-
1
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
C. Schulz, E. G. Perdiguero, L. Chorro et al., “A lineage of myeloid cells independent of Myb and hematopoietic stem cells,” Science, vol. 336, no. 6077, pp. 86-90, 2012.
-
(2012)
Science
, vol.336
, Issue.6077
, pp. 86-90
-
-
Schulz, C.1
Perdiguero, E.G.2
Chorro, L.3
-
2
-
-
84925465211
-
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
-
E. Gomez Perdiguero, K. Klapproth, C. Schulz et al., “Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors,” Nature, vol. 518, no. 7540, pp. 547-551, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 547-551
-
-
Gomez Perdiguero, E.1
Klapproth, K.2
Schulz, C.3
-
3
-
-
84928189502
-
+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
-
+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages,” Immunity, vol. 42, no. 4, pp. 665-678, 2015.
-
(2015)
Immunity
, vol.42
, Issue.4
, pp. 665-678
-
-
Hoeffel, G.1
Chen, J.2
Lavin, Y.3
-
4
-
-
78149360132
-
Fate mapping analysis reveals that adult microglia derive from primitive macrophages
-
F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841-845, 2010.
-
(2010)
Science
, vol.330
, Issue.6005
, pp. 841-845
-
-
Ginhoux, F.1
Greter, M.2
Leboeuf, M.3
-
5
-
-
84892450644
-
Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
-
S. Epelman, K. J. Lavine, A. E. Beaudin et al., “Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation,” Immunity, vol. 40, no. 1, pp. 91-104, 2014.
-
(2014)
Immunity
, vol.40
, Issue.1
, pp. 91-104
-
-
Epelman, S.1
Lavine, K.J.2
Beaudin, A.E.3
-
6
-
-
84904401883
-
Origin and functions of tissue macrophages
-
S. Epelman, K. J. Lavine, and G. J. Randolph, “Origin and functions of tissue macrophages,” Immunity, vol. 41, no. 1, pp. 21-35, 2014.
-
(2014)
Immunity
, vol.41
, Issue.1
, pp. 21-35
-
-
Epelman, S.1
Lavine, K.J.2
Randolph, G.J.3
-
7
-
-
84884352076
-
Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
-
C. Jakubzick, E. L. Gautier, S. L. Gibbings et al., “Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes,” Immunity, vol. 39, no. 3, pp. 599-610, 2013.
-
(2013)
Immunity
, vol.39
, Issue.3
, pp. 599-610
-
-
Jakubzick, C.1
Gautier, E.L.2
Gibbings, S.L.3
-
8
-
-
84867740805
-
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
-
E. L. Gautier, T. Shay, J. Miller et al., “Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages,” Nature Immunology, vol. 13, no. 11, pp. 1118-1128, 2012.
-
(2012)
Nature Immunology
, vol.13
, Issue.11
, pp. 1118-1128
-
-
Gautier, E.L.1
Shay, T.2
Miller, J.3
-
9
-
-
84904407541
-
Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival
-
E. L. Gautier, S. Ivanov, J. W. Williams et al., “Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival,” The Journal of Experimental Medicine, vol. 211, no. 8, pp. 1525-1531, 2014.
-
(2014)
The Journal of Experimental Medicine
, vol.211
, Issue.8
, pp. 1525-1531
-
-
Gautier, E.L.1
Ivanov, S.2
Williams, J.W.3
-
10
-
-
84900386841
-
The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal
-
M. Rosas, L. C. Davies, P. J. Giles et al., “The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal,” Science, vol. 344, no. 6184, pp. 645-648, 2014.
-
(2014)
Science
, vol.344
, Issue.6184
, pp. 645-648
-
-
Rosas, M.1
Davies, L.C.2
Giles, P.J.3
-
11
-
-
84900413094
-
Tissue-specific signals control reversible program of localization and functional polarization of macrophages
-
Y. Okabe and R. Medzhitov, “Tissue-specific signals control reversible program of localization and functional polarization of macrophages,” Cell, vol. 157, no. 4, pp. 832-844, 2014.
-
(2014)
Cell
, vol.157
, Issue.4
, pp. 832-844
-
-
Okabe, Y.1
Medzhitov, R.2
-
12
-
-
84992386887
-
Sall1 is a transcriptional regulator defining microglia identity and function
-
A. Buttgereit, I. Lelios, X. Yu et al., “Sall1 is a transcriptional regulator defining microglia identity and function,” Nature Immunology, vol. 17, no. 12, pp. 1397-1406, 2016.
-
(2016)
Nature Immunology
, vol.17
, Issue.12
, pp. 1397-1406
-
-
Buttgereit, A.1
Lelios, I.2
Yu, X.3
-
13
-
-
84981489685
-
Specification of tissue-resident macrophages during organogenesis
-
E. Mass, I. Ballesteros, M. Farlik et al., “Specification of tissue-resident macrophages during organogenesis,” Science, vol. 353, no. 6304, article aaf4238, 2016.
-
(2016)
Science
, vol.353
, Issue.6304
-
-
Mass, E.1
Ballesteros, I.2
Farlik, M.3
-
14
-
-
58249104981
-
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
-
M. Kohyama, W. Ise, B. T. Edelson et al., “Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis,” Nature, vol. 457, no. 7227, pp. 318-321, 2008.
-
(2008)
Nature
, vol.457
, Issue.7227
, pp. 318-321
-
-
Kohyama, M.1
Ise, W.2
Edelson, B.T.3
-
15
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Y. Lavin, D. Winter, R. Blecher-Gonen et al., “Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment,” Cell, vol. 159, no. 6, pp. 1312-1326, 2014.
-
(2014)
Cell
, vol.159
, Issue.6
, pp. 1312-1326
-
-
Lavin, Y.1
Winter, D.2
Blecher-Gonen, R.3
-
16
-
-
84960399221
-
Immunometabolism governs dendritic cell and macrophage function
-
L. A. J. O'Neill and E. J. Pearce, “Immunometabolism governs dendritic cell and macrophage function,” The Journal of Experimental Medicine, vol. 213, no. 1, pp. 15-23, 2016.
-
(2016)
The Journal of Experimental Medicine
, vol.213
, Issue.1
, pp. 15-23
-
-
O'Neill, L.A.J.1
Pearce, E.J.2
-
17
-
-
85018305787
-
Monocyte differentiation and antigen-presenting functions
-
C. V. Jakubzick, G. J. Randolph, and P. M. Henson, “Monocyte differentiation and antigen-presenting functions,” Nature Reviews. Immunology, vol. 17, no. 6, pp. 349-362, 2017.
-
(2017)
Nature Reviews. Immunology
, vol.17
, Issue.6
, pp. 349-362
-
-
Jakubzick, C.V.1
Randolph, G.J.2
Henson, P.M.3
-
18
-
-
34147164049
-
Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
-
C. L. Tsou, W. Peters, Y. Si et al., “Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites,” The Journal of Clinical Investigation, vol. 117, no. 4, pp. 902-909, 2007.
-
(2007)
The Journal of Clinical Investigation
, vol.117
, Issue.4
, pp. 902-909
-
-
Tsou, C.L.1
Peters, W.2
Si, Y.3
-
19
-
-
33645902493
-
Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
-
N. V. Serbina and E. G. Pamer, “Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2,” Nature Immunology, vol. 7, no. 3, pp. 311-317, 2006.
-
(2006)
Nature Immunology
, vol.7
, Issue.3
, pp. 311-317
-
-
Serbina, N.V.1
Pamer, E.G.2
-
20
-
-
84994682527
-
CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses
-
S. Z. Chong, M. Evrard, S. Devi et al., “CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses,” The Journal of Experimental Medicine, vol. 213, no. 11, pp. 2293-2314, 2016.
-
(2016)
The Journal of Experimental Medicine
, vol.213
, Issue.11
, pp. 2293-2314
-
-
Chong, S.Z.1
Evrard, M.2
Devi, S.3
-
21
-
-
84959305758
-
− /− Mice
-
− /− mice,” Circulation Research, vol. 118, no. 7, pp. 1062-1077, 2016.
-
(2016)
Circulation Research
, vol.118
, Issue.7
, pp. 1062-1077
-
-
Sarrazy, V.1
Viaud, M.2
Westerterp, M.3
-
22
-
-
85046816552
-
+ T cell metabolism
-
+ T cell metabolism,” Immunity, vol. 48, no. 5, pp. 992-1005.e8, 2018.
-
(2018)
Immunity
, vol.48
, Issue.5
, pp. 992e8-1005e8
-
-
Trompette, A.1
Gollwitzer, E.S.2
Pattaroni, C.3
-
23
-
-
80051959957
-
- monocytes
-
- monocytes,” Nature Immunology, vol. 12, no. 8, pp. 778-785, 2011.
-
(2011)
Nature Immunology
, vol.12
, Issue.8
, pp. 778-785
-
-
Hanna, R.N.1
Carlin, L.M.2
Hubbeling, H.G.3
-
24
-
-
84876207357
-
low monocytes monitor endothelial cells and orchestrate their disposal
-
low monocytes monitor endothelial cells and orchestrate their disposal,” Cell, vol. 153, no. 2, pp. 362-375, 2013.
-
(2013)
Cell
, vol.153
, Issue.2
, pp. 362-375
-
-
Carlin, L.M.1
Stamatiades, E.G.2
Auffray, C.3
-
25
-
-
84947754755
-
Patrolling monocytes control tumor metastasis to the lung
-
R. N. Hanna, C. Cekic, D. Sag et al., “Patrolling monocytes control tumor metastasis to the lung,” Science, vol. 350, no. 6263, pp. 985-990, 2015.
-
(2015)
Science
, vol.350
, Issue.6263
, pp. 985-990
-
-
Hanna, R.N.1
Cekic, C.2
Sag, D.3
-
26
-
-
33845989083
-
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
-
F. Tacke, D. Alvarez, T. J. Kaplan et al., “Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques,” The Journal of Clinical Investigation, vol. 117, no. 1, pp. 185-194, 2007.
-
(2007)
The Journal of Clinical Investigation
, vol.117
, Issue.1
, pp. 185-194
-
-
Tacke, F.1
Alvarez, D.2
Kaplan, T.J.3
-
27
-
-
84927613295
-
Macrophages: Development and tissue specialization
-
C. Varol, A. Mildner, and S. Jung, “Macrophages: development and tissue specialization,” Annual Review of Immunology, vol. 33, no. 1, pp. 643-675, 2015.
-
(2015)
Annual Review of Immunology
, vol.33
, Issue.1
, pp. 643-675
-
-
Varol, C.1
Mildner, A.2
Jung, S.3
-
28
-
-
84920724792
-
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
-
D. Gosselin, V. M. Link, C. E. Romanoski et al., “Environment drives selection and function of enhancers controlling tissue-specific macrophage identities,” Cell, vol. 159, no. 6, pp. 1327-1340, 2014.
-
(2014)
Cell
, vol.159
, Issue.6
, pp. 1327-1340
-
-
Gosselin, D.1
Link, V.M.2
Romanoski, C.E.3
-
29
-
-
85003587526
-
Integrating immunometabolism and macrophage diversity
-
M. N. Artyomov, A. Sergushichev, and J. D. Schilling, “Integrating immunometabolism and macrophage diversity,” Seminars in Immunology, vol. 28, no. 5, pp. 417-424, 2016.
-
(2016)
Seminars in Immunology
, vol.28
, Issue.5
, pp. 417-424
-
-
Artyomov, M.N.1
Sergushichev, A.2
Schilling, J.D.3
-
30
-
-
84992215144
-
+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes
-
+ resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes,” The Journal of Experimental Medicine, vol. 213, no. 10, pp. 1951-1959, 2016.
-
(2016)
The Journal of Experimental Medicine
, vol.213
, Issue.10
, pp. 1951-1959
-
-
Kim, K.W.1
Williams, J.W.2
Wang, Y.T.3
-
31
-
-
84896269174
-
Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflam-matory phenotype
-
A. J. Freemerman, A. R. Johnson, G. N. Sacks et al., “Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflam-matory phenotype,” The Journal of Biological Chemistry, vol. 289, no. 11, pp. 7884-7896, 2014.
-
(2014)
The Journal of Biological Chemistry
, vol.289
, Issue.11
, pp. 7884-7896
-
-
Freemerman, A.J.1
Johnson, A.R.2
Sacks, G.N.3
-
32
-
-
0030048720
-
Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1
-
M. Fukuzumi, H. Shinomiya, Y. Shimizu, K. Ohishi, and S. Utsumi, “Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1,” Infection and Immunity, vol. 64, no. 1, pp. 108-112, 1996.
-
(1996)
Infection and Immunity
, vol.64
, Issue.1
, pp. 108-112
-
-
Fukuzumi, M.1
Shinomiya, H.2
Shimizu, Y.3
Ohishi, K.4
Utsumi, S.5
-
33
-
-
84899649118
-
Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis
-
T. Nishizawa, J. E. Kanter, F. Kramer et al., “Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis,” Cell Reports, vol. 7, no. 2, pp. 356-365, 2014.
-
(2014)
Cell Reports
, vol.7
, Issue.2
, pp. 356-365
-
-
Nishizawa, T.1
Kanter, J.E.2
Kramer, F.3
-
34
-
-
84923108209
-
Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans
-
H. Emami, P. Singh, M. MacNabb et al., “Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans,” JACC: Cardiovascular Imaging, vol. 8, no. 2, pp. 121-130, 2015.
-
(2015)
JACC: Cardiovascular Imaging
, vol.8
, Issue.2
, pp. 121-130
-
-
Emami, H.1
Singh, P.2
MacNabb, M.3
-
35
-
-
84870622989
-
18 F-FDG PET imaging of murine atherosclerosis: Association with gene expression of key molecular markers
-
18 F-FDG PET imaging of murine atherosclerosis: association with gene expression of key molecular markers,” PLoS One, vol. 7, no. 11, article e50908, 2012.
-
(2012)
PLoS One
, vol.7
, Issue.11
-
-
Hag, A.M.F.1
Pedersen, S.F.2
Christoffersen, C.3
-
36
-
-
79955823422
-
Imaging of coronary inflammation with FDG-PET: Feasibility and clinical hurdles
-
I. S. Rogers and A. Tawakol, “Imaging of coronary inflammation with FDG-PET: feasibility and clinical hurdles,” Current Cardiology Reports, vol. 13, no. 2, pp. 138-144, 2011.
-
(2011)
Current Cardiology Reports
, vol.13
, Issue.2
, pp. 138-144
-
-
Rogers, I.S.1
Tawakol, A.2
-
37
-
-
0028951733
-
Nonopsonic phagocytosis of Pseudomonas aeruginosa requires facilitated transport of D-glucose by macrophages
-
S. Barghouthi, K. D. Everett, and D. P. Speert, “Nonopsonic phagocytosis of Pseudomonas aeruginosa requires facilitated transport of D-glucose by macrophages,” Journal of Immunology, vol. 154, no. 7, pp. 3420-3428, 1995.
-
(1995)
Journal of Immunology
, vol.154
, Issue.7
, pp. 3420-3428
-
-
Barghouthi, S.1
Everett, K.D.2
Speert, D.P.3
-
38
-
-
85045572752
-
Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection
-
T. M. Tucey, J. Verma, P. F. Harrison et al., “Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection,” Cell Metabolism, vol. 27, no. 5, pp. 988-1006.e7, 2018.
-
(2018)
Cell Metabolism
, vol.27
, Issue.5
, pp. 988e7-1006e7
-
-
Tucey, T.M.1
Verma, J.2
Harrison, P.F.3
-
39
-
-
84957800096
-
Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent
-
L. Liu, Y. Lu, J. Martinez et al., “Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 6, pp. 1564-1569, 2016.
-
(2016)
Proceedings of the National Academy of Sciences of the United States of America
, vol.113
, Issue.6
, pp. 1564-1569
-
-
Liu, L.1
Lu, Y.2
Martinez, J.3
-
40
-
-
84986253848
-
Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation
-
A. Wang, S. C. Huen, H. H. Luan et al., “Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation,” Cell, vol. 166, no. 6, pp. 1512-1525.e12, 2016.
-
(2016)
Cell
, vol.166
, Issue.6
, pp. 1512e12-1525e12
-
-
Wang, A.1
Huen, S.C.2
Luan, H.H.3
-
41
-
-
84906319549
-
Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
-
S. C.-C. Huang, B. Everts, Y. Ivanova et al., “Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages,” Nature Immunology, vol. 15, no. 9, pp. 846-855, 2014.
-
(2014)
Nature Immunology
, vol.15
, Issue.9
, pp. 846-855
-
-
Huang, S.C.-C.1
Everts, B.2
Ivanova, Y.3
-
42
-
-
44349112305
-
Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity
-
K. Kang, S. M. Reilly, V. Karabacak et al., “Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity,” Cell Metabolism, vol. 7, no. 6, pp. 485-495, 2008.
-
(2008)
Cell Metabolism
, vol.7
, Issue.6
, pp. 485-495
-
-
Kang, K.1
Reilly, S.M.2
Karabacak, V.3
-
43
-
-
34347354309
-
Macrophage-specific PPARγ controls alternative activation and improves insulin resistance
-
J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116-1120, 2007.
-
(2007)
Nature
, vol.447
, Issue.7148
, pp. 1116-1120
-
-
Odegaard, J.I.1
Ricardo-Gonzalez, R.R.2
Goforth, M.H.3
-
44
-
-
33745428666
-
Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
-
D. Vats, L. Mukundan, J. I. Odegaard et al., “Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation,” Cell Metabolism, vol. 4, no. 1, pp. 13-24, 2006.
-
(2006)
Cell Metabolism
, vol.4
, Issue.1
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
-
45
-
-
63449127032
-
Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores
-
R. Zechner, P. C. Kienesberger, G. Haemmerle, R. Zimmermann, and A. Lass, “Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores,” Journal of Lipid Research, vol. 50, no. 1, pp. 3-21, 2008.
-
(2008)
Journal of Lipid Research
, vol.50
, Issue.1
, pp. 3-21
-
-
Zechner, R.1
Kienesberger, P.C.2
Haemmerle, G.3
Zimmermann, R.4
Lass, A.5
-
46
-
-
85052439024
-
Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxy-sterol production
-
M. Viaud, S. Ivanov, N. Vujic et al., “Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxy-sterol production,” Circulation Research, vol. 122, no. 10, pp. 1369-1384, 2018.
-
(2018)
Circulation Research
, vol.122
, Issue.10
, pp. 1369-1384
-
-
Viaud, M.1
Ivanov, S.2
Vujic, N.3
-
47
-
-
84863390134
-
Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1
-
J. E. Kanter, F. Kramer, S. Barnhart et al., “Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. E715-E724, 2012.
-
(2012)
Proceedings of the National Academy of Sciences of the United States of America
, vol.109
, Issue.12
, pp. E715-E724
-
-
Kanter, J.E.1
Kramer, F.2
Barnhart, S.3
-
48
-
-
80052597312
-
Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein
-
D. Park, C. Z. Han, M. R. Elliott et al., “Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein,” Nature, vol. 477, no. 7363, pp. 220-224, 2011.
-
(2011)
Nature
, vol.477
, Issue.7363
, pp. 220-224
-
-
Park, D.1
Han, C.Z.2
Elliott, M.R.3
-
49
-
-
0026545368
-
The macrophage capacity for phagocytosis
-
G. J. Cannon and J. A. Swanson, “The macrophage capacity for phagocytosis,” Journal of Cell Science, vol. 101, Part 4, pp. 907-913, 1992.
-
(1992)
Journal of Cell Science
, vol.101
, pp. 907-913
-
-
Cannon, G.J.1
Swanson, J.A.2
-
50
-
-
84871061105
-
Modulation of macrophage efferocytosis in inflammation
-
D. Korns, S. C. Frasch, R. Fernandez-Boyanapalli, P. M. Henson, and D. L. Bratton, “Modulation of macrophage efferocytosis in inflammation,” Frontiers in Immunology, vol. 2, p. 57, 2011.
-
(2011)
Frontiers in Immunology
, vol.2
, pp. 57
-
-
Korns, D.1
Frasch, S.C.2
Fernandez-Boyanapalli, R.3
Henson, P.M.4
Bratton, D.L.5
-
51
-
-
20144363054
-
Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis
-
D. M. Schrijvers, G. R. Y. de Meyer, M. M. Kockx, A. G. Herman, and W. Martinet, “Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 6, pp. 1256-1261, 2005.
-
(2005)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.25
, Issue.6
, pp. 1256-1261
-
-
Schrijvers, D.M.1
De Meyer, G.R.Y.2
Kockx, M.M.3
Herman, A.G.4
Martinet, W.5
-
52
-
-
0032989435
-
Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition
-
M. K. Chang, C. Bergmark, A. Laurila et al., “Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6353-6358, 1999.
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.11
, pp. 6353-6358
-
-
Chang, M.K.1
Bergmark, C.2
Laurila, A.3
-
53
-
-
84918827233
-
Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis
-
E. Marsch, T. L. Theelen, J. A. F. Demandt et al., “Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 12, pp. 2545-2553, 2014.
-
(2014)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.34
, Issue.12
, pp. 2545-2553
-
-
Marsch, E.1
Theelen, T.L.2
Demandt, J.A.F.3
-
54
-
-
79954802715
-
Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways
-
G. Chinetti-Gbaguidi, M. Baron, M. A. Bouhlel et al., “Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways,” Circulation Research, vol. 108, no. 8, pp. 985-995, 2011.
-
(2011)
Circulation Research
, vol.108
, Issue.8
, pp. 985-995
-
-
Chinetti-Gbaguidi, G.1
Baron, M.2
Bouhlel, M.A.3
-
55
-
-
84924935721
-
Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
-
A. K. Jha, S. C. C. Huang, A. Sergushichev et al., “Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization,” Immunity, vol. 42, no. 3, pp. 419-430, 2015.
-
(2015)
Immunity
, vol.42
, Issue.3
, pp. 419-430
-
-
Jha, A.K.1
Huang, S.C.C.2
Sergushichev, A.3
-
56
-
-
84978468846
-
Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
-
V. Lampropoulou, A. Sergushichev, M. Bambouskova et al., “Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation,” Cell Metabolism, vol. 24, no. 1, pp. 158-166, 2016.
-
(2016)
Cell Metabolism
, vol.24
, Issue.1
, pp. 158-166
-
-
Lampropoulou, V.1
Sergushichev, A.2
Bambouskova, M.3
-
57
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1β through HIF-1α
-
G. M. Tannahill, A. M. Curtis, J. Adamik et al., “Succinate is an inflammatory signal that induces IL-1β through HIF-1α,” Nature, vol. 496, no. 7444, pp. 238-242, 2013.
-
(2013)
Nature
, vol.496
, Issue.7444
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
-
58
-
-
84976869322
-
Immunorespon-sive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
-
T. Cordes, M. Wallace, A. Michelucci et al., “Immunorespon-sive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels,” The Journal of Biological Chemistry, vol. 291, no. 27, pp. 14274-14284, 2016.
-
(2016)
The Journal of Biological Chemistry
, vol.291
, Issue.27
, pp. 14274-14284
-
-
Cordes, T.1
Wallace, M.2
Michelucci, A.3
-
59
-
-
85045147264
-
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
-
E. L. Mills, D. G. Ryan, H. A. Prag et al., “Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1,” Nature, vol. 556, no. 7699, pp. 113-117, 2018.
-
(2018)
Nature
, vol.556
, Issue.7699
, pp. 113-117
-
-
Mills, E.L.1
Ryan, D.G.2
Prag, H.A.3
-
60
-
-
85045994705
-
Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis
-
M. Bambouskova, L. Gorvel, V. Lampropoulou et al., “Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis,” Nature, vol. 556, no. 7702, pp. 501-504, 2018.
-
(2018)
Nature
, vol.556
, Issue.7702
, pp. 501-504
-
-
Bambouskova, M.1
Gorvel, L.2
Lampropoulou, V.3
-
61
-
-
85044828154
-
Irg1 expression in myeloid cells prevents immunopathology during M. Tuberculosis infection
-
S. Nair, J. P. Huynh, V. Lampropoulou et al., “Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection,” The Journal of Experimental Medicine, vol. 215, no. 4, pp. 1035-1045, 2018.
-
(2018)
The Journal of Experimental Medicine
, vol.215
, Issue.4
, pp. 1035-1045
-
-
Nair, S.1
Huynh, J.P.2
Lampropoulou, V.3
-
62
-
-
85052588049
-
Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors
-
J. M. Weiss, L. C. Davies, M. Karwan et al., “Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors,” The Journal of Clinical Investigation, vol. 128, no. 9, pp. 3794-3805, 2018.
-
(2018)
The Journal of Clinical Investigation
, vol.128
, Issue.9
, pp. 3794-3805
-
-
Weiss, J.M.1
Davies, L.C.2
Karwan, M.3
-
63
-
-
85024117468
-
BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases
-
A. E. Papathanassiu, J. H. Ko, M. Imprialou et al., “BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases,” Nature Communications, vol. 8, p. 16040, 2017.
-
(2017)
Nature Communications
, vol.8
, pp. 16040
-
-
Papathanassiu, A.E.1
Ko, J.H.2
Imprialou, M.3
-
64
-
-
84951567509
-
Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis
-
C. R. Green, M. Wallace, A. S. Divakaruni et al., “Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis,” Nature Chemical Biology, vol. 12, no. 1, pp. 15-21, 2016.
-
(2016)
Nature Chemical Biology
, vol.12
, Issue.1
, pp. 15-21
-
-
Green, C.R.1
Wallace, M.2
Divakaruni, A.S.3
-
65
-
-
0023029455
-
Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages
-
P. Newsholme, R. Curi, S. Gordon, and E. A. Newsholme, “Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages,” The Biochemical Journal, vol. 239, no. 1, pp. 121-125, 1986.
-
(1986)
The Biochemical Journal
, vol.239
, Issue.1
, pp. 121-125
-
-
Newsholme, P.1
Curi, R.2
Gordon, S.3
Newsholme, E.A.4
-
66
-
-
0023140462
-
Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages
-
P. Newsholme, S. Gordon, and E. A. Newsholme, “Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages,” The Biochemical Journal, vol. 242, no. 3, pp. 631-636, 1987.
-
(1987)
The Biochemical Journal
, vol.242
, Issue.3
, pp. 631-636
-
-
Newsholme, P.1
Gordon, S.2
Newsholme, E.A.3
-
67
-
-
85020282873
-
A past and present overview of macrophage metabolism and functional outcomes
-
R. Curi, R. de Siqueira Mendes, L. A. de Campos Crispin, G. D. Norata, S. C. Sampaio, and P. Newsholme, “A past and present overview of macrophage metabolism and functional outcomes,” Clinical Science, vol. 131, no. 12, pp. 1329-1342, 2017.
-
(2017)
Clinical Science
, vol.131
, Issue.12
, pp. 1329-1342
-
-
Curi, R.1
De Siqueira Mendes, R.2
De Campos Crispin, L.A.3
Norata, G.D.4
Sampaio, S.C.5
Newsholme, P.6
-
68
-
-
85027878861
-
Α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
-
P. S. Liu, H. Wang, X. Li et al., “α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming,” Nature Immunology, vol. 18, no. 9, pp. 985-994, 2017.
-
(2017)
Nature Immunology
, vol.18
, Issue.9
, pp. 985-994
-
-
Liu, P.S.1
Wang, H.2
Li, X.3
-
69
-
-
77956954197
-
The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
-
T. Satoh, O. Takeuchi, A. Vandenbon et al., “The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection,” Nature Immunology, vol. 11, no. 10, pp. 936-944, 2010.
-
(2010)
Nature Immunology
, vol.11
, Issue.10
, pp. 936-944
-
-
Satoh, T.1
Takeuchi, O.2
Vandenbon, A.3
-
70
-
-
85003874481
-
Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
-
R. J. W. Arts, B. Novakovic, R. ter Horst et al., “Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity,” Cell Metabolism, vol. 24, no. 6, pp. 807-819, 2016.
-
(2016)
Cell Metabolism
, vol.24
, Issue.6
, pp. 807-819
-
-
Arts, R.J.W.1
Novakovic, B.2
Ter Horst, R.3
-
71
-
-
0030937832
-
Nitric oxide and macrophage function
-
J. MacMicking, Q. W. Xie, and C. Nathan, “Nitric oxide and macrophage function,” Annual Review of Immunology, vol. 15, no. 1, pp. 323-350, 1997.
-
(1997)
Annual Review of Immunology
, vol.15
, Issue.1
, pp. 323-350
-
-
MacMicking, J.1
Xie, Q.W.2
Nathan, C.3
-
72
-
-
0032560572
-
Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione
-
E. Clementi, G. C. Brown, M. Feelisch, and S. Moncada, “Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7631-7636, 1998.
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.13
, pp. 7631-7636
-
-
Clementi, E.1
Brown, G.C.2
Feelisch, M.3
Moncada, S.4
-
73
-
-
28044464985
-
Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegen-erative diseases
-
M. W. J. Cleeter, J. M. Cooper, V. M. Darley-Usmar, S. Moncada, and A. H. V. Schapira, “Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegen-erative diseases,” FEBS Letters, vol. 345, no. 1, pp. 50-54, 1994.
-
(1994)
FEBS Letters
, vol.345
, Issue.1
, pp. 50-54
-
-
Cleeter, M.W.J.1
Cooper, J.M.2
Darley-Usmar, V.M.3
Moncada, S.4
Schapira, A.H.V.5
-
74
-
-
84988649474
-
Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production
-
W. A. Baseler, L. C. Davies, L. Quigley et al., “Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production,” Redox Biology, vol. 10, pp. 12-23, 2016.
-
(2016)
Redox Biology
, vol.10
, pp. 12-23
-
-
Baseler, W.A.1
Davies, L.C.2
Quigley, L.3
-
75
-
-
0036402941
-
Regulation of enzymes of the urea cycle and arginine metabolism
-
S. M. Morris Jr., “Regulation of enzymes of the urea cycle and arginine metabolism,” Annual Review of Nutrition, vol. 22, no. 1, pp. 87-105, 2002.
-
(2002)
Annual Review of Nutrition
, vol.22
, Issue.1
, pp. 87-105
-
-
Morris, S.M.1
-
76
-
-
0032533159
-
Arginine metabolism: Nitric oxide and beyond
-
G. Wu and S. M. Morris Jr., “Arginine metabolism: nitric oxide and beyond,” The Biochemical Journal, vol. 336, no. 1, pp. 1-17, 1998.
-
(1998)
The Biochemical Journal
, vol.336
, Issue.1
, pp. 1-17
-
-
Wu, G.1
Morris, S.M.2
-
77
-
-
66349084135
-
Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis
-
J. T. Pesce, T. R. Ramalingam, M. M. Mentink-Kane et al., “Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis,” PLoS Pathogens, vol. 5, no. 4, article e1000371, 2009.
-
(2009)
PLoS Pathogens
, vol.5
, Issue.4
-
-
Pesce, J.T.1
Ramalingam, T.R.2
Mentink-Kane, M.M.3
-
79
-
-
85048729312
-
IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy
-
L. B. Ivashkiv, “IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy,” Nature Reviews. Immunology, vol. 18, no. 9, pp. 545-558, 2018.
-
(2018)
Nature Reviews. Immunology
, vol.18
, Issue.9
, pp. 545-558
-
-
Ivashkiv, L.B.1
-
80
-
-
85047132222
-
Regulation of macrophage immunometabolism in atherosclerosis
-
G. J. Koelwyn, E. M. Corr, E. Erbay, and K. J. Moore, “Regulation of macrophage immunometabolism in atherosclerosis,” Nature Immunology, vol. 19, no. 6, pp. 526-537, 2018.
-
(2018)
Nature Immunology
, vol.19
, Issue.6
, pp. 526-537
-
-
Koelwyn, G.J.1
Corr, E.M.2
Erbay, E.3
Moore, K.J.4
-
81
-
-
85028940591
-
Macrophage metabolism in atherosclerosis
-
G. F. P. Bories and N. Leitinger, “Macrophage metabolism in atherosclerosis,” FEBS Letters, vol. 591, no. 19, pp. 3042-3060, 2017.
-
(2017)
FEBS Letters
, vol.591
, Issue.19
, pp. 3042-3060
-
-
Bories, G.F.P.1
Leitinger, N.2
-
82
-
-
85026300028
-
Krebs cycle rewired for macrophage and dendritic cell effector functions
-
D. G. Ryan and L. A. J. O'Neill, “Krebs cycle rewired for macrophage and dendritic cell effector functions,” FEBS Letters, vol. 591, no. 19, pp. 2992-3006, 2017.
-
(2017)
FEBS Letters
, vol.591
, Issue.19
, pp. 2992-3006
-
-
Ryan, D.G.1
O'Neill, L.A.J.2
-
83
-
-
84919452312
-
Metabolic reprograming in macrophage polarization
-
S. Galván-Peña and L. A. J. O'Neill, “Metabolic reprograming in macrophage polarization,” Frontiers in Immunology, vol. 5, p. 420, 2014.
-
(2014)
Frontiers in Immunology
, vol.5
, pp. 420
-
-
Galván-Peña, S.1
O'Neill, L.A.J.2
|