundy, T.1
-
93
-
-
0036094026
-
Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone
-
Laurin, N., Brown, J. P., Morissette, J. & Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582-1588 (2002).
-
(2002)
Am. J. Hum. Genet.
, vol.70
, pp. 1582-1588
-
-
Laurin, N.1
Brown, J.P.2
Morissette, J.3
Raymond, V.4
-
94
-
-
0037108914
-
Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease
-
Hocking, L. J. et al. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum. Mol. Genet. 11, 2735-2739 (2002). An important study showing that Paget disease of bone can arise as a result of mutations of an adaptor protein that couples RANK to more distal signalling events.
-
(2002)
Hum. Mol. Genet.
, vol.11
, pp. 2735-2739
-
-
Hocking, L.J.1
-
95
-
-
0037986268
-
Association of the atypical protein kinase C-interacting protein p62/ZIP with nerve growth factor receptor TrkA regulates receptor trafficking and Erk5 signaling
-
Geetha, T. & Wooten, M, W. Association of the atypical protein kinase C-interacting protein p62/ZIP with nerve growth factor receptor TrkA regulates receptor trafficking and Erk5 signaling. J. Biol. Chem. 278, 4730-4739 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 4730-4739
-
-
Geetha, T.1
Wooten, M.W.2
-
96
-
-
0034328882
-
The atypical protein kinase Cs: Functional specificity mediated by specific protein adapters
-
Moscat, J. & Diaz-Meco, M. T. The atypical protein kinase Cs: functional specificity mediated by specific protein adapters. EMBO Rep. 1, 399-403 (2000).
-
(2000)
EMBO Rep.
, vol.1
, pp. 399-403
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
97
-
-
0034163834
-
Structure, function, and biology of SHIP proteins
-
Rohrschneider, L. R., Fuller, J. F., Wolf, I., Liu, Y. & Lucas, D. M. Structure, function, and biology of SHIP proteins. Genes Dev 14, 505-520 (2000).
-
(2000)
Genes Dev.
, vol.14
, pp. 505-520
-
-
Rohrschneider, L.R.1
Fuller, J.F.2
Wolf, I.3
Liu, Y.4
Lucas, D.M.5
-
98
-
-
0036196812
-
Regulation of the immune response to SHIP
-
March, M. E. & Ravichandran, K. Regulation of the immune response to SHIP. Semin. Immunol. 14, 37-47 (2002).
-
(2002)
Semin. Immunol.
, vol.14
, pp. 37-47
-
-
March, M.E.1
Ravichandran, K.2
-
99
-
-
2642684541
-
Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span
-
Helgason, C. D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12, 1610-1620 (1998).
-
(1998)
Genes Dev.
, vol.12
, pp. 1610-1620
-
-
Helgason, C.D.1
-
100
-
-
0036732410
-
SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts
-
Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nature Med. 8, 943-949 (2002). The first genetic evidence that derangements in phosphoinositide metabolism can lead to greater bone loss as a result of increased osteoclast number and activity.
-
(2002)
Nature Med.
, vol.8
, pp. 943-949
-
-
Takeshita, S.1
-
101
-
-
0029859565
-
Cloning and characterization of human SHIP, the 145-kD inositol 5-phosphatase that associates with SHC after cytokine stimulation
-
Ware, M. D. et al. Cloning and characterization of human SHIP, the 145-kD inositol 5-phosphatase that associates with SHC after cytokine stimulation. Blood 88, 2833-2840 (1996).
-
(1996)
Blood
, vol.88
, pp. 2833-2840
-
-
Ware, M.D.1
-
102
-
-
0036283611
-
Estrogen and the male skeleton
-
Khosla, S., Melton, L. J. & Riggs, B. L. Estrogen and the male skeleton. J. Clin. Endocrinol. Metab. 87, 1443-1450 (2002).
-
(2002)
J. Clin. Endocrinol. Metab.
, vol.87
, pp. 1443-1450
-
-
Khosla, S.1
Melton, L.J.2
Riggs, B.L.3
-
103
-
-
0345557575
-
Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release
-
Pacifici, R. et al. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc. Natl Acad. Sci. USA 86, 2398-2402 (1989).
-
(1989)
Proc. Natl. Acad. Sci. USA
, vol.86
, pp. 2398-2402
-
-
Pacifici, R.1
-
104
-
-
0025955604
-
Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells
-
Pacifici, R. et al. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc. Natl Acad. Sci. USA 88, 5134-5138 (1991).
-
(1991)
Proc. Natl. Acad. Sci. USA
, vol.88
, pp. 5134-5138
-
-
Pacifici, R.1
-
105
-
-
0031786374
-
Mice lacking the type 1 interleukin-1 receptor do not lose bone mass after ovariectomy
-
Lorenzo, J. A. et al. Mice lacking the type 1 interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology 139, 3022-3025 (1998).
-
(1998)
Endocrinology
, vol.139
, pp. 3022-3025
-
-
Lorenzo, J.A.1
-
106
-
-
0030950131
-
Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency
-
Ammann, P. et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J. Clin. Invest. 99, 1699-1703 (1997).
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 1699-1703
-
-
Ammann, P.1
-
107
-
-
0035923727
-
Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo
-
Roggia, C. et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl Acad. Sci. USA 98, 13960-13965 (2001).
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 13960-13965
-
-
Roggia, C.1
-
108
-
-
0029802660
-
Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production
-
Kimble, R. B. et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J. Biol. Chem. 271, 28890-28897 (1996).
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 28890-28897
-
-
Kimble, R.B.1
-
109
-
-
0034064315
-
M-CSF neutralization and Egr-1 deficiency prevent ovariectomy-induced bone loss
-
Cenci, S., Weitzmann, M. N., Gentile, M. A., Aisa, M. C. & Pacifici, R. M-CSF neutralization and Egr-1 deficiency prevent ovariectomy-induced bone loss. J. Clin. Invest. 105, 1279-1287 (2000).
-
(2000)
J. Clin. Invest.
, vol.105
, pp. 1279-1287
-
-
Cenci, S.1
Weitzmann, M.N.2
Gentile, M.A.3
Aisa, M.C.4
Pacifici, R.5
-
110
-
-
0033708837
-
Estrogen deficiency induces bone loss by enhancing T cell production of TNFα
-
Cenci, S. et al. Estrogen deficiency induces bone loss by enhancing T cell production of TNFα. J. Clin. Invest. 106, 1229-1237 (2000).
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 1229-1237
-
-
Cenci, S.1
-
111
-
-
0034523328
-
TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
-
Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481-1488 (2000).
-
(2000)
J. Clin. Invest.
, vol.106
, pp. 1481-1488
-
-
Lam, J.1
-
112
-
-
4243433723
-
Estrogen deficiency causes bone loss by upregulating T cell proliferation and lifespan through IFNγ-induced class II transactivator
-
in the press
-
Cenci, G. et al. Estrogen deficiency causes bone loss by upregulating T cell proliferation and lifespan through IFNγ-induced class II transactivator. Proc. Natl Acad. Sci. USA (in the press).
-
Proc. Natl. Acad. Sci. USA
-
-
Cenci, G.1
-
113
-
-
0037398261
-
Role of RANK ligand in mediating increased bone resorption in early postmenopausal women
-
Eghbali-Fatourechi, G. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest. 111, 1221-1230 (2003).
-
(2003)
J. Clin. Invest.
, vol.111
, pp. 1221-1230
-
-
Eghbali-Fatourechi, G.1
-
114
-
-
0034735773
-
T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ
-
Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600-605 (2000).
-
(2000)
Nature
, vol.408
, pp. 600-605
-
-
Takayanagi, H.1
-
115
-
-
0037129205
-
RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β
-
Takayanagi, H, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature 416, 744-749 (2002).
-
(2002)
Nature
, vol.416
, pp. 744-749
-
-
Takayanagi, H.1
-
116
-
-
0027305392
-
Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal
-
Passeri, G., Girasole, G., Jilka, R. L. & Manolagas, S. C. Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 133, 822-828 (1993).
-
(1993)
Endocrinology
, vol.133
, pp. 822-828
-
-
Passeri, G.1
Girasole, G.2
Jilka, R.L.3
Manolagas, S.C.4
-
117
-
-
0026777433
-
Increased osteoclast development after estrogen loss: Mediation by interleukin-6
-
Jilka, R. L. et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257, 88-91 (1992).
-
(1992)
Science
, vol.257
, pp. 88-91
-
-
Jilka, R.L.1
-
118
-
-
9844235912
-
Osteoclasts are present in gp130-deficient mice
-
Kawasaki, K. et al. Osteoclasts are present in gp130-deficient mice. Endocrinology 138, 4959-4965 (1997).
-
(1997)
Endocrinology
, vol.138
, pp. 4959-4965
-
-
Kawasaki, K.1
-
119
-
-
0035664488
-
Antisense inhibition of macrophage inflammatory protein 1-α blocks bone destruction in a model of myeloma bone disease
-
Choi, S. J. et al. Antisense inhibition of macrophage inflammatory protein 1-α blocks bone destruction in a model of myeloma bone disease. J. Clin. Invest. 108, 1833-1841 (2001).
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1833-1841
-
-
Choi, S.J.1
-
120
-
-
0032005857
-
Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor
-
Horwood, N. J. et al. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J. Clin. Invest. 101, 595-603 (1998).
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 595-603
-
-
Horwood, N.J.1
-
121
-
-
0037155165
-
Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-κB and MAP kinase signaling
-
Wei, S., Wang, M. W., Teitelbaum, S. L. & Ross, F. P. Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-κB and MAP kinase signaling. J. Biol. Chem. 21, 6622-6630 (2001).
-
(2001)
J. Biol. Chem.
, vol.21
, pp. 6622-6630
-
-
Wei, S.1
Wang, M.W.2
Teitelbaum, S.L.3
Ross, F.P.4
-
122
-
-
17544389276
-
Interleukin-18 (interferon-γ-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-γ to inhibit osteoclast formation
-
Udagawa, N. et al. Interleukin-18 (interferon-γ-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-γ to inhibit osteoclast formation. J. Exp. Med. 185, 1005-1012 (1997).
-
(1997)
J. Exp. Med.
, vol.185
, pp. 1005-1012
-
-
Udagawa, N.1
-
123
-
-
0035871615
-
IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro
-
Horwood, N. J., Elliott, J., Martin, T. J. & Gillespie, M. T. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J. Immunol. 166, 4915-4921 (2001).
-
(2001)
J. Immunol.
, vol.166
, pp. 4915-4921
-
-
Horwood, N.J.1
Elliott, J.2
Martin, T.J.3
Gillespie, M.T.4
-
124
-
-
0041731907
-
Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by b3 integrin
-
in the press
-
Faccio, R., Novack, D. V., Zallone, A., Ross, F. P. & Teitelbaum, S. L. Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by b3 integrin. J. Cell Biol. (in the press).
-
J. Cell Biol.
-
-
Faccio, R.1
Novack, D.V.2
Zallone, A.3
Ross, F.P.4
Teitelbaum, S.L.5
-
125
-
-
0033611467
-
OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis
-
Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323 (1999).
-
(1999)
Nature
, vol.397
, pp. 315-323
-
-
Kong, Y.Y.1
-
126
-
-
0038070081
-
Interleukin 7 and estrogen-induced bone loss
-
Ross, F. P. Interleukin 7 and estrogen-induced bone loss. Trends Endocrinol. Metab. 14, 147-149 (2003).
-
(2003)
Trends Endocrinol. Metab.
, vol.14
, pp. 147-149
-
-
Ross, F.P.1
|