메뉴 건너뛰기




Volumn 128, Issue 9, 2018, Pages 3794-3805

Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors

Author keywords

[No Author keywords available]

Indexed keywords

ACONITIC ACID; ITACONIC ACID; MITOGEN ACTIVATED PROTEIN KINASE; REACTIVE OXYGEN METABOLITE; SHORT HAIRPIN RNA; FATTY ACID; HYDROLYASE; IRG1 PROTEIN, HUMAN; IRG1 PROTEIN, MOUSE; PROTEIN; SMALL INTERFERING RNA; SUCCINIC ACID DERIVATIVE;

EID: 85052588049     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI99169     Document Type: Article
Times cited : (189)

References (53)
  • 1
    • 84859378520 scopus 로고    scopus 로고
    • Minireview: Human ovarian cancer: Biology, current management, and paths to personalizing therapy
    • Romero I, Bast RC Minireview: human ovarian cancer: biology, current management, and paths to personalizing therapy. Endocrinology. 2012; 153(4):1593-1602.
    • (2012) Endocrinology , vol.153 , Issue.4 , pp. 1593-1602
    • Romero, I.1    Bast, R.C.2
  • 3
    • 85037739168 scopus 로고    scopus 로고
    • Peritoneal tissueresident macrophages are metabolically poised to engage microbes using tissue-niche fuels
    • Davies LC, Rice CM, Palmieri EM, Taylor PR, Kuhns DB, McVicar DW Peritoneal tissueresident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat Commun. 2017; 8(1):2074.
    • (2017) Nat Commun , vol.8 , Issue.1 , pp. 2074
    • Davies, L.C.1    Rice, C.M.2    Palmieri, E.M.3    Taylor, P.R.4    Kuhns, D.B.5    McVicar, D.W.6
  • 4
    • 84857692141 scopus 로고    scopus 로고
    • Differential macrophage programming in the tumor microenvironment
    • Ruffell B, Affara NI, Coussens LM Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012; 33(3):119-126.
    • (2012) Trends Immunol , vol.33 , Issue.3 , pp. 119-126
    • Ruffell, B.1    Affara, N.I.2    Coussens, L.M.3
  • 5
    • 34250821793 scopus 로고    scopus 로고
    • Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice
    • Robinson-Smith TM, et al Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 2007; 67(12):5708-5716.
    • (2007) Cancer Res , vol.67 , Issue.12 , pp. 5708-5716
    • Robinson-Smith, T.M.1
  • 6
    • 84954557544 scopus 로고    scopus 로고
    • Macrophage blockade using CSF1R inhibitors reverses the vascular leakage underlying Malignant ascites in LateStage epithelial ovarian cancer
    • Moughon DL, et al Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in LateStage Epithelial Ovarian Cancer. Cancer Res. 2015; 75(22):4742-4752.
    • (2015) Cancer Res , vol.75 , Issue.22 , pp. 4742-4752
    • Moughon, D.L.1
  • 7
    • 84941344937 scopus 로고    scopus 로고
    • Metabolic competition in the tumor microenvironment is a driver of cancer progression
    • Chang CH, et al Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015; 162(6):1229-1241.
    • (2015) Cell , vol.162 , Issue.6 , pp. 1229-1241
    • Chang, C.H.1
  • 8
    • 84907223092 scopus 로고    scopus 로고
    • Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
    • Colegio OR, et al Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014; 513(7519):559-563.
    • (2014) Nature , vol.513 , Issue.7519 , pp. 559-563
    • Colegio, O.R.1
  • 9
    • 84941655289 scopus 로고    scopus 로고
    • Metabolic reprogramming of immune cells in cancer progression
    • Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. 2015; 43(3):435-449.
    • (2015) Immunity , vol.43 , Issue.3 , pp. 435-449
    • Biswas, S.K.1
  • 10
    • 84859464555 scopus 로고    scopus 로고
    • Orchestration of metabolism by macrophages
    • Biswas SK, Mantovani A. Orchestration of metabolism by macrophages. Cell Metab. 2012; 15(4):432-437.
    • (2012) Cell Metab , vol.15 , Issue.4 , pp. 432-437
    • Biswas, S.K.1    Mantovani, A.2
  • 11
    • 84940121426 scopus 로고    scopus 로고
    • Reshaping of human macrophage polarization through modulation of glucose catabolic pathways
    • Izquierdo E, et al Reshaping of Human Macrophage Polarization through Modulation of Glucose Catabolic Pathways. J Immunol. 2015; 195(5):2442-2451.
    • (2015) J Immunol , vol.195 , Issue.5 , pp. 2442-2451
    • Izquierdo, E.1
  • 12
    • 84942982260 scopus 로고    scopus 로고
    • Metabolic reprogramming in macrophages and dendritic cells in innate immunity
    • Kelly B, O'Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015; 25(7):771-784.
    • (2015) Cell Res , vol.25 , Issue.7 , pp. 771-784
    • Kelly, B.1    O'Neill, L.A.2
  • 13
    • 84964495165 scopus 로고    scopus 로고
    • Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression
    • Meiser J, et al Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression. J Biol Chem. 2016; 291(8):3932-3946.
    • (2016) J Biol Chem , vol.291 , Issue.8 , pp. 3932-3946
    • Meiser, J.1
  • 14
    • 84990845578 scopus 로고    scopus 로고
    • Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages
    • e13
    • Mills EL, et al Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell. 2016; 167(2):457-470.e13.
    • (2016) Cell , vol.167 , Issue.2 , pp. 457-470
    • Mills, E.L.1
  • 15
    • 58149345795 scopus 로고    scopus 로고
    • The proinflammatory cytokine-induced IRG1 protein associates with mitochondria
    • Degrandi D, Hoffmann R, Beuter-Gunia C, Pfeffer K. The proinflammatory cytokine-induced IRG1 protein associates with mitochondria. J Interferon Cytokine Res. 2009; 29(1):55-67.
    • (2009) J Interferon Cytokine Res , vol.29 , Issue.1 , pp. 55-67
    • Degrandi, D.1    Hoffmann, R.2    Beuter-Gunia, C.3    Pfeffer, K.4
  • 16
    • 80054737427 scopus 로고    scopus 로고
    • Itaconic acid is a Mammalian metabolite induced during macrophage activation
    • Strelko CL, et al Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc. 2011; 133(41):16386-16389.
    • (2011) J Am Chem Soc , vol.133 , Issue.41 , pp. 16386-16389
    • Strelko, C.L.1
  • 17
    • 84937572123 scopus 로고    scopus 로고
    • Itaconic acid: The surprising role of an industrial compound as a Mammalian antimicrobial metabolite
    • Cordes T, Michelucci A, Hiller K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu Rev Nutr. 2015; 35:451-473.
    • (2015) Annu Rev NutR , vol.35 , pp. 451-473
    • Cordes, T.1    Michelucci, A.2    Hiller, K.3
  • 18
    • 84976869322 scopus 로고    scopus 로고
    • Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
    • Cordes T, et al Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J Biol Chem. 2016; 291(27):14274-14284.
    • (2016) J Biol Chem , vol.291 , Issue.27 , pp. 14274-14284
    • Cordes, T.1
  • 19
    • 84978468846 scopus 로고    scopus 로고
    • Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
    • Lampropoulou V, et al Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016; 24(1):158-166.
    • (2016) Cell Metab , vol.24 , Issue.1 , pp. 158-166
    • Lampropoulou, V.1
  • 20
    • 84877343356 scopus 로고    scopus 로고
    • Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
    • Michelucci A, et al Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA. 2013; 110(19):7820-7825.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.19 , pp. 7820-7825
    • Michelucci, A.1
  • 21
    • 84961771217 scopus 로고    scopus 로고
    • Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in Mammalian macrophages
    • Tallam A, et al Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages. PLoS One. 2016; 11(2):e0149050.
    • (2016) PLoS One , vol.11 , Issue.2
    • Tallam, A.1
  • 22
    • 0242298714 scopus 로고    scopus 로고
    • Progesterone regulation of the Mammalian ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine epithelium during implantation through the protein kinase C pathway
    • Chen B, Zhang D, Pollard JW Progesterone regulation of the mammalian ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine epithelium during implantation through the protein kinase C pathway. Mol Endocrinol. 2003; 17(11):2340-2354.
    • (2003) Mol Endocrinol , vol.17 , Issue.11 , pp. 2340-2354
    • Chen, B.1    Zhang, D.2    Pollard, J.W.3
  • 23
    • 84881331109 scopus 로고    scopus 로고
    • Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production
    • Hall CJ, et al Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metab. 2013; 18(2):265-278.
    • (2013) Cell Metab , vol.18 , Issue.2 , pp. 265-278
    • Hall, C.J.1
  • 24
    • 84982234778 scopus 로고    scopus 로고
    • Suppression of IRG-1 reduces inflammatory cell infiltration and lung injury in respiratory syncytial virus infection by reducing production of reactive oxygen species
    • Ren K, et al Suppression of IRG-1 Reduces Inflammatory Cell Infiltration and Lung Injury in Respiratory Syncytial Virus Infection by Reducing Production of Reactive Oxygen Species. J Virol. 2016; 90(16):7313-7322.
    • (2016) J Virol , vol.90 , Issue.16 , pp. 7313-7322
    • Ren, K.1
  • 25
    • 84859864623 scopus 로고    scopus 로고
    • Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy
    • Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal. 2012; 16(11):1295-1322.
    • (2012) Antioxid Redox Signal , vol.16 , Issue.11 , pp. 1295-1322
    • Gupta, S.C.1    Hevia, D.2    Patchva, S.3    Park, B.4    Koh, W.5    Aggarwal, B.B.6
  • 26
    • 77951279075 scopus 로고    scopus 로고
    • Reactive oxygen species in cancer
    • Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010; 44(5):479-496.
    • (2010) Free Radic Res , vol.44 , Issue.5 , pp. 479-496
    • Liou, G.Y.1    Storz, P.2
  • 27
    • 36048989628 scopus 로고    scopus 로고
    • Reactive oxygen species in melanoma and its therapeutic implications
    • Wittgen HG, van Kempen LC. Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Res. 2007; 17(6):400-409.
    • (2007) Melanoma Res , vol.17 , Issue.6 , pp. 400-409
    • Wittgen, H.G.1    Van Kempen, L.C.2
  • 28
    • 0035008369 scopus 로고    scopus 로고
    • Reactive oxygen species from NAD(P) H: Quinone oxidoreductase constitutively activate NF-kappaB in Malignant melanoma cells
    • Brar SS, et al Reactive oxygen species from NAD(P) H:quinone oxidoreductase constitutively activate NF-kappaB in malignant melanoma cells. Am J Physiol, Cell Physiol. 2001; 280(3):C659-C676.
    • (2001) Am J Physiol, Cell Physiol , vol.280 , Issue.3 , pp. C659-C676
    • Brar, S.S.1
  • 29
    • 84885225477 scopus 로고    scopus 로고
    • Oxidative stress in Malignant melanoma enhances tumor necrosis factor-α secretion of tumor-associated macrophages that promote cancer cell invasion
    • Lin X, et al Oxidative stress in malignant melanoma enhances tumor necrosis factor-α secretion of tumor-associated macrophages that promote cancer cell invasion. Antioxid Redox Signal. 2013; 19(12):1337-1355.
    • (2013) Antioxid Redox Signal , vol.19 , Issue.12 , pp. 1337-1355
    • Lin, X.1
  • 30
    • 84934283265 scopus 로고    scopus 로고
    • Revisiting mouse peritoneal macrophages: Heterogeneity, development, and function
    • Cassado Ados A, D'Império Lima MR, Bortoluci KR. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front Immunol. 2015;6:225.
    • (2015) Front Immunol. , vol.6 , pp. 225
    • Cassado Ados, A.1    D'Império Lima, M.R.2    Bortoluci, K.R.3
  • 31
    • 84904407541 scopus 로고    scopus 로고
    • Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival
    • Gautier EL, et al Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J Exp Med. 2014; 211(8):1525-1531.
    • (2014) J Exp Med , vol.211 , Issue.8 , pp. 1525-1531
    • Gautier, E.L.1
  • 32
    • 84900386841 scopus 로고    scopus 로고
    • The transcription factor gata6 links tissue macrophage phenotype and prolifer-ative renewal
    • Rosas M, et al The transcription factor Gata6 links tissue macrophage phenotype and prolifer-ative renewal. Science. 2014; 344(6184):645-648.
    • (2014) Science , vol.344 , Issue.6184 , pp. 645-648
    • Rosas, M.1
  • 33
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: Nomenclature and experimental guidelines
    • Murray PJ, et al Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41(1):14-20.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 14-20
    • Murray, P.J.1
  • 34
    • 84906319549 scopus 로고    scopus 로고
    • Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
    • Huang SC, et al Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014; 15(9):846-855.
    • (2014) Nat Immunol , vol.15 , Issue.9 , pp. 846-855
    • Huang, S.C.1
  • 35
    • 80053643585 scopus 로고    scopus 로고
    • The mechanisms by which polyamines accelerate tumor spread
    • Soda K. The mechanisms by which polyamines accelerate tumor spread. J Exp Clin Cancer Res. 2011; 30:95.
    • (2011) J Exp Clin Cancer Res , vol.30 , pp. 95
    • Soda, K.1
  • 36
    • 84655163961 scopus 로고    scopus 로고
    • Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations
    • Kalyanaraman B, et al Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012; 52(1):1-6.
    • (2012) Free Radic Biol Med , vol.52 , Issue.1 , pp. 1-6
    • Kalyanaraman, B.1
  • 37
    • 84925884309 scopus 로고    scopus 로고
    • The impact of human and mouse differences in NOS2 gene expression on the brain's redox and immune environment
    • Hoos MD, et al The impact of human and mouse differences in NOS2 gene expression on the brain's redox and immune environment. Mol Neurodegener. 2014; 9:50.
    • (2014) Mol Neurodegener , vol.9 , pp. 50
    • Hoos, M.D.1
  • 38
    • 0344394229 scopus 로고    scopus 로고
    • Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse
    • Cheon YP, Xu X, Bagchi MK, Bagchi IC Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology. 2003; 144(12):5623-5630.
    • (2003) Endocrinology , vol.144 , Issue.12 , pp. 5623-5630
    • Cheon, Y.P.1    Xu, X.2    Bagchi, M.K.3    Bagchi, I.C.4
  • 39
    • 84878754109 scopus 로고    scopus 로고
    • Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species
    • Li Y, et al Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J Biol Chem. 2013; 288(23):16225-16234.
    • (2013) J Biol Chem , vol.288 , Issue.23 , pp. 16225-16234
    • Li, Y.1
  • 40
    • 84907291040 scopus 로고    scopus 로고
    • Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenic-ity of glioma
    • Pan J, et al Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenic-ity of glioma. Oncol Rep. 2014; 32(5):1957-1966.
    • (2014) Oncol Rep , vol.32 , Issue.5 , pp. 1957-1966
    • Pan, J.1
  • 41
    • 84959872829 scopus 로고    scopus 로고
    • IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production
    • Jamal Uddin M, et al IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cell Mol Immunol. 2016; 13(2):170-179.
    • (2016) Cell Mol Immunol , vol.13 , Issue.2 , pp. 170-179
    • Jamal Uddin, M.1
  • 42
    • 35848942608 scopus 로고    scopus 로고
    • Heme oxygenase-1 in tumors: Is it a false friend?
    • Jozkowicz A, Was H, Dulak J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal. 2007; 9(12):2099-2117.
    • (2007) Antioxid Redox Signal , vol.9 , Issue.12 , pp. 2099-2117
    • Jozkowicz, A.1    Was, H.2    Dulak, J.3
  • 43
    • 84875218644 scopus 로고    scopus 로고
    • The mitochondrial transporter family SLC25: Identification, properties and physiopa-thology
    • Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopa-thology. Mol Aspects Med. 2013; 34(2-3):465-484.
    • (2013) Mol Aspects Med , vol.34 , Issue.2-3 , pp. 465-484
    • Palmieri, F.1
  • 44
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417(1):1-13.
    • (2009) Biochem J , vol.417 , Issue.1 , pp. 1-13
    • Murphy, M.P.1
  • 45
    • 84941659899 scopus 로고    scopus 로고
    • Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
    • Hossain F, et al Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 2015; 3(11):1236-1247.
    • (2015) Cancer Immunol Res , vol.3 , Issue.11 , pp. 1236-1247
    • Hossain, F.1
  • 47
    • 0013667597 scopus 로고
    • The pathway of itacon-ate metabolism by liver mitochondria
    • Wang SF, Adler J, Lardy HA. The pathway of itacon-ate metabolism by liver mitochondria. J Biol Chem. 1961; 236:26-30.
    • (1961) J Biol Chem , vol.236 , pp. 26-30
    • Wang, S.F.1    Adler, J.2    Lardy, H.A.3
  • 48
    • 9244229535 scopus 로고    scopus 로고
    • Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver
    • Sakai A, Kusumoto A, Kiso Y, Furuya E. Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition. 2004; 20(11-12):997-1002.
    • (2004) Nutrition , vol.20 , Issue.11-12 , pp. 997-1002
    • Sakai, A.1    Kusumoto, A.2    Kiso, Y.3    Furuya, E.4
  • 49
    • 0034054990 scopus 로고    scopus 로고
    • Development of a syngeneic mouse model for events related to ovarian cancer
    • Roby KF, et al Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis. 2000; 21(4):585-591.
    • (2000) Carcinogenesis , vol.21 , Issue.4 , pp. 585-591
    • Roby, K.F.1
  • 50
    • 33746705594 scopus 로고    scopus 로고
    • Comparison of ID8 MOSE and VEGF-modified ID8 cell lines in an immu-nocompetent animal model for human ovarian cancer
    • Janát-Amsbury MM, Yockman JW, Anderson ML, Kieback DG, Kim SW Comparison of ID8 MOSE and VEGF-modified ID8 cell lines in an immu-nocompetent animal model for human ovarian cancer. Anticancer Res. 2006; 26(4B):2785-2789.
    • (2006) Anticancer Res , vol.26 , Issue.4 B , pp. 2785-2789
    • Janát-Amsbury, M.M.1    Yockman, J.W.2    Anderson, M.L.3    Kieback, D.G.4    Kim, S.W.5
  • 51
    • 0036252492 scopus 로고    scopus 로고
    • High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imuno-deficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter
    • Demaison C, et al High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imuno-deficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther. 2002; 13(7):803-813.
    • (2002) Hum Gene Ther , vol.13 , Issue.7 , pp. 803-813
    • Demaison, C.1
  • 52
    • 0030819379 scopus 로고    scopus 로고
    • Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo
    • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997; 15(9):871-875.
    • (1997) Nat Biotechnol , vol.15 , Issue.9 , pp. 871-875
    • Zufferey, R.1    Nagy, D.2    Mandel, R.J.3    Naldini, L.4    Trono, D.5
  • 53
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method
    • Livak KJ, Schmittgen TD Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-408.
    • (2001) Methods , vol.25 , Issue.4 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.