-
1
-
-
84869188027
-
Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications
-
F. Bäckhed, C. M. Fraser, Y. Ringel et al., “Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications,” Cell Host & Microbe, vol. 12, no. 5, pp. 611-622, 2012.
-
(2012)
Cell Host & Microbe
, vol.12
, Issue.5
, pp. 611-622
-
-
Bäckhed, F.1
Fraser, C.M.2
Ringel, Y.3
-
2
-
-
84946822771
-
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches
-
J. E. Belizario and M. Napolitano, “Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches,” Frontiers in Microbiology, vol. 6, p. 1050, 2015.
-
(2015)
Frontiers in Microbiology
, vol.6
, pp. 1050
-
-
Belizario, J.E.1
Napolitano, M.2
-
3
-
-
84988864262
-
Revised estimates for the number of human and bacteria cells in the body
-
R. Sender, S. Fuchs, and R. Milo, “Revised estimates for the number of human and bacteria cells in the body,” PLoS Biology, vol. 14, no. 8, article e1002533, 2016.
-
(2016)
PLoS Biology
, vol.14
, Issue.8
-
-
Sender, R.1
Fuchs, S.2
Milo, R.3
-
4
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
J. Qin, R. Li, J. Raes et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59-65, 2010.
-
(2010)
Nature
, vol.464
, Issue.7285
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
-
5
-
-
84905730165
-
An integrated catalog of reference genes in the human gut microbiome
-
J. Li, H. Jia, X. Cai et al., “An integrated catalog of reference genes in the human gut microbiome,” Nature Biotechnology, vol. 32, no. 8, pp. 834-841, 2014.
-
(2014)
Nature Biotechnology
, vol.32
, Issue.8
, pp. 834-841
-
-
Li, J.1
Jia, H.2
Cai, X.3
-
6
-
-
84964478793
-
The healthy human microbiome
-
J. Lloyd-Price, G. Abu-Ali, and C. Huttenhower, “The healthy human microbiome,” Genome Medicine, vol. 8, no. 1, p. 51, 2016.
-
(2016)
Genome Medicine
, vol.8
, Issue.1
, pp. 51
-
-
Lloyd-Price, J.1
Abu-Ali, G.2
Huttenhower, C.3
-
7
-
-
85030771846
-
Strains, functions and dynamics in the expanded human microbiome project
-
J. Lloyd-Price, A. Mahurkar, G. Rahnavard et al., “Strains, functions and dynamics in the expanded Human Microbiome Project,” Nature, vol. 550, no. 7674, pp. 61-66, 2017.
-
(2017)
Nature
, vol.550
, Issue.7674
, pp. 61-66
-
-
Lloyd-Price, J.1
Mahurkar, A.2
Rahnavard, G.3
-
8
-
-
85029026923
-
Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life
-
D. H. Parks, C. Rinke, M. Chuvochina et al., “Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life,” Nature Microbiology, vol. 2, no. 11, pp. 1533-1542, 2017.
-
(2017)
Nature Microbiology
, vol.2
, Issue.11
, pp. 1533-1542
-
-
Parks, D.H.1
Rinke, C.2
Chuvochina, M.3
-
9
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
M. Arumugam, J. Raes, E. Pelletier et al., “Enterotypes of the human gut microbiome,” Nature, vol. 473, no. 7346, pp. 174-180, 2011.
-
(2011)
Nature
, vol.473
, Issue.7346
, pp. 174-180
-
-
Arumugam, M.1
Raes, J.2
Pelletier, E.3
-
10
-
-
84873510063
-
A guide to enterotypes across the human body: Meta-analysis of microbial community structures in human microbiome datasets
-
O. Koren, D. Knights, A. Gonzalez et al., “A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets,” PLoS Computational Biology, vol. 9, no. 1, article e1002863, 2013.
-
(2013)
PLoS Computational Biology
, vol.9
, Issue.1
-
-
Koren, O.1
Knights, D.2
Gonzalez, A.3
-
11
-
-
84883110880
-
Richness of human gut microbiome correlates with metabolic markers
-
E. Le Chatelier, T. Nielsen, J. Qin et al., “Richness of human gut microbiome correlates with metabolic markers,” Nature, vol. 500, no. 7464, pp. 541-546, 2013.
-
(2013)
Nature
, vol.500
, Issue.7464
, pp. 541-546
-
-
Le Chatelier, E.1
Nielsen, T.2
Qin, J.3
-
12
-
-
84919473614
-
Rapid changes in the gut microbiome during human evolution
-
A. H. Moeller, Y. Li, E. Mpoudi Ngole et al., “Rapid changes in the gut microbiome during human evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 46, pp. 16431-16435, 2014.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.46
, pp. 16431-16435
-
-
Moeller, A.H.1
Li, Y.2
Mpoudi Ngole, E.3
-
13
-
-
84866168894
-
Functional interactions between the gut microbiota and host metabolism
-
V. Tremaroli and F. Bäckhed, “Functional interactions between the gut microbiota and host metabolism,” Nature, vol. 489, no. 7415, pp. 242-249, 2012.
-
(2012)
Nature
, vol.489
, Issue.7415
, pp. 242-249
-
-
Tremaroli, V.1
Bäckhed, F.2
-
14
-
-
85017165971
-
Gut microbiota functions: Metabolism of nutrients and other food components
-
I. Rowland, G. Gibson, A. Heinken et al., “Gut microbiota functions: metabolism of nutrients and other food components,” European Journal of Nutrition, vol. 57, no. 1, pp. 1-24, 2018.
-
(2018)
European Journal of Nutrition
, vol.57
, Issue.1
, pp. 1-24
-
-
Rowland, I.1
Gibson, G.2
Heinken, A.3
-
15
-
-
78149285318
-
Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health?
-
K. Meijer, P. de Vos, and M. G. Priebe, “Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health?,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 6, pp. 715-721, 2010.
-
(2010)
Current Opinion in Clinical Nutrition and Metabolic Care
, vol.13
, Issue.6
, pp. 715-721
-
-
Meijer, K.1
De Vos, P.2
Priebe, M.G.3
-
16
-
-
85014708925
-
Intestinal farnesoid X receptor signaling modulates metabolic disease
-
F. J. Gonzalez, C. Jiang, C. Xie, and A. D. Patterson, “Intestinal farnesoid X receptor signaling modulates metabolic disease,” Digestive Diseases, vol. 35, no. 3, pp. 178-184, 2017.
-
(2017)
Digestive Diseases
, vol.35
, Issue.3
, pp. 178-184
-
-
Gonzalez, F.J.1
Jiang, C.2
Xie, C.3
Patterson, A.D.4
-
17
-
-
84898546855
-
Bile acids and the gut microbiome
-
J. M. Ridlon, D. J. Kang, P. B. Hylemon, and J. S. Bajaj, “Bile acids and the gut microbiome,” Current Opinion in Gastroenterology, vol. 30, no. 3, pp. 332-338, 2014.
-
(2014)
Current Opinion in Gastroenterology
, vol.30
, Issue.3
, pp. 332-338
-
-
Ridlon, J.M.1
Kang, D.J.2
Hylemon, P.B.3
Bajaj, J.S.4
-
18
-
-
84867845255
-
The interplay between the intestinal microbiota and the brain
-
S. M. Collins, M. Surette, and P. Bercik, “The interplay between the intestinal microbiota and the brain,” Nature Reviews Microbiology, vol. 10, no. 11, pp. 735-742, 2012.
-
(2012)
Nature Reviews Microbiology
, vol.10
, Issue.11
, pp. 735-742
-
-
Collins, S.M.1
Surette, M.2
Bercik, P.3
-
19
-
-
62649151803
-
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
-
W. R. Wikoff, A. T. Anfora, J. Liu et al., “Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3698-3703, 2009.
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, Issue.10
, pp. 3698-3703
-
-
Wikoff, W.R.1
Anfora, A.T.2
Liu, J.3
-
20
-
-
84943164994
-
Human metabolic atlas: An online resource for human metabolism
-
N. Pornputtapong, I. Nookaew, and J. Nielsen, “Human metabolic atlas: an online resource for human metabolism,” Database, vol. 2015, article bav068, 2015.
-
(2015)
Database
, vol.2015
-
-
Pornputtapong, N.1
Nookaew, I.2
Nielsen, J.3
-
21
-
-
84864037467
-
Metabolic reconstruction for metagenomic data and its application to the human microbiome
-
S. Abubucker, N. Segata, J. Goll et al., “Metabolic reconstruction for metagenomic data and its application to the human microbiome,” PLoS Computational Biology, vol. 8, no. 6, article e1002358, 2012.
-
(2012)
PLoS Computational Biology
, vol.8
, Issue.6
-
-
Abubucker, S.1
Segata, N.2
Goll, J.3
-
22
-
-
85041690467
-
Crosstalk between the microbiome and epigenome: Messages from bugs
-
Y. Qin and P. A. Wade, “Crosstalk between the microbiome and epigenome: messages from bugs,” Journal of Biochemistry, vol. 163, no. 2, pp. 105-112, 2018.
-
(2018)
Journal of Biochemistry
, vol.163
, Issue.2
, pp. 105-112
-
-
Qin, Y.1
Wade, P.A.2
-
23
-
-
0034770056
-
Quorum sensing in bacteria
-
M. B. Miller and B. L. Bassler, “Quorum sensing in bacteria,” Annual Review of Microbiology, vol. 55, no. 1, pp. 165-199, 2001.
-
(2001)
Annual Review of Microbiology
, vol.55
, Issue.1
, pp. 165-199
-
-
Miller, M.B.1
Bassler, B.L.2
-
24
-
-
84884928600
-
Antimicrobial peptides and gut microbiota in homeostasis and pathology
-
M. J. Ostaff, E. F. Stange, and J. Wehkamp, “Antimicrobial peptides and gut microbiota in homeostasis and pathology,” EMBO Molecular Medicine, vol. 5, no. 10, pp. 1465-1483, 2013.
-
(2013)
EMBO Molecular Medicine
, vol.5
, Issue.10
, pp. 1465-1483
-
-
Ostaff, M.J.1
Stange, E.F.2
Wehkamp, J.3
-
25
-
-
78650291202
-
Microbiota restoration: Natural and supplemented recovery of human microbial communities
-
G. Reid, J. A. Younes, H. C. Van der Mei, G. B. Gloor, R. Knight, and H. J. Busscher, “Microbiota restoration: natural and supplemented recovery of human microbial communities,” Nature Reviews Microbiology, vol. 9, no. 1, pp. 27-38, 2011.
-
(2011)
Nature Reviews Microbiology
, vol.9
, Issue.1
, pp. 27-38
-
-
Reid, G.1
Younes, J.A.2
Van Der Mei, H.C.3
Gloor, G.B.4
Knight, R.5
Busscher, H.J.6
-
26
-
-
84865690025
-
Preventing disease in the 21st century: The importance of maternal and early infant diet and nutrition
-
D. J. Palmer, J. Metcalfe, and S. L. Prescott, “Preventing disease in the 21st century: the importance of maternal and early infant diet and nutrition,” Journal of Allergy and Clinical Immunology, vol. 130, no. 3, pp. 733-734, 2012.
-
(2012)
Journal of Allergy and Clinical Immunology
, vol.130
, Issue.3
, pp. 733-734
-
-
Palmer, D.J.1
Metcalfe, J.2
Prescott, S.L.3
-
27
-
-
84959386650
-
Protective and pro-inflammatory roles of intestinal bacteria
-
C. R. Webb, I. Koboziev, K. L. Furr, and M. B. Grisham, “Protective and pro-inflammatory roles of intestinal bacteria,” Pathophysiology, vol. 23, no. 2, pp. 67-80, 2016.
-
(2016)
Pathophysiology
, vol.23
, Issue.2
, pp. 67-80
-
-
Webb, C.R.1
Koboziev, I.2
Furr, K.L.3
Grisham, M.B.4
-
28
-
-
85027175538
-
Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobac-teriaceae expansion
-
M. X. Byndloss, E. E. Olsan, F. Rivera-Chávez et al., “Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobac-teriaceae expansion,” Science, vol. 357, no. 6351, pp. 570-575, 2017.
-
(2017)
Science
, vol.357
, Issue.6351
, pp. 570-575
-
-
Byndloss, M.X.1
Olsan, E.E.2
Rivera-Chávez, F.3
-
29
-
-
84858376593
-
The impact of the gut microbiota on human health: An integrative view
-
J. C. Clemente, L. K. Ursell, L. W. Parfrey, and R. Knight, “The impact of the gut microbiota on human health: an integrative view,” Cell, vol. 148, no. 6, pp. 1258-1270, 2012.
-
(2012)
Cell
, vol.148
, Issue.6
, pp. 1258-1270
-
-
Clemente, J.C.1
Ursell, L.K.2
Parfrey, L.W.3
Knight, R.4
-
30
-
-
84879402478
-
The role of the immune system in governing host-microbe interactions in the intestine
-
E. M. Brown, M. Sadarangani, and B. B. Finlay, “The role of the immune system in governing host-microbe interactions in the intestine,” Nature Immunology, vol. 14, no. 7, pp. 660-667, 2013.
-
(2013)
Nature Immunology
, vol.14
, Issue.7
, pp. 660-667
-
-
Brown, E.M.1
Sadarangani, M.2
Finlay, B.B.3
-
31
-
-
84978115999
-
The microbiome and innate immunity
-
C. A. Thaiss, N. Zmora, M. Levy, and E. Elinav, “The microbiome and innate immunity,” Nature, vol. 535, no. 7610, pp. 65-74, 2016.
-
(2016)
Nature
, vol.535
, Issue.7610
, pp. 65-74
-
-
Thaiss, C.A.1
Zmora, N.2
Levy, M.3
Elinav, E.4
-
32
-
-
14844351844
-
Spatial organization of bacterial flora in normal and inflamed intestine: A fluorescence in situ hybridization study in mice
-
A. Swidsinski, V. Loening-Baucke, H. Lochs, and L. P. Hale, “Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice,” World Journal of Gastroenterology, vol. 11, no. 8, pp. 1131-1140, 2005.
-
(2005)
World Journal of Gastroenterology
, vol.11
, Issue.8
, pp. 1131-1140
-
-
Swidsinski, A.1
Loening-Baucke, V.2
Lochs, H.3
Hale, L.P.4
-
33
-
-
84889666627
-
Human intestinal microbiota composition is associated with local and systemic inflammation in obesity
-
F. J. Verdam, S. Fuentes, C. de Jonge et al., “Human intestinal microbiota composition is associated with local and systemic inflammation in obesity,” Obesity, vol. 21, no. 12, pp. E607-E615, 2013.
-
(2013)
Obesity
, vol.21
, Issue.12
, pp. E607-E615
-
-
Verdam, F.J.1
Fuentes, S.2
De Jonge, C.3
-
34
-
-
84878465280
-
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity
-
A. Everard, C. Belzer, L. Geurts et al., “Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 22, pp. 9066-9071, 2013.
-
(2013)
Proceedings of the National Academy of Sciences of the United States of America
, vol.110
, Issue.22
, pp. 9066-9071
-
-
Everard, A.1
Belzer, C.2
Geurts, L.3
-
35
-
-
85031998982
-
Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells
-
U. Roy, E. J. C. Gálvez, A. Iljazovic et al., “Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells,” Cell Reports, vol. 21, no. 4, pp. 994-1008, 2017.
-
(2017)
Cell Reports
, vol.21
, Issue.4
, pp. 994-1008
-
-
Roy, U.1
Gálvez, E.J.C.2
Iljazovic, A.3
-
36
-
-
67349250428
-
The gut microbiota shapes intestinal immune responses during health and disease
-
J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nature Reviews Immunology, vol. 9, no. 5, pp. 313-323, 2009.
-
(2009)
Nature Reviews Immunology
, vol.9
, Issue.5
, pp. 313-323
-
-
Round, J.L.1
Mazmanian, S.K.2
-
37
-
-
84898015600
-
The microbiome and regulation of mucosal immunity
-
A. J. McDermott and G. B. Huffnagle, “The microbiome and regulation of mucosal immunity,” Immunology, vol. 142, no. 1, pp. 24-31, 2014.
-
(2014)
Immunology
, vol.142
, Issue.1
, pp. 24-31
-
-
McDermott, A.J.1
Huffnagle, G.B.2
-
38
-
-
84861980130
-
Interactions between the microbiota and the immune system
-
L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interactions between the microbiota and the immune system,” Science, vol. 336, no. 6086, pp. 1268-1273, 2012.
-
(2012)
Science
, vol.336
, Issue.6086
, pp. 1268-1273
-
-
Hooper, L.V.1
Littman, D.R.2
Macpherson, A.J.3
-
39
-
-
84978431877
-
The microbiota in adaptive immune homeostasis and disease
-
K. Honda and D. R. Littman, “The microbiota in adaptive immune homeostasis and disease,” Nature, vol. 535, no. 7610, pp. 75-84, 2016.
-
(2016)
Nature
, vol.535
, Issue.7610
, pp. 75-84
-
-
Honda, K.1
Littman, D.R.2
-
40
-
-
84907340268
-
Natural killer (NK) and NK-like cells at mucosal epithelia: Mediators of anti-microbial defense and maintenance of tissue integrity
-
A. Fuchs and M. Colonna, “Natural killer (NK) and NK-like cells at mucosal epithelia: mediators of anti-microbial defense and maintenance of tissue integrity,” European Journal of Microbiology and Immunology, vol. 1, no. 4, pp. 257-266, 2011.
-
(2011)
European Journal of Microbiology and Immunology
, vol.1
, Issue.4
, pp. 257-266
-
-
Fuchs, A.1
Colonna, M.2
-
41
-
-
41149118513
-
How dying cells alert the immune system to danger
-
H. Kono and K. L. Rock, “How dying cells alert the immune system to danger,” Nature Reviews Immunology, vol. 8, no. 4, pp. 279-289, 2008.
-
(2008)
Nature Reviews Immunology
, vol.8
, Issue.4
, pp. 279-289
-
-
Kono, H.1
Rock, K.L.2
-
42
-
-
84923049818
-
Cell death-associated molecular-pattern molecules: Inflammatory signaling and control
-
B. Sangiuliano, N. M. Pérez, D. F. Moreira, and J. E. Belizário, “Cell death-associated molecular-pattern molecules: inflammatory signaling and control,” Mediators of Inflammation, vol. 2014, Article ID 821043, 14 pages, 2014.
-
(2014)
Mediators of Inflammation
, vol.2014
, pp. 14
-
-
Sangiuliano, B.1
Pérez, N.M.2
Moreira, D.F.3
Belizário, J.E.4
-
43
-
-
84965107840
-
Inflammasome complexes: Emerging mechanisms and effector functions
-
V. A. K. Rathinam and K. A. Fitzgerald, “Inflammasome complexes: emerging mechanisms and effector functions,” Cell, vol. 165, no. 4, pp. 792-800, 2016.
-
(2016)
Cell
, vol.165
, Issue.4
, pp. 792-800
-
-
Rathinam, V.A.K.1
Fitzgerald, K.A.2
-
44
-
-
85027096132
-
Nlrp6 and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition
-
M. Mamantopoulos, F. Ronchi, F. van Hauwermeiren et al., “Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition,” Immunity, vol. 47, no. 2, pp. 339-348.e4, 2017.
-
(2017)
Immunity
, vol.47
, Issue.2
, pp. 339e4-348e4
-
-
Mamantopoulos, M.1
Ronchi, F.2
Van Hauwermeiren, F.3
-
45
-
-
84866167497
-
Reciprocal interactions of the intestinal microbiota and immune system
-
C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, “Reciprocal interactions of the intestinal microbiota and immune system,” Nature, vol. 489, no. 7415, pp. 231-241, 2012.
-
(2012)
Nature
, vol.489
, Issue.7415
, pp. 231-241
-
-
Maynard, C.L.1
Elson, C.O.2
Hatton, R.D.3
Weaver, C.T.4
-
46
-
-
84977625421
-
Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset
-
F. R. C. Costa, M. C. S. Françozo, G. G. de Oliveira et al., “Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset,” Journal of Experimental Medicine, vol. 213, no. 7, pp. 1223-1239, 2016.
-
(2016)
Journal of Experimental Medicine
, vol.213
, Issue.7
, pp. 1223-1239
-
-
Costa, F.R.C.1
Françozo, M.C.S.2
De Oliveira, G.G.3
-
47
-
-
84961999746
-
Heterogeneity of the gut microbiome in mice: Guidelines for optimizing experimental design
-
D. Laukens, B. M. Brinkman, J. Raes, M. De Vos, and P. Vandenabeele, “Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design,” FEMS Microbiology Review, vol. 40, no. 1, pp. 117-132, 2016.
-
(2016)
FEMS Microbiology Review
, vol.40
, Issue.1
, pp. 117-132
-
-
Laukens, D.1
Brinkman, B.M.2
Raes, J.3
De Vos, M.4
Vandenabeele, P.5
-
48
-
-
84904890211
-
From meta-omics to causality: Experimental models for human microbiome research
-
J. V. Fritz, M. S. Desai, P. Shah, J. G. Schneider, and P. Wilmes, “From meta-omics to causality: experimental models for human microbiome research,” Microbiome, vol. 1, no. 1, p. 14, 2013.
-
(2013)
Microbiome
, vol.1
, Issue.1
, pp. 14
-
-
Fritz, J.V.1
Desai, M.S.2
Shah, P.3
Schneider, J.G.4
Wilmes, P.5
-
49
-
-
33845901507
-
Microbial ecology: Human gut microbes associated with obesity
-
R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Microbial ecology: human gut microbes associated with obesity,” Nature, vol. 444, no. 7122, pp. 1022-1023, 2006.
-
(2006)
Nature
, vol.444
, Issue.7122
, pp. 1022-1023
-
-
Ley, R.E.1
Turnbaugh, P.J.2
Klein, S.3
Gordon, J.I.4
-
50
-
-
46249085739
-
Evolution of mammals and their gut microbes
-
R. E. Ley, M. Hamady, C. Lozupone et al., “Evolution of mammals and their gut microbes,” Science, vol. 320, no. 5883, pp. 1647-1651, 2008.
-
(2008)
Science
, vol.320
, Issue.5883
, pp. 1647-1651
-
-
Ley, R.E.1
Hamady, M.2
Lozupone, C.3
-
51
-
-
85017605327
-
Mitochondria are the powerhouses of immunity
-
E. L. Mills, B. Kelly, and L. A. J. O'Neill, “Mitochondria are the powerhouses of immunity,” Nature Immunology, vol. 18, no. 5, pp. 488-498, 2017.
-
(2017)
Nature Immunology
, vol.18
, Issue.5
, pp. 488-498
-
-
Mills, E.L.1
Kelly, B.2
O'Neill, L.A.J.3
-
52
-
-
84896905991
-
Metabolic regulation of immune responses
-
K. Ganeshan and A. Chawla, “Metabolic regulation of immune responses,” Annual Review of Immunology, vol. 32, no. 1, pp. 609-634, 2014.
-
(2014)
Annual Review of Immunology
, vol.32
, Issue.1
, pp. 609-634
-
-
Ganeshan, K.1
Chawla, A.2
-
53
-
-
84978148203
-
A guide to immunometabolism for immunologists
-
L. A. J. O'Neill, R. J. Kishton, and J. Rathmell, “A guide to immunometabolism for immunologists,” Nature Reviews Immunology, vol. 16, no. 9, pp. 553-565, 2016.
-
(2016)
Nature Reviews Immunology
, vol.16
, Issue.9
, pp. 553-565
-
-
O'Neill, L.A.J.1
Kishton, R.J.2
Rathmell, J.3
-
54
-
-
0023029455
-
Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages
-
P. Newsholme, R. Curi, S. Gordon, and E. A. Newsholme, “Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages,” Biochemical Journal, vol. 239, no. 1, pp. 121-125, 1986.
-
(1986)
Biochemical Journal
, vol.239
, Issue.1
, pp. 121-125
-
-
Newsholme, P.1
Curi, R.2
Gordon, S.3
Newsholme, E.A.4
-
55
-
-
0031710853
-
Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production
-
C. Murphy and P. Newsholme, “Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production,” Clinical Science, vol. 95, no. 4, pp. 397-407, 1998.
-
(1998)
Clinical Science
, vol.95
, Issue.4
, pp. 397-407
-
-
Murphy, C.1
Newsholme, P.2
-
56
-
-
70449208630
-
Metabolism of leukocytes
-
O. Warburg, K. Gawehn, and A. W. Geissler, “Metabolism of leukocytes,” Zeitschrift für Naturforschung B, vol. 13B, pp. 515-516, 1958.
-
(1958)
Zeitschrift Für Naturforschung B
, vol.13 B
, pp. 515-516
-
-
Warburg, O.1
Gawehn, K.2
Geissler, A.W.3
-
57
-
-
84857883847
-
Macrophage plasticity and polarization: In vivo veritas
-
A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” The Journal of Clinical Investigation, vol. 122, no. 3, pp. 787-795, 2012.
-
(2012)
The Journal of Clinical Investigation
, vol.122
, Issue.3
, pp. 787-795
-
-
Sica, A.1
Mantovani, A.2
-
58
-
-
44449117540
-
Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function
-
J. Jantsch, D. Chakravortty, N. Turza et al., “Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function,” The Journal of Immunology, vol. 180, no. 7, pp. 4697-4705, 2008.
-
(2008)
The Journal of Immunology
, vol.180
, Issue.7
, pp. 4697-4705
-
-
Jantsch, J.1
Chakravortty, D.2
Turza, N.3
-
59
-
-
85006721282
-
Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes
-
E. Lachmandas, L. Boutens, J. M. Ratter et al., “Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes,” Nature Microbiology, vol. 2, no. 3, article 16246, 2017.
-
(2017)
Nature Microbiology
, vol.2
, Issue.3
-
-
Lachmandas, E.1
Boutens, L.2
Ratter, J.M.3
-
60
-
-
84960399221
-
Immunometabolism governs dendritic cell and macrophage function
-
L. A. J. O'Neill and E. J. Pearce, “Immunometabolism governs dendritic cell and macrophage function,” Journal of Experimental Medicine, vol. 213, no. 1, pp. 15-23, 2016.
-
(2016)
Journal of Experimental Medicine
, vol.213
, Issue.1
, pp. 15-23
-
-
O'Neill, L.A.J.1
Pearce, E.J.2
-
61
-
-
80052170775
-
The mitochondrial citrate carrier: A new player in inflammation
-
V. Infantino, P. Convertini, L. Cucci et al., “The mitochondrial citrate carrier: a new player in inflammation,” Biochemical Journal, vol. 438, no. 3, pp. 433-436, 2011.
-
(2011)
Biochemical Journal
, vol.438
, Issue.3
, pp. 433-436
-
-
Infantino, V.1
Convertini, P.2
Cucci, L.3
-
62
-
-
85020282873
-
A past and present overview of macrophage metabolism and functional outcomes
-
R. Curi, R. de Siqueira Mendes, L. A. de Campos Crispin, G. D. Norata, S. C. Sampaio, and P. Newsholme, “A past and present overview of macrophage metabolism and functional outcomes,” Clinical Science, vol. 131, no. 12, pp. 1329-1342, 2017.
-
(2017)
Clinical Science
, vol.131
, Issue.12
, pp. 1329-1342
-
-
Curi, R.1
De Siqueira Mendes, R.2
De Campos Crispin, L.A.3
Norata, G.D.4
Sampaio, S.C.5
Newsholme, P.6
-
63
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1β through HIF-1α
-
G. M. Tannahill, A. M. Curtis, J. Adamik et al., “Succinate is an inflammatory signal that induces IL-1β through HIF-1α,” Nature, vol. 496, no. 7444, pp. 238-242, 2013.
-
(2013)
Nature
, vol.496
, Issue.7444
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
-
64
-
-
84920591180
-
Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages
-
E. M. Palsson-McDermott, A. M. Curtis, G. Goel et al., “Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages,” Cell Metabolism, vol. 21, no. 1, pp. 65-80, 2015.
-
(2015)
Cell Metabolism
, vol.21
, Issue.1
, pp. 65-80
-
-
Palsson-McDermott, E.M.1
Curtis, A.M.2
Goel, G.3
-
65
-
-
84978468846
-
Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
-
V. Lampropoulou, A. Sergushichev, M. Bambouskova et al., “Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation,” Cell Metabolism, vol. 24, no. 1, pp. 158-166, 2016.
-
(2016)
Cell Metabolism
, vol.24
, Issue.1
, pp. 158-166
-
-
Lampropoulou, V.1
Sergushichev, A.2
Bambouskova, M.3
-
66
-
-
84973450882
-
Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage
-
B. Németh, J. Doczi, D. Csete et al., “Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage,” The FASEB Journal, vol. 30, no. 1, pp. 286-300, 2016.
-
(2016)
The FASEB Journal
, vol.30
, Issue.1
, pp. 286-300
-
-
Németh, B.1
Doczi, J.2
Csete, D.3
-
67
-
-
84976869322
-
Immunorespon-sive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
-
T. Cordes, M. Wallace, A. Michelucci et al., “Immunorespon-sive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels,” Journal of Biological Chemistry, vol. 291, no. 27, pp. 14274-14284, 2016.
-
(2016)
Journal of Biological Chemistry
, vol.291
, Issue.27
, pp. 14274-14284
-
-
Cordes, T.1
Wallace, M.2
Michelucci, A.3
-
68
-
-
84877343356
-
Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
-
A. Michelucci, T. Cordes, J. Ghelfi et al., “Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 19, pp. 7820-7825, 2013.
-
(2013)
Proceedings of the National Academy of Sciences of the United States of America
, vol.110
, Issue.19
, pp. 7820-7825
-
-
Michelucci, A.1
Cordes, T.2
Ghelfi, J.3
-
69
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
D. Zeevi, T. Korem, N. Zmora et al., “Personalized nutrition by prediction of glycemic responses,” Cell, vol. 163, no. 5, pp. 1079-1094, 2015.
-
(2015)
Cell
, vol.163
, Issue.5
, pp. 1079-1094
-
-
Zeevi, D.1
Korem, T.2
Zmora, N.3
-
70
-
-
84871891872
-
Obesity and the gut microbiome: Striving for causality
-
I. T. W. Harley and C. L. Karp, “Obesity and the gut microbiome: striving for causality,” Molecular Metabolism, vol. 1, no. 1-2, pp. 21-31, 2012.
-
(2012)
Molecular Metabolism
, vol.1
, Issue.1-2
, pp. 21-31
-
-
Harley, I.T.W.1
Karp, C.L.2
-
71
-
-
34848912627
-
Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia
-
P. D. Cani, A. M. Neyrinck, F. Fava et al., “Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia,” Diabetologia, vol. 50, no. 11, pp. 2374-2383, 2007.
-
(2007)
Diabetologia
, vol.50
, Issue.11
, pp. 2374-2383
-
-
Cani, P.D.1
Neyrinck, A.M.2
Fava, F.3
-
72
-
-
84855357614
-
The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus
-
R. S. Kootte, A. Vrieze, F. Holleman et al., “The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus,” Diabetes, Obesity and Metabolism, vol. 14, no. 2, pp. 112-120, 2012.
-
(2012)
Diabetes, Obesity and Metabolism
, vol.14
, Issue.2
, pp. 112-120
-
-
Kootte, R.S.1
Vrieze, A.2
Holleman, F.3
-
73
-
-
84988372530
-
The gut microbiota and metabolic disease: Current understanding and future perspectives
-
T. Arora and F. Backhed, “The gut microbiota and metabolic disease: current understanding and future perspectives,” Journal of Internal Medicine, vol. 280, no. 4, pp. 339-349, 2016.
-
(2016)
Journal of Internal Medicine
, vol.280
, Issue.4
, pp. 339-349
-
-
Arora, T.1
Backhed, F.2
-
74
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, “An obesity-associated gut microbiome with increased capacity for energy harvest,” Nature, vol. 444, no. 7122, pp. 1027-1031, 2006.
-
(2006)
Nature
, vol.444
, Issue.7122
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
Magrini, V.4
Mardis, E.R.5
Gordon, J.I.6
-
75
-
-
58749112734
-
A core gut microbiome in obese and lean twins
-
P. J. Turnbaugh, M. Hamady, T. Yatsunenko et al., “A core gut microbiome in obese and lean twins,” Nature, vol. 457, no. 7228, pp. 480-484, 2008.
-
(2008)
Nature
, vol.457
, Issue.7228
, pp. 480-484
-
-
Turnbaugh, P.J.1
Hamady, M.2
Yatsunenko, T.3
-
76
-
-
8144226856
-
The gut microbiota as an environmental factor that regulates fat storage
-
F. Backhed, H. Ding, T. Wang et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15718-15723, 2004.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.44
, pp. 15718-15723
-
-
Backhed, F.1
Ding, H.2
Wang, T.3
-
77
-
-
77957075815
-
Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa
-
C. De Filippo, D. Cavalieri, M. Di Paola et al., “Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14691-14696, 2010.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, Issue.33
, pp. 14691-14696
-
-
De Filippo, C.1
Cavalieri, D.2
Di Paola, M.3
-
78
-
-
73949137604
-
Microbiota and SCFA in lean and overweight healthy subjects
-
A. Schwiertz, D. Taras, K. Schäfer et al., “Microbiota and SCFA in lean and overweight healthy subjects,” Obesity, vol. 18, no. 1, pp. 190-195, 2010.
-
(2010)
Obesity
, vol.18
, Issue.1
, pp. 190-195
-
-
Schwiertz, A.1
Taras, D.2
Schäfer, K.3
-
79
-
-
85029721024
-
Next-generation beneficial microbes: The case of Akkermansia muciniphila
-
P. D. Cani and W. M. de Vos, “Next-generation beneficial microbes: the case of Akkermansia muciniphila,” Frontiers in Microbiology, vol. 8, p. 1765, 2017.
-
(2017)
Frontiers in Microbiology
, vol.8
, pp. 1765
-
-
Cani, P.D.1
De Vos, W.M.2
-
80
-
-
84973667684
-
Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome
-
R. J. Perry, L. Peng, N. A. Barry et al., “Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome,” Nature, vol. 534, no. 7606, pp. 213-217, 2016.
-
(2016)
Nature
, vol.534
, Issue.7606
, pp. 213-217
-
-
Perry, R.J.1
Peng, L.2
Barry, N.A.3
-
81
-
-
84855459760
-
Obesity is associated with hypothalamic injury in rodents and humans
-
J. P. Thaler, C. X. Yi, E. A. Schur et al., “Obesity is associated with hypothalamic injury in rodents and humans,” The Journal of Clinical Investigation, vol. 122, no. 1, pp. 153-162, 2012.
-
(2012)
The Journal of Clinical Investigation
, vol.122
, Issue.1
, pp. 153-162
-
-
Thaler, J.P.1
Yi, C.X.2
Schur, E.A.3
-
82
-
-
84899892790
-
The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism
-
G. Frost, M. L. Sleeth, M. Sahuri-Arisoylu et al., “The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism,” Nature Communications, vol. 5, no. 1, p. 3611, 2014.
-
(2014)
Nature Communications
, vol.5
, Issue.1
, pp. 3611
-
-
Frost, G.1
Sleeth, M.L.2
Sahuri-Arisoylu, M.3
-
83
-
-
84924594572
-
The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes
-
R. J. Seeley, A. P. Chambers, and D. A. Sandoval, “The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes,” Cell Metabolism, vol. 21, no. 3, pp. 369-378, 2015.
-
(2015)
Cell Metabolism
, vol.21
, Issue.3
, pp. 369-378
-
-
Seeley, R.J.1
Chambers, A.P.2
Sandoval, D.A.3
-
84
-
-
85008474346
-
Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats
-
M. K. Hankir, F. Seyfried, C. A. Hintschich et al., “Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats,” Cell Metabolism, vol. 25, no. 2, pp. 335-344, 2017.
-
(2017)
Cell Metabolism
, vol.25
, Issue.2
, pp. 335-344
-
-
Hankir, M.K.1
Seyfried, F.2
Hintschich, C.A.3
-
85
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
K. Forslund, F. Hildebrand, T. Nielsen et al., “Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota,” Nature, vol. 528, no. 7581, pp. 262-266, 2015.
-
(2015)
Nature
, vol.528
, Issue.7581
, pp. 262-266
-
-
Forslund, K.1
Hildebrand, F.2
Nielsen, T.3
-
86
-
-
33947136322
-
Prebiotics: The concept revisited
-
M. Roberfroid, “Prebiotics: the concept revisited,” The Journal of Nutrition, vol. 137, no. 3, pp. 830S-837S, 2007.
-
(2007)
The Journal of Nutrition
, vol.137
, Issue.3
, pp. 830S-837S
-
-
Roberfroid, M.1
-
87
-
-
84894352102
-
The development of probiotic treatment in obesity: A review
-
M. C. Mekkes, T. C. Weenen, R. J. Brummer, and E. Claassen, “The development of probiotic treatment in obesity: a review,” Beneficial Microbes, vol. 5, no. 1, pp. 19-28, 2014.
-
(2014)
Beneficial Microbes
, vol.5
, Issue.1
, pp. 19-28
-
-
Mekkes, M.C.1
Weenen, T.C.2
Brummer, R.J.3
Claassen, E.4
-
88
-
-
79953647671
-
The gut microbiome as therapeutic target
-
P. D. Cani and N. M. Delzenne, “The gut microbiome as therapeutic target,” Pharmacology & Therapeutics, vol. 130, no. 2, pp. 202-212, 2011.
-
(2011)
Pharmacology & Therapeutics
, vol.130
, Issue.2
, pp. 202-212
-
-
Cani, P.D.1
Delzenne, N.M.2
-
89
-
-
56849106496
-
The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing
-
L. Dethlefsen, S. Huse, M. L. Sogin, and D. A. Relman, “The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing,” PLoS Biology, vol. 6, no. 11, article e280, 2008.
-
(2008)
PLoS Biology
, vol.6
, Issue.11
-
-
Dethlefsen, L.1
Huse, S.2
Sogin, M.L.3
Relman, D.A.4
-
90
-
-
80054736926
-
Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection
-
E. Gough, H. Shaikh, and A. R. Manges, “Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection,” Clinical Infectious Diseases, vol. 53, no. 10, pp. 994-1002, 2011.
-
(2011)
Clinical Infectious Diseases
, vol.53
, Issue.10
, pp. 994-1002
-
-
Gough, E.1
Shaikh, H.2
Manges, A.R.3
-
91
-
-
84928023492
-
Toward a true bacteriotherapy for clostridium difficile infection
-
M. Rupnik, “Toward a true bacteriotherapy for clostridium difficile infection,” The New England Journal of Medicine, vol. 372, no. 16, pp. 1566-1568, 2015.
-
(2015)
The New England Journal of Medicine
, vol.372
, Issue.16
, pp. 1566-1568
-
-
Rupnik, M.1
-
92
-
-
84982822142
-
Fecal transplants: What is being transferred?
-
D. P. Bojanova and S. R. Bordenstein, “Fecal transplants: what is being transferred?,” PLoS Biology, vol. 14, no. 7, article e1002503, 2016.
-
(2016)
PLoS Biology
, vol.14
, Issue.7
-
-
Bojanova, D.P.1
Bordenstein, S.R.2
-
93
-
-
84873019302
-
Duodenal infusion of donor feces for recurrent Clostridium difficile
-
E. van Nood, A. Vrieze, M. Nieuwdorp et al., “Duodenal infusion of donor feces for recurrent Clostridium difficile,” The New England Journal of Medicine, vol. 368, no. 5, pp. 407-415, 2013.
-
(2013)
The New England Journal of Medicine
, vol.368
, Issue.5
, pp. 407-415
-
-
Van Nood, E.1
Vrieze, A.2
Nieuwdorp, M.3
-
94
-
-
84896401262
-
Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity
-
A. Vrieze, C. Out, S. Fuentes et al., “Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity,” Journal of Hepatology, vol. 60, no. 4, pp. 824-831, 2014.
-
(2014)
Journal of Hepatology
, vol.60
, Issue.4
, pp. 824-831
-
-
Vrieze, A.1
Out, C.2
Fuentes, S.3
-
95
-
-
84992381833
-
Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: A randomized double-blind placebo-controlled trial
-
D. Reijnders, G. H. Goossens, G. D. A. Hermes et al., “Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial,” Cell Metabolism, vol. 24, no. 1, pp. 63-74, 2016.
-
(2016)
Cell Metabolism
, vol.24
, Issue.1
, pp. 63-74
-
-
Reijnders, D.1
Goossens, G.H.2
Hermes, G.D.A.3
-
96
-
-
84961200851
-
Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism
-
D. J. Morrison and T. Preston, “Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism,” Gut Microbes, vol. 7, no. 3, pp. 189-200, 2016.
-
(2016)
Gut Microbes
, vol.7
, Issue.3
, pp. 189-200
-
-
Morrison, D.J.1
Preston, T.2
-
97
-
-
84959528193
-
Metformin-associated lactic acidosis: Current perspectives on causes and risk
-
R. DeFronzo, G. A. Fleming, K. Chen, and T. A. Bicsak, “Metformin-associated lactic acidosis: current perspectives on causes and risk,” Metabolism, vol. 65, no. 2, pp. 20-29, 2016.
-
(2016)
Metabolism
, vol.65
, Issue.2
, pp. 20-29
-
-
DeFronzo, R.1
Fleming, G.A.2
Chen, K.3
Bicsak, T.A.4
-
98
-
-
84966908058
-
Pyruvate kinase M2: A potential target for regulating inflammation
-
J. C. Alves-Filho and E. M. Pålsson-McDermott, “Pyruvate kinase M2: a potential target for regulating inflammation,” Frontiers in Immunology, vol. 7, p. 145, 2016.
-
(2016)
Frontiers in Immunology
, vol.7
, pp. 145
-
-
Alves-Filho, J.C.1
Pålsson-McDermott, E.M.2
|