메뉴 건너뛰기




Volumn 2018, Issue , 2018, Pages

Metabolism plays a key role during macrophage activation

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; ARGININE; FATTY ACID; GLUCOSE; GLUTAMINE; ITACONIC ACID;

EID: 85060045167     PISSN: 09629351     EISSN: 14661861     Source Type: Journal    
DOI: 10.1155/2018/2426138     Document Type: Review
Times cited : (57)

References (83)
  • 1
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • C. Schulz, E. G. Perdiguero, L. Chorro et al., “A lineage of myeloid cells independent of Myb and hematopoietic stem cells,” Science, vol. 336, no. 6077, pp. 86-90, 2012.
    • (2012) Science , vol.336 , Issue.6077 , pp. 86-90
    • Schulz, C.1    Perdiguero, E.G.2    Chorro, L.3
  • 2
    • 84925465211 scopus 로고    scopus 로고
    • Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
    • E. Gomez Perdiguero, K. Klapproth, C. Schulz et al., “Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors,” Nature, vol. 518, no. 7540, pp. 547-551, 2015.
    • (2015) Nature , vol.518 , Issue.7540 , pp. 547-551
    • Gomez Perdiguero, E.1    Klapproth, K.2    Schulz, C.3
  • 3
    • 84928189502 scopus 로고    scopus 로고
    • + erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
    • + erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages,” Immunity, vol. 42, no. 4, pp. 665-678, 2015.
    • (2015) Immunity , vol.42 , Issue.4 , pp. 665-678
    • Hoeffel, G.1    Chen, J.2    Lavin, Y.3
  • 4
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841-845, 2010.
    • (2010) Science , vol.330 , Issue.6005 , pp. 841-845
    • Ginhoux, F.1    Greter, M.2    Leboeuf, M.3
  • 5
    • 84892450644 scopus 로고    scopus 로고
    • Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
    • S. Epelman, K. J. Lavine, A. E. Beaudin et al., “Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation,” Immunity, vol. 40, no. 1, pp. 91-104, 2014.
    • (2014) Immunity , vol.40 , Issue.1 , pp. 91-104
    • Epelman, S.1    Lavine, K.J.2    Beaudin, A.E.3
  • 6
    • 84904401883 scopus 로고    scopus 로고
    • Origin and functions of tissue macrophages
    • S. Epelman, K. J. Lavine, and G. J. Randolph, “Origin and functions of tissue macrophages,” Immunity, vol. 41, no. 1, pp. 21-35, 2014.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 21-35
    • Epelman, S.1    Lavine, K.J.2    Randolph, G.J.3
  • 7
    • 84884352076 scopus 로고    scopus 로고
    • Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
    • C. Jakubzick, E. L. Gautier, S. L. Gibbings et al., “Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes,” Immunity, vol. 39, no. 3, pp. 599-610, 2013.
    • (2013) Immunity , vol.39 , Issue.3 , pp. 599-610
    • Jakubzick, C.1    Gautier, E.L.2    Gibbings, S.L.3
  • 8
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • E. L. Gautier, T. Shay, J. Miller et al., “Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages,” Nature Immunology, vol. 13, no. 11, pp. 1118-1128, 2012.
    • (2012) Nature Immunology , vol.13 , Issue.11 , pp. 1118-1128
    • Gautier, E.L.1    Shay, T.2    Miller, J.3
  • 9
    • 84904407541 scopus 로고    scopus 로고
    • Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival
    • E. L. Gautier, S. Ivanov, J. W. Williams et al., “Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival,” The Journal of Experimental Medicine, vol. 211, no. 8, pp. 1525-1531, 2014.
    • (2014) The Journal of Experimental Medicine , vol.211 , Issue.8 , pp. 1525-1531
    • Gautier, E.L.1    Ivanov, S.2    Williams, J.W.3
  • 10
    • 84900386841 scopus 로고    scopus 로고
    • The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal
    • M. Rosas, L. C. Davies, P. J. Giles et al., “The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal,” Science, vol. 344, no. 6184, pp. 645-648, 2014.
    • (2014) Science , vol.344 , Issue.6184 , pp. 645-648
    • Rosas, M.1    Davies, L.C.2    Giles, P.J.3
  • 11
    • 84900413094 scopus 로고    scopus 로고
    • Tissue-specific signals control reversible program of localization and functional polarization of macrophages
    • Y. Okabe and R. Medzhitov, “Tissue-specific signals control reversible program of localization and functional polarization of macrophages,” Cell, vol. 157, no. 4, pp. 832-844, 2014.
    • (2014) Cell , vol.157 , Issue.4 , pp. 832-844
    • Okabe, Y.1    Medzhitov, R.2
  • 12
    • 84992386887 scopus 로고    scopus 로고
    • Sall1 is a transcriptional regulator defining microglia identity and function
    • A. Buttgereit, I. Lelios, X. Yu et al., “Sall1 is a transcriptional regulator defining microglia identity and function,” Nature Immunology, vol. 17, no. 12, pp. 1397-1406, 2016.
    • (2016) Nature Immunology , vol.17 , Issue.12 , pp. 1397-1406
    • Buttgereit, A.1    Lelios, I.2    Yu, X.3
  • 13
    • 84981489685 scopus 로고    scopus 로고
    • Specification of tissue-resident macrophages during organogenesis
    • E. Mass, I. Ballesteros, M. Farlik et al., “Specification of tissue-resident macrophages during organogenesis,” Science, vol. 353, no. 6304, article aaf4238, 2016.
    • (2016) Science , vol.353 , Issue.6304
    • Mass, E.1    Ballesteros, I.2    Farlik, M.3
  • 14
    • 58249104981 scopus 로고    scopus 로고
    • Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
    • M. Kohyama, W. Ise, B. T. Edelson et al., “Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis,” Nature, vol. 457, no. 7227, pp. 318-321, 2008.
    • (2008) Nature , vol.457 , Issue.7227 , pp. 318-321
    • Kohyama, M.1    Ise, W.2    Edelson, B.T.3
  • 15
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Y. Lavin, D. Winter, R. Blecher-Gonen et al., “Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment,” Cell, vol. 159, no. 6, pp. 1312-1326, 2014.
    • (2014) Cell , vol.159 , Issue.6 , pp. 1312-1326
    • Lavin, Y.1    Winter, D.2    Blecher-Gonen, R.3
  • 16
    • 84960399221 scopus 로고    scopus 로고
    • Immunometabolism governs dendritic cell and macrophage function
    • L. A. J. O'Neill and E. J. Pearce, “Immunometabolism governs dendritic cell and macrophage function,” The Journal of Experimental Medicine, vol. 213, no. 1, pp. 15-23, 2016.
    • (2016) The Journal of Experimental Medicine , vol.213 , Issue.1 , pp. 15-23
    • O'Neill, L.A.J.1    Pearce, E.J.2
  • 17
    • 85018305787 scopus 로고    scopus 로고
    • Monocyte differentiation and antigen-presenting functions
    • C. V. Jakubzick, G. J. Randolph, and P. M. Henson, “Monocyte differentiation and antigen-presenting functions,” Nature Reviews. Immunology, vol. 17, no. 6, pp. 349-362, 2017.
    • (2017) Nature Reviews. Immunology , vol.17 , Issue.6 , pp. 349-362
    • Jakubzick, C.V.1    Randolph, G.J.2    Henson, P.M.3
  • 18
    • 34147164049 scopus 로고    scopus 로고
    • Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites
    • C. L. Tsou, W. Peters, Y. Si et al., “Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites,” The Journal of Clinical Investigation, vol. 117, no. 4, pp. 902-909, 2007.
    • (2007) The Journal of Clinical Investigation , vol.117 , Issue.4 , pp. 902-909
    • Tsou, C.L.1    Peters, W.2    Si, Y.3
  • 19
    • 33645902493 scopus 로고    scopus 로고
    • Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2
    • N. V. Serbina and E. G. Pamer, “Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2,” Nature Immunology, vol. 7, no. 3, pp. 311-317, 2006.
    • (2006) Nature Immunology , vol.7 , Issue.3 , pp. 311-317
    • Serbina, N.V.1    Pamer, E.G.2
  • 20
    • 84994682527 scopus 로고    scopus 로고
    • CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses
    • S. Z. Chong, M. Evrard, S. Devi et al., “CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses,” The Journal of Experimental Medicine, vol. 213, no. 11, pp. 2293-2314, 2016.
    • (2016) The Journal of Experimental Medicine , vol.213 , Issue.11 , pp. 2293-2314
    • Chong, S.Z.1    Evrard, M.2    Devi, S.3
  • 24
    • 84876207357 scopus 로고    scopus 로고
    • low monocytes monitor endothelial cells and orchestrate their disposal
    • low monocytes monitor endothelial cells and orchestrate their disposal,” Cell, vol. 153, no. 2, pp. 362-375, 2013.
    • (2013) Cell , vol.153 , Issue.2 , pp. 362-375
    • Carlin, L.M.1    Stamatiades, E.G.2    Auffray, C.3
  • 25
    • 84947754755 scopus 로고    scopus 로고
    • Patrolling monocytes control tumor metastasis to the lung
    • R. N. Hanna, C. Cekic, D. Sag et al., “Patrolling monocytes control tumor metastasis to the lung,” Science, vol. 350, no. 6263, pp. 985-990, 2015.
    • (2015) Science , vol.350 , Issue.6263 , pp. 985-990
    • Hanna, R.N.1    Cekic, C.2    Sag, D.3
  • 26
    • 33845989083 scopus 로고    scopus 로고
    • Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
    • F. Tacke, D. Alvarez, T. J. Kaplan et al., “Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques,” The Journal of Clinical Investigation, vol. 117, no. 1, pp. 185-194, 2007.
    • (2007) The Journal of Clinical Investigation , vol.117 , Issue.1 , pp. 185-194
    • Tacke, F.1    Alvarez, D.2    Kaplan, T.J.3
  • 27
    • 84927613295 scopus 로고    scopus 로고
    • Macrophages: Development and tissue specialization
    • C. Varol, A. Mildner, and S. Jung, “Macrophages: development and tissue specialization,” Annual Review of Immunology, vol. 33, no. 1, pp. 643-675, 2015.
    • (2015) Annual Review of Immunology , vol.33 , Issue.1 , pp. 643-675
    • Varol, C.1    Mildner, A.2    Jung, S.3
  • 28
    • 84920724792 scopus 로고    scopus 로고
    • Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
    • D. Gosselin, V. M. Link, C. E. Romanoski et al., “Environment drives selection and function of enhancers controlling tissue-specific macrophage identities,” Cell, vol. 159, no. 6, pp. 1327-1340, 2014.
    • (2014) Cell , vol.159 , Issue.6 , pp. 1327-1340
    • Gosselin, D.1    Link, V.M.2    Romanoski, C.E.3
  • 29
    • 85003587526 scopus 로고    scopus 로고
    • Integrating immunometabolism and macrophage diversity
    • M. N. Artyomov, A. Sergushichev, and J. D. Schilling, “Integrating immunometabolism and macrophage diversity,” Seminars in Immunology, vol. 28, no. 5, pp. 417-424, 2016.
    • (2016) Seminars in Immunology , vol.28 , Issue.5 , pp. 417-424
    • Artyomov, M.N.1    Sergushichev, A.2    Schilling, J.D.3
  • 30
    • 84992215144 scopus 로고    scopus 로고
    • + resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes
    • + resident peritoneal and pleural macrophages rely on IRF4 for development from circulating monocytes,” The Journal of Experimental Medicine, vol. 213, no. 10, pp. 1951-1959, 2016.
    • (2016) The Journal of Experimental Medicine , vol.213 , Issue.10 , pp. 1951-1959
    • Kim, K.W.1    Williams, J.W.2    Wang, Y.T.3
  • 31
    • 84896269174 scopus 로고    scopus 로고
    • Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflam-matory phenotype
    • A. J. Freemerman, A. R. Johnson, G. N. Sacks et al., “Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflam-matory phenotype,” The Journal of Biological Chemistry, vol. 289, no. 11, pp. 7884-7896, 2014.
    • (2014) The Journal of Biological Chemistry , vol.289 , Issue.11 , pp. 7884-7896
    • Freemerman, A.J.1    Johnson, A.R.2    Sacks, G.N.3
  • 32
    • 0030048720 scopus 로고    scopus 로고
    • Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1
    • M. Fukuzumi, H. Shinomiya, Y. Shimizu, K. Ohishi, and S. Utsumi, “Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1,” Infection and Immunity, vol. 64, no. 1, pp. 108-112, 1996.
    • (1996) Infection and Immunity , vol.64 , Issue.1 , pp. 108-112
    • Fukuzumi, M.1    Shinomiya, H.2    Shimizu, Y.3    Ohishi, K.4    Utsumi, S.5
  • 33
    • 84899649118 scopus 로고    scopus 로고
    • Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis
    • T. Nishizawa, J. E. Kanter, F. Kramer et al., “Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis,” Cell Reports, vol. 7, no. 2, pp. 356-365, 2014.
    • (2014) Cell Reports , vol.7 , Issue.2 , pp. 356-365
    • Nishizawa, T.1    Kanter, J.E.2    Kramer, F.3
  • 34
    • 84923108209 scopus 로고    scopus 로고
    • Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans
    • H. Emami, P. Singh, M. MacNabb et al., “Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans,” JACC: Cardiovascular Imaging, vol. 8, no. 2, pp. 121-130, 2015.
    • (2015) JACC: Cardiovascular Imaging , vol.8 , Issue.2 , pp. 121-130
    • Emami, H.1    Singh, P.2    MacNabb, M.3
  • 35
    • 84870622989 scopus 로고    scopus 로고
    • 18 F-FDG PET imaging of murine atherosclerosis: Association with gene expression of key molecular markers
    • 18 F-FDG PET imaging of murine atherosclerosis: association with gene expression of key molecular markers,” PLoS One, vol. 7, no. 11, article e50908, 2012.
    • (2012) PLoS One , vol.7 , Issue.11
    • Hag, A.M.F.1    Pedersen, S.F.2    Christoffersen, C.3
  • 36
    • 79955823422 scopus 로고    scopus 로고
    • Imaging of coronary inflammation with FDG-PET: Feasibility and clinical hurdles
    • I. S. Rogers and A. Tawakol, “Imaging of coronary inflammation with FDG-PET: feasibility and clinical hurdles,” Current Cardiology Reports, vol. 13, no. 2, pp. 138-144, 2011.
    • (2011) Current Cardiology Reports , vol.13 , Issue.2 , pp. 138-144
    • Rogers, I.S.1    Tawakol, A.2
  • 37
    • 0028951733 scopus 로고
    • Nonopsonic phagocytosis of Pseudomonas aeruginosa requires facilitated transport of D-glucose by macrophages
    • S. Barghouthi, K. D. Everett, and D. P. Speert, “Nonopsonic phagocytosis of Pseudomonas aeruginosa requires facilitated transport of D-glucose by macrophages,” Journal of Immunology, vol. 154, no. 7, pp. 3420-3428, 1995.
    • (1995) Journal of Immunology , vol.154 , Issue.7 , pp. 3420-3428
    • Barghouthi, S.1    Everett, K.D.2    Speert, D.P.3
  • 38
    • 85045572752 scopus 로고    scopus 로고
    • Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection
    • T. M. Tucey, J. Verma, P. F. Harrison et al., “Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection,” Cell Metabolism, vol. 27, no. 5, pp. 988-1006.e7, 2018.
    • (2018) Cell Metabolism , vol.27 , Issue.5 , pp. 988e7-1006e7
    • Tucey, T.M.1    Verma, J.2    Harrison, P.F.3
  • 39
    • 84957800096 scopus 로고    scopus 로고
    • Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent
    • L. Liu, Y. Lu, J. Martinez et al., “Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 6, pp. 1564-1569, 2016.
    • (2016) Proceedings of the National Academy of Sciences of the United States of America , vol.113 , Issue.6 , pp. 1564-1569
    • Liu, L.1    Lu, Y.2    Martinez, J.3
  • 40
    • 84986253848 scopus 로고    scopus 로고
    • Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation
    • A. Wang, S. C. Huen, H. H. Luan et al., “Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation,” Cell, vol. 166, no. 6, pp. 1512-1525.e12, 2016.
    • (2016) Cell , vol.166 , Issue.6 , pp. 1512e12-1525e12
    • Wang, A.1    Huen, S.C.2    Luan, H.H.3
  • 41
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • S. C.-C. Huang, B. Everts, Y. Ivanova et al., “Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages,” Nature Immunology, vol. 15, no. 9, pp. 846-855, 2014.
    • (2014) Nature Immunology , vol.15 , Issue.9 , pp. 846-855
    • Huang, S.C.-C.1    Everts, B.2    Ivanova, Y.3
  • 42
    • 44349112305 scopus 로고    scopus 로고
    • Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity
    • K. Kang, S. M. Reilly, V. Karabacak et al., “Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity,” Cell Metabolism, vol. 7, no. 6, pp. 485-495, 2008.
    • (2008) Cell Metabolism , vol.7 , Issue.6 , pp. 485-495
    • Kang, K.1    Reilly, S.M.2    Karabacak, V.3
  • 43
    • 34347354309 scopus 로고    scopus 로고
    • Macrophage-specific PPARγ controls alternative activation and improves insulin resistance
    • J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116-1120, 2007.
    • (2007) Nature , vol.447 , Issue.7148 , pp. 1116-1120
    • Odegaard, J.I.1    Ricardo-Gonzalez, R.R.2    Goforth, M.H.3
  • 44
    • 33745428666 scopus 로고    scopus 로고
    • Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
    • D. Vats, L. Mukundan, J. I. Odegaard et al., “Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation,” Cell Metabolism, vol. 4, no. 1, pp. 13-24, 2006.
    • (2006) Cell Metabolism , vol.4 , Issue.1 , pp. 13-24
    • Vats, D.1    Mukundan, L.2    Odegaard, J.I.3
  • 46
    • 85052439024 scopus 로고    scopus 로고
    • Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxy-sterol production
    • M. Viaud, S. Ivanov, N. Vujic et al., “Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxy-sterol production,” Circulation Research, vol. 122, no. 10, pp. 1369-1384, 2018.
    • (2018) Circulation Research , vol.122 , Issue.10 , pp. 1369-1384
    • Viaud, M.1    Ivanov, S.2    Vujic, N.3
  • 48
    • 80052597312 scopus 로고    scopus 로고
    • Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein
    • D. Park, C. Z. Han, M. R. Elliott et al., “Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein,” Nature, vol. 477, no. 7363, pp. 220-224, 2011.
    • (2011) Nature , vol.477 , Issue.7363 , pp. 220-224
    • Park, D.1    Han, C.Z.2    Elliott, M.R.3
  • 49
    • 0026545368 scopus 로고
    • The macrophage capacity for phagocytosis
    • G. J. Cannon and J. A. Swanson, “The macrophage capacity for phagocytosis,” Journal of Cell Science, vol. 101, Part 4, pp. 907-913, 1992.
    • (1992) Journal of Cell Science , vol.101 , pp. 907-913
    • Cannon, G.J.1    Swanson, J.A.2
  • 52
    • 0032989435 scopus 로고    scopus 로고
    • Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition
    • M. K. Chang, C. Bergmark, A. Laurila et al., “Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6353-6358, 1999.
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.11 , pp. 6353-6358
    • Chang, M.K.1    Bergmark, C.2    Laurila, A.3
  • 53
    • 84918827233 scopus 로고    scopus 로고
    • Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis
    • E. Marsch, T. L. Theelen, J. A. F. Demandt et al., “Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 12, pp. 2545-2553, 2014.
    • (2014) Arteriosclerosis, Thrombosis, and Vascular Biology , vol.34 , Issue.12 , pp. 2545-2553
    • Marsch, E.1    Theelen, T.L.2    Demandt, J.A.F.3
  • 54
    • 79954802715 scopus 로고    scopus 로고
    • Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways
    • G. Chinetti-Gbaguidi, M. Baron, M. A. Bouhlel et al., “Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways,” Circulation Research, vol. 108, no. 8, pp. 985-995, 2011.
    • (2011) Circulation Research , vol.108 , Issue.8 , pp. 985-995
    • Chinetti-Gbaguidi, G.1    Baron, M.2    Bouhlel, M.A.3
  • 55
    • 84924935721 scopus 로고    scopus 로고
    • Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
    • A. K. Jha, S. C. C. Huang, A. Sergushichev et al., “Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization,” Immunity, vol. 42, no. 3, pp. 419-430, 2015.
    • (2015) Immunity , vol.42 , Issue.3 , pp. 419-430
    • Jha, A.K.1    Huang, S.C.C.2    Sergushichev, A.3
  • 56
    • 84978468846 scopus 로고    scopus 로고
    • Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
    • V. Lampropoulou, A. Sergushichev, M. Bambouskova et al., “Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation,” Cell Metabolism, vol. 24, no. 1, pp. 158-166, 2016.
    • (2016) Cell Metabolism , vol.24 , Issue.1 , pp. 158-166
    • Lampropoulou, V.1    Sergushichev, A.2    Bambouskova, M.3
  • 57
    • 84876285741 scopus 로고    scopus 로고
    • Succinate is an inflammatory signal that induces IL-1β through HIF-1α
    • G. M. Tannahill, A. M. Curtis, J. Adamik et al., “Succinate is an inflammatory signal that induces IL-1β through HIF-1α,” Nature, vol. 496, no. 7444, pp. 238-242, 2013.
    • (2013) Nature , vol.496 , Issue.7444 , pp. 238-242
    • Tannahill, G.M.1    Curtis, A.M.2    Adamik, J.3
  • 58
    • 84976869322 scopus 로고    scopus 로고
    • Immunorespon-sive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
    • T. Cordes, M. Wallace, A. Michelucci et al., “Immunorespon-sive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels,” The Journal of Biological Chemistry, vol. 291, no. 27, pp. 14274-14284, 2016.
    • (2016) The Journal of Biological Chemistry , vol.291 , Issue.27 , pp. 14274-14284
    • Cordes, T.1    Wallace, M.2    Michelucci, A.3
  • 59
    • 85045147264 scopus 로고    scopus 로고
    • Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
    • E. L. Mills, D. G. Ryan, H. A. Prag et al., “Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1,” Nature, vol. 556, no. 7699, pp. 113-117, 2018.
    • (2018) Nature , vol.556 , Issue.7699 , pp. 113-117
    • Mills, E.L.1    Ryan, D.G.2    Prag, H.A.3
  • 60
    • 85045994705 scopus 로고    scopus 로고
    • Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis
    • M. Bambouskova, L. Gorvel, V. Lampropoulou et al., “Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis,” Nature, vol. 556, no. 7702, pp. 501-504, 2018.
    • (2018) Nature , vol.556 , Issue.7702 , pp. 501-504
    • Bambouskova, M.1    Gorvel, L.2    Lampropoulou, V.3
  • 61
    • 85044828154 scopus 로고    scopus 로고
    • Irg1 expression in myeloid cells prevents immunopathology during M. Tuberculosis infection
    • S. Nair, J. P. Huynh, V. Lampropoulou et al., “Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection,” The Journal of Experimental Medicine, vol. 215, no. 4, pp. 1035-1045, 2018.
    • (2018) The Journal of Experimental Medicine , vol.215 , Issue.4 , pp. 1035-1045
    • Nair, S.1    Huynh, J.P.2    Lampropoulou, V.3
  • 62
    • 85052588049 scopus 로고    scopus 로고
    • Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors
    • J. M. Weiss, L. C. Davies, M. Karwan et al., “Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors,” The Journal of Clinical Investigation, vol. 128, no. 9, pp. 3794-3805, 2018.
    • (2018) The Journal of Clinical Investigation , vol.128 , Issue.9 , pp. 3794-3805
    • Weiss, J.M.1    Davies, L.C.2    Karwan, M.3
  • 63
    • 85024117468 scopus 로고    scopus 로고
    • BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases
    • A. E. Papathanassiu, J. H. Ko, M. Imprialou et al., “BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases,” Nature Communications, vol. 8, p. 16040, 2017.
    • (2017) Nature Communications , vol.8 , pp. 16040
    • Papathanassiu, A.E.1    Ko, J.H.2    Imprialou, M.3
  • 64
    • 84951567509 scopus 로고    scopus 로고
    • Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis
    • C. R. Green, M. Wallace, A. S. Divakaruni et al., “Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis,” Nature Chemical Biology, vol. 12, no. 1, pp. 15-21, 2016.
    • (2016) Nature Chemical Biology , vol.12 , Issue.1 , pp. 15-21
    • Green, C.R.1    Wallace, M.2    Divakaruni, A.S.3
  • 65
    • 0023029455 scopus 로고
    • Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages
    • P. Newsholme, R. Curi, S. Gordon, and E. A. Newsholme, “Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages,” The Biochemical Journal, vol. 239, no. 1, pp. 121-125, 1986.
    • (1986) The Biochemical Journal , vol.239 , Issue.1 , pp. 121-125
    • Newsholme, P.1    Curi, R.2    Gordon, S.3    Newsholme, E.A.4
  • 66
    • 0023140462 scopus 로고
    • Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages
    • P. Newsholme, S. Gordon, and E. A. Newsholme, “Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages,” The Biochemical Journal, vol. 242, no. 3, pp. 631-636, 1987.
    • (1987) The Biochemical Journal , vol.242 , Issue.3 , pp. 631-636
    • Newsholme, P.1    Gordon, S.2    Newsholme, E.A.3
  • 68
    • 85027878861 scopus 로고    scopus 로고
    • Α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
    • P. S. Liu, H. Wang, X. Li et al., “α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming,” Nature Immunology, vol. 18, no. 9, pp. 985-994, 2017.
    • (2017) Nature Immunology , vol.18 , Issue.9 , pp. 985-994
    • Liu, P.S.1    Wang, H.2    Li, X.3
  • 69
    • 77956954197 scopus 로고    scopus 로고
    • The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection
    • T. Satoh, O. Takeuchi, A. Vandenbon et al., “The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection,” Nature Immunology, vol. 11, no. 10, pp. 936-944, 2010.
    • (2010) Nature Immunology , vol.11 , Issue.10 , pp. 936-944
    • Satoh, T.1    Takeuchi, O.2    Vandenbon, A.3
  • 70
    • 85003874481 scopus 로고    scopus 로고
    • Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
    • R. J. W. Arts, B. Novakovic, R. ter Horst et al., “Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity,” Cell Metabolism, vol. 24, no. 6, pp. 807-819, 2016.
    • (2016) Cell Metabolism , vol.24 , Issue.6 , pp. 807-819
    • Arts, R.J.W.1    Novakovic, B.2    Ter Horst, R.3
  • 72
    • 0032560572 scopus 로고    scopus 로고
    • Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione
    • E. Clementi, G. C. Brown, M. Feelisch, and S. Moncada, “Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7631-7636, 1998.
    • (1998) Proceedings of the National Academy of Sciences of the United States of America , vol.95 , Issue.13 , pp. 7631-7636
    • Clementi, E.1    Brown, G.C.2    Feelisch, M.3    Moncada, S.4
  • 73
    • 28044464985 scopus 로고
    • Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegen-erative diseases
    • M. W. J. Cleeter, J. M. Cooper, V. M. Darley-Usmar, S. Moncada, and A. H. V. Schapira, “Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegen-erative diseases,” FEBS Letters, vol. 345, no. 1, pp. 50-54, 1994.
    • (1994) FEBS Letters , vol.345 , Issue.1 , pp. 50-54
    • Cleeter, M.W.J.1    Cooper, J.M.2    Darley-Usmar, V.M.3    Moncada, S.4    Schapira, A.H.V.5
  • 74
    • 84988649474 scopus 로고    scopus 로고
    • Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production
    • W. A. Baseler, L. C. Davies, L. Quigley et al., “Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production,” Redox Biology, vol. 10, pp. 12-23, 2016.
    • (2016) Redox Biology , vol.10 , pp. 12-23
    • Baseler, W.A.1    Davies, L.C.2    Quigley, L.3
  • 75
    • 0036402941 scopus 로고    scopus 로고
    • Regulation of enzymes of the urea cycle and arginine metabolism
    • S. M. Morris Jr., “Regulation of enzymes of the urea cycle and arginine metabolism,” Annual Review of Nutrition, vol. 22, no. 1, pp. 87-105, 2002.
    • (2002) Annual Review of Nutrition , vol.22 , Issue.1 , pp. 87-105
    • Morris, S.M.1
  • 76
    • 0032533159 scopus 로고    scopus 로고
    • Arginine metabolism: Nitric oxide and beyond
    • G. Wu and S. M. Morris Jr., “Arginine metabolism: nitric oxide and beyond,” The Biochemical Journal, vol. 336, no. 1, pp. 1-17, 1998.
    • (1998) The Biochemical Journal , vol.336 , Issue.1 , pp. 1-17
    • Wu, G.1    Morris, S.M.2
  • 77
    • 66349084135 scopus 로고    scopus 로고
    • Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis
    • J. T. Pesce, T. R. Ramalingam, M. M. Mentink-Kane et al., “Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis,” PLoS Pathogens, vol. 5, no. 4, article e1000371, 2009.
    • (2009) PLoS Pathogens , vol.5 , Issue.4
    • Pesce, J.T.1    Ramalingam, T.R.2    Mentink-Kane, M.M.3
  • 79
    • 85048729312 scopus 로고    scopus 로고
    • IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy
    • L. B. Ivashkiv, “IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy,” Nature Reviews. Immunology, vol. 18, no. 9, pp. 545-558, 2018.
    • (2018) Nature Reviews. Immunology , vol.18 , Issue.9 , pp. 545-558
    • Ivashkiv, L.B.1
  • 80
    • 85047132222 scopus 로고    scopus 로고
    • Regulation of macrophage immunometabolism in atherosclerosis
    • G. J. Koelwyn, E. M. Corr, E. Erbay, and K. J. Moore, “Regulation of macrophage immunometabolism in atherosclerosis,” Nature Immunology, vol. 19, no. 6, pp. 526-537, 2018.
    • (2018) Nature Immunology , vol.19 , Issue.6 , pp. 526-537
    • Koelwyn, G.J.1    Corr, E.M.2    Erbay, E.3    Moore, K.J.4
  • 81
    • 85028940591 scopus 로고    scopus 로고
    • Macrophage metabolism in atherosclerosis
    • G. F. P. Bories and N. Leitinger, “Macrophage metabolism in atherosclerosis,” FEBS Letters, vol. 591, no. 19, pp. 3042-3060, 2017.
    • (2017) FEBS Letters , vol.591 , Issue.19 , pp. 3042-3060
    • Bories, G.F.P.1    Leitinger, N.2
  • 82
    • 85026300028 scopus 로고    scopus 로고
    • Krebs cycle rewired for macrophage and dendritic cell effector functions
    • D. G. Ryan and L. A. J. O'Neill, “Krebs cycle rewired for macrophage and dendritic cell effector functions,” FEBS Letters, vol. 591, no. 19, pp. 2992-3006, 2017.
    • (2017) FEBS Letters , vol.591 , Issue.19 , pp. 2992-3006
    • Ryan, D.G.1    O'Neill, L.A.J.2
  • 83
    • 84919452312 scopus 로고    scopus 로고
    • Metabolic reprograming in macrophage polarization
    • S. Galván-Peña and L. A. J. O'Neill, “Metabolic reprograming in macrophage polarization,” Frontiers in Immunology, vol. 5, p. 420, 2014.
    • (2014) Frontiers in Immunology , vol.5 , pp. 420
    • Galván-Peña, S.1    O'Neill, L.A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.