메뉴 건너뛰기




Volumn 18, Issue 8, 2018, Pages

Fermentation of glucose-xylose-Arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains

Author keywords

Bioethanol; Division of labour; Evolutionary engineering; Pentose fermentation; Synthetic consortium; Yeast

Indexed keywords

ARABINOSE; CARBON DIOXIDE; GLUCOSE; HEXOSE; PENTOSE; SUGAR; XYLITOL; XYLOSE;

EID: 85055076960     PISSN: 15671356     EISSN: 15671364     Source Type: Journal    
DOI: 10.1093/femsyr/foy075     Document Type: Article
Times cited : (37)

References (76)
  • 1
    • 70349281876 scopus 로고    scopus 로고
    • Engineering for biofuels: Exploiting innate microbial capacity or importing biosynthetic potential?
    • Alper H, Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009;7:715-23.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 715-723
    • Alper, H.1    Stephanopoulos, G.2
  • 2
    • 0037962155 scopus 로고    scopus 로고
    • A modified Saccharomyces cerevisiae strain that consumes l-Arabinose and produces ethanol
    • Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes l-Arabinose and produces ethanol. Appl Environ Microb 2003;69:4144-50.
    • (2003) Appl Environ Microb , vol.69 , pp. 4144-4150
    • Becker, J.1    Boles, E.2
  • 3
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xyloseisomerase-based Saccharomyces cerevisiae strain
    • Bellissimi E, Van Dijken JP, Pronk JT et al. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xyloseisomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009;9:358-64.
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 4
    • 84878524493 scopus 로고    scopus 로고
    • How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism
    • Berkhout J, Bosdriesz E, Nikerel E et al. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism. Genetics 2013;194:505-12.
    • (2013) Genetics , vol.194 , pp. 505-512
    • Berkhout, J.1    Bosdriesz, E.2    Nikerel, E.3
  • 5
    • 68949213819 scopus 로고    scopus 로고
    • Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway
    • Bettiga M, Bengtsson O, Hahn-Hgerdal B et al. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 2009;8:40.
    • (2009) Microb Cell Fact , vol.8 , pp. 40
    • Bettiga, M.1    Bengtsson, O.2    Hahn-Hgerdal, B.3
  • 6
    • 80054994595 scopus 로고    scopus 로고
    • Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: Transcriptome analysis of anaerobic retentostat cultures
    • Boender LG, van Maris AJ, de Hulster EA et al. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: Transcriptome analysis of anaerobic retentostat cultures. FEMS Yeast Res 2011;11:603-20.
    • (2011) FEMS Yeast Res , vol.11 , pp. 603-620
    • Boender, L.G.1    Van Maris, A.J.2    De Hulster, E.A.3
  • 7
    • 85043713507 scopus 로고    scopus 로고
    • The Penicillium chrysogenum transporter PcAraT enables high-Affinity, glucose-insensitive l-Arabinose transport in Saccharomyces cerevisiae
    • Bracher JM, Verhoeven MD, Wisselink HW et al. The Penicillium chrysogenum transporter PcAraT enables high-Affinity, glucose-insensitive l-Arabinose transport in Saccharomyces cerevisiae. Biotechnol Biofuels 2018;11:63.
    • (2018) Biotechnol Biofuels , vol.11 , pp. 63
    • Bracher, J.M.1    Verhoeven, M.D.2    Wisselink, H.W.3
  • 8
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D, Boles E, Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microb 2009;75:2304-11.
    • (2009) Appl Environ Microb , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 9
    • 0032422232 scopus 로고    scopus 로고
    • Simultaneous bioconversion of cellulose and hemicellulose to ethanol
    • Chandrakant P, Bisaria V. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 1998;18:295-331.
    • (1998) Crit Rev Biotechnol , vol.18 , pp. 295-331
    • Chandrakant, P.1    Bisaria, V.2
  • 10
    • 33847168661 scopus 로고    scopus 로고
    • Functional studies of aldoketo reductases in Saccharomyces cerevisiae
    • Chang Q, Griest TA, Harter TM et al. Functional studies of aldoketo reductases in Saccharomyces cerevisiae. Biochim Biophys Acta 2007;1773:321-9.
    • (2007) Biochim Biophys Acta , vol.1773 , pp. 321-329
    • Chang, Q.1    Griest, T.A.2    Harter, T.M.3
  • 11
    • 79956076689 scopus 로고    scopus 로고
    • Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: A systematic review
    • Chen Y. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: A systematic review. J Ind Microbiol Biot 2011;38:581-97.
    • (2011) J Ind Microbiol Biot , vol.38 , pp. 581-597
    • Chen, Y.1
  • 12
    • 84992075174 scopus 로고    scopus 로고
    • In vivo continuous evolution of genes and pathways in yeast
    • Crook N, Abatemarco J, Sun J et al. In vivo continuous evolution of genes and pathways in yeast. Nat Commun 2016;7:13051.
    • (2016) Nat Commun , vol.7 , pp. 13051
    • Crook, N.1    Abatemarco, J.2    Sun, J.3
  • 13
    • 84926201540 scopus 로고    scopus 로고
    • Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA
    • Demeke MM, Foulqui-Moreno MR, Dumortier F et al. Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genet 2015;11:e1005010.
    • (2015) PLoS Genet , vol.11 , pp. e1005010
    • Demeke, M.M.1    Foulqui-Moreno, M.R.2    Dumortier, F.3
  • 14
    • 84953346609 scopus 로고    scopus 로고
    • Functional expression of Arabidopsis thaliana xylose isomerase in Saccharomyces cerevisiae
    • Dun B, Wang Z, Ye K et al. Functional expression of Arabidopsis thaliana xylose isomerase in Saccharomyces cerevisiae. Xinjiang Agric Sci 2012;49:681-6.
    • (2012) Xinjiang Agric Sci , vol.49 , pp. 681-686
    • Dun, B.1    Wang, Z.2    Ye, K.3
  • 15
    • 45249103536 scopus 로고    scopus 로고
    • A co-fermentation strategy to consume sugar mixtures effectively
    • Eiteman MA, Lee SA, Altman E. A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2008;2:3.
    • (2008) J Biol Eng , vol.2 , pp. 3
    • Eiteman, M.A.1    Lee, S.A.2    Altman, E.3
  • 16
    • 60349117090 scopus 로고    scopus 로고
    • A substrate-selective cofermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose
    • Eiteman MA, Lee SA, Altman R et al. A substrate-selective cofermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 2009;102:822-7.
    • (2009) Biotechnol Bioeng , vol.102 , pp. 822-827
    • Eiteman, M.A.1    Lee, S.A.2    Altman, R.3
  • 17
    • 34247580875 scopus 로고    scopus 로고
    • K?otter P. 25 Yeast genetic strain and plasmid collections
    • Entian K-D, K?otter P. 25 Yeast genetic strain and plasmid collections. Method Microbiol 2007;36:629-66.
    • (2007) Method Microbiol , vol.36 , pp. 629-666
    • Entian, K.-D.1
  • 18
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose
    • Farwick A, Bruder S, Schadeweg V et al. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc Natl Acad Sci USA 2014;111:5159-64.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3
  • 19
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz RD, Schiestl RH, Willems AR et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995;11:355-60.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3
  • 20
    • 84920729256 scopus 로고    scopus 로고
    • Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeastbased production processes
    • Gombert AK, van Maris AJ. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeastbased production processes. Curr Opin Biotechnol 2015;33:81-86.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 81-86
    • Gombert, A.K.1    Van Maris, A.J.2
  • 21
    • 84987981814 scopus 로고    scopus 로고
    • A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations
    • Gonzlez-Ramos D, de Vries ARG, Grijseels SS et al. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 2016;9:173.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 173
    • Gonzlez-Ramos, D.1    De Vries, A.R.G.2    Grijseels, S.S.3
  • 22
    • 0012070180 scopus 로고
    • Pectin-rich residues generated by processing of citrus fruits, apples, and sugar beets
    • Grohmann K, Bothast RJ. Pectin-rich residues generated by processing of citrus fruits, apples, and sugar beets. ACS Symposium Series 1994;566:372-90.
    • (1994) ACS Symposium Series , vol.566 , pp. 372-390
    • Grohmann, K.1    Bothast, R.J.2
  • 23
    • 0030938239 scopus 로고    scopus 로고
    • Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes
    • Grohmann K, Bothast RJ. Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem 1997;32:405-15.
    • (1997) Process Biochem , vol.32 , pp. 405-415
    • Grohmann, K.1    Bothast, R.J.2
  • 24
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe Medina V, Almering MJ, van Maris AJ et al. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microb 2010;76:190-5.
    • (2010) Appl Environ Microb , vol.76 , pp. 190-195
    • Guadalupe Medina, V.1    Almering, M.J.2    Van Maris, A.J.3
  • 25
    • 82455209009 scopus 로고    scopus 로고
    • Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro
    • Ha S-J, Kim SR, Choi J-H et al. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Appl Environ Microb 2011;92:77-84.
    • (2011) Appl Environ Microb , vol.92 , pp. 77-84
    • Ha, S.-J.1    Kim, S.R.2    Choi, J.-H.3
  • 26
    • 0035233593 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for xylose utilization
    • Hahn-Hgerdal B, Wahlbom CF, G?ardonyiMet al. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 2001;73:53-84.
    • (2001) Adv Biochem Eng Biotechnol , vol.73 , pp. 53-84
    • Hahn-Hgerdal, B.1    Wahlbom, C.F.2    Gardonyi, M.3
  • 27
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-Transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T, Becker J, Gardonyi M et al. Characterization of the xylose-Transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002;148:2783-8.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gardonyi, M.3
  • 28
    • 85055830791 scopus 로고    scopus 로고
    • Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures
    • Hanly TJ, Urello M, Henson MA. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Environ Microb 2012;93:2783-8.
    • (2012) Appl Environ Microb , vol.93 , pp. 2783-2788
    • Hanly, T.J.1    Urello, M.2    Henson, M.A.3
  • 29
    • 84878237818 scopus 로고    scopus 로고
    • Growth and fermentation of d-xylose by Saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24
    • Hector RE, Dien BS, Cotta MA et al. Growth and fermentation of d-xylose by Saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels 2013;6:1.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 1
    • Hector, R.E.1    Dien, B.S.2    Cotta, M.A.3
  • 30
    • 84989189587 scopus 로고    scopus 로고
    • Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae
    • Hou J, Jiao C, Peng B et al. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metab Eng 2016a;38:241-50.
    • (2016) Metab Eng , vol.38 , pp. 241-250
    • Hou, J.1    Jiao, C.2    Peng, B.3
  • 31
    • 84953366023 scopus 로고    scopus 로고
    • Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae
    • Hou J, Shen Y, Jiao C et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae. J Biosci Bioeng 2016b;121:160-5.
    • (2016) J Biosci Bioeng , vol.121 , pp. 160-165
    • Hou, J.1    Shen, Y.2    Jiao, C.3
  • 32
    • 85034424282 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae strains for second-generation ethanol production: From academic exploration to industrial implementation
    • Jansen ML, Bracher JM, Papapetridis I et al. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017;17.
    • (2017) FEMS Yeast Res , vol.17
    • Jansen, M.L.1    Bracher, J.M.2    Papapetridis, I.3
  • 33
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 2006;17:320-6.
    • (2006) Curr Opin Biotechnol , vol.17 , pp. 320-326
    • Jeffries, T.W.1
  • 34
    • 84965185990 scopus 로고    scopus 로고
    • Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on larabinose and d-xylose
    • Knoshaug EP, Vidgren V, Magalhães F et al. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on larabinose and d-xylose. Yeast 2015;32:615-28.
    • (2015) Yeast , vol.32 , pp. 615-628
    • Knoshaug, E.P.1    Vidgren, V.2    Magalhães, F.3
  • 35
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kotter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biot 1993;38:776-83.
    • (1993) Appl Microbiol Biot , vol.38 , pp. 776-783
    • Kotter, P.1    Ciriacy, M.2
  • 36
    • 12144288423 scopus 로고    scopus 로고
    • High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by?
    • Kuyper M, Harhangi HR, Stave AK et al. High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by? FEMS Yeast Res 2003;4:69-78.
    • (2003) FEMS Yeast Res , vol.4 , pp. 69-78
    • Kuyper, M.1    Harhangi, H.R.2    Stave, A.K.3
  • 37
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering ofmixed-sugar utilization by a xylose-fermenting strain
    • Kuyper M, Toirkens MJ, Diderich JA et al. Evolutionary engineering ofmixed-sugar utilization by a xylose-fermenting strain. FEMS Yeast Res 2005;5:925-34.
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3
  • 38
    • 0027522978 scopus 로고
    • Cofermentation of glucose and xylose to ethanol by a respiratory-deficient mutant of Saccharomyces cerevisiae co-cultivated with a xylosefermenting yeast
    • Laplace JM, Delgenes JP, Moletta R et al. Cofermentation of glucose and xylose to ethanol by a respiratory-deficient mutant of Saccharomyces cerevisiae co-cultivated with a xylosefermenting yeast. J Ferment Bioeng 1993;75:207-12.
    • (1993) J Ferment Bioeng , vol.75 , pp. 207-212
    • Laplace, J.M.1    Delgenes, J.P.2    Moletta, R.3
  • 39
    • 85034092831 scopus 로고    scopus 로고
    • Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography
    • Lee M, Rozeboom HJ, de Waal PP et al. Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry 2017;56:5991-6005.
    • (2017) Biochemistry , vol.56 , pp. 5991-6005
    • Lee, M.1    Rozeboom, H.J.2    De Waal, P.P.3
  • 40
    • 84866172183 scopus 로고    scopus 로고
    • Directed Evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae
    • Lee SM, Jellison T, Alper HS. Directed Evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 2012;78:5708-16.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 5708-5716
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 41
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • Lee SM, Jellison T, Alper HS. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 2014;7:122.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 122
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 42
    • 84929937225 scopus 로고    scopus 로고
    • Functional analysis of two l-Arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae
    • Li J, Xu J, Cai P et al. Functional analysis of two l-Arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae. Appl Environ Microb 2015;81:4062-70.
    • (2015) Appl Environ Microb , vol.81 , pp. 4062-4070
    • Li, J.1    Xu, J.2    Cai, P.3
  • 43
    • 0034461448 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism
    • Luttik MA, K?otter P, Salomons FA et al. The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 2000;182:7007-13.
    • (2000) J Bacteriol , vol.182 , pp. 7007-7013
    • Luttik, M.A.1    Kotter, P.2    Salomons, F.A.3
  • 44
    • 0030378473 scopus 로고    scopus 로고
    • Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy
    • Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annu Rev Energy Environ 1996;21:403-65.
    • (1996) Annu Rev Energy Environ , vol.21 , pp. 403-465
    • Lynd, L.R.1
  • 45
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, Tamalampudi S, Ushida K et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biot 2009;82:1067-78.
    • (2009) Appl Microbiol Biot , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3
  • 46
    • 85034452883 scopus 로고    scopus 로고
    • Under pressure: Evolutionary engineering of yeast strains for improved performance in fuels and chemicals production
    • Mans R, Daran J-MG, Pronk JT. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 2018;50:47-56.
    • (2018) Curr Opin Biotechnol , vol.50 , pp. 47-56
    • Mans, R.1    J-Mg, D.2    Pronk, J.T.3
  • 47
    • 84930638003 scopus 로고    scopus 로고
    • CRISPR/Cas9: Amolecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
    • Mans R, van RossumHM, WijsmanMet al. CRISPR/Cas9: Amolecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 2015;15:fov004.
    • (2015) FEMS Yeast Res , vol.15 , pp. fov004
    • Mans, R.1    Van Rossum, H.M.2    Wijsman, M.3
  • 48
    • 84858729135 scopus 로고    scopus 로고
    • De novo sequencing assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D a model for modern industrial biotechnology
    • Nijkamp JF, van den Broek M, Datema E et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 2012;11:36.
    • (2012) Microb Cell Fact , vol.11 , pp. 36
    • Nijkamp, J.F.1    Van Den Broek, M.2    Datema, E.3
  • 49
    • 84988807185 scopus 로고    scopus 로고
    • Engineering of an endogenous hexose transporter into a specific d-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae
    • Nijland JG, Shin HY, de Jong RM et al. Engineering of an endogenous hexose transporter into a specific d-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 2014;7:168.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 168
    • Nijland, J.G.1    Shin, H.Y.2    De Jong, R.M.3
  • 50
    • 84857061668 scopus 로고    scopus 로고
    • Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
    • Oud B, Maris AJA, Daran JM et al. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 2012;12:183-96.
    • (2012) FEMS Yeast Res , vol.12 , pp. 183-196
    • Oud, B.1    Aja, M.2    Daran, J.M.3
  • 51
    • 84905049751 scopus 로고    scopus 로고
    • Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture
    • Paalme T, Kevvai K, Vilbaste A et al. Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture. World J Microb Biot 2014;30:2351-9.
    • (2014) World J Microb Biot , vol.30 , pp. 2351-2359
    • Paalme, T.1    Kevvai, K.2    Vilbaste, A.3
  • 52
    • 85019079446 scopus 로고    scopus 로고
    • Renewable Fuels Association (20 July 2018 date last accessed)
    • Renewable Fuels Association.World Fuel Ethanol Production. 2017. http://ethanolrfa.org/resources/industry/statistics /(20 July 2018 date last accessed)
    • (2017) World Fuel Ethanol Production
  • 53
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist D, Hahn-Hagerdal B, Bettiga M. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl Environ Microb 2010;76:7796-802.
    • (2010) Appl Environ Microb , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hagerdal, B.2    Bettiga, M.3
  • 54
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D, Hahn-Hgerdal B, Radstrm P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2010;3:7796-802.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hgerdal, B.2    Radstrm, P.3
  • 55
    • 77953368385 scopus 로고    scopus 로고
    • Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering
    • Sanchez RG, Karhumaa K, Fonseca C et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 2010;3:13.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 13
    • Sanchez, R.G.1    Karhumaa, K.2    Fonseca, C.3
  • 56
    • 0035793151 scopus 로고    scopus 로고
    • Expression of E. coli araBAD operon encoding enzymes for metabolizing l-Arabinose in Saccharomyces cerevisiae
    • Sedlak M, Ho NW. Expression of E. coli araBAD operon encoding enzymes for metabolizing l-Arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 2001;28:16-24.
    • (2001) Enzyme Microb Technol , vol.28 , pp. 16-24
    • Sedlak, M.1    Ho, N.W.2
  • 57
    • 3042769437 scopus 로고    scopus 로고
    • Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast
    • Sedlak M, Ho NW. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 2004;21:671-84.
    • (2004) Yeast , vol.21 , pp. 671-684
    • Sedlak, M.1    Ho, N.W.2
  • 58
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microb 2003;69:1990-8.
    • (2003) Appl Environ Microb , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 59
    • 80053902438 scopus 로고    scopus 로고
    • Improving l-Arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of l-Arabinose transporting sugar transporters
    • Subtil T, Boles E. Improving l-Arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of l-Arabinose transporting sugar transporters. Biotechnol Biofuels 2011;4:1990-8.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 1990-1998
    • Subtil, T.1    Boles, E.2
  • 60
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012;5:14.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 61
    • 0036799466 scopus 로고    scopus 로고
    • Putative xylose and arabinose reductases in Saccharomyces cerevisiae
    • Tr ?aff K, Jnsson LJ, Hahn-Hgerdal B. Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 2002;19:1233-41.
    • (2002) Yeast , vol.19 , pp. 1233-1241
    • Traff, K.1    Jnsson, L.J.2    Hahn-Hgerdal, B.3
  • 62
    • 33750621979 scopus 로고    scopus 로고
    • Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status
    • van Maris AJ, Abbott DA, Bellissimi E et al. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Leeuw 2006;90:391-418.
    • (2006) Anton Leeuw , vol.90 , pp. 391-418
    • Van Maris, A.J.1    Abbott, D.A.2    Bellissimi, E.3
  • 63
    • 0025304034 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn C, Postma E, Scheffers WA et al. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Microbiology 1990;136:395-403.
    • (1990) Microbiology , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3
  • 64
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA et al. Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3
  • 65
    • 85053495681 scopus 로고    scopus 로고
    • Mutations in the galactose-Transporter gene GAL2 enable anaerobic growth of glucose-phosphorylation-negative, arabinose-fermenting yeast strains in the presence of glucose
    • Verhoeven MD, Bracher JM, Nijland JG et al. Mutations in the galactose-Transporter gene GAL2 enable anaerobic growth of glucose-phosphorylation-negative, arabinose-fermenting yeast strains in the presence of glucose. FEMS Yeast Res 2018;18:foy062.
    • (2018) FEMS Yeast Res , vol.18 , pp. foy062
    • Verhoeven, M.D.1    Bracher, J.M.2    Nijland, J.G.3
  • 66
    • 85017464092 scopus 로고    scopus 로고
    • Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis
    • Verhoeven MD, Lee M, Kamoen L et al. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Sci Rep 2017;7:46155.
    • (2017) Sci Rep , vol.7 , pp. 46155
    • Verhoeven, M.D.1    Lee, M.2    Kamoen, L.3
  • 67
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M, Hallborn J, Penttil M et al. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microb 1995;61:4184-90.
    • (1995) Appl Environ Microb , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttil, M.3
  • 68
    • 85025650633 scopus 로고    scopus 로고
    • Identification of important amino acids in Gal2p for improving the l-Arabinose transport and metabolism in Saccharomyces cerevisiae
    • Wang C, Li Y, Qiu C et al. Identification of important amino acids in Gal2p for improving the l-Arabinose transport and metabolism in Saccharomyces cerevisiae. Front Microbiol 2017a;8:1391.
    • (2017) Front Microbiol , vol.8 , pp. 1391
    • Wang, C.1    Li, Y.2    Qiu, C.3
  • 69
    • 85018655538 scopus 로고    scopus 로고
    • Coutilization of d-glucose, d-xylose, and l-Arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering
    • Wang C, Zhao J, Qiu C et al. Coutilization of d-glucose, d-xylose, and l-Arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering. Biomed Res Int 2017b;2017:5318232.
    • (2017) Biomed Res Int , vol.2017 , pp. 5318232
    • Wang, C.1    Zhao, J.2    Qiu, C.3
  • 70
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
    • Watanabe S, Saleh AA, Pack SP et al. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007;153:3044-54.
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Saleh, A.A.2    Pack, S.P.3
  • 71
    • 78049451371 scopus 로고    scopus 로고
    • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
    • Wisselink HW, Cipollina C, Oud B et al. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 2010;12:537-51.
    • (2010) Metab Eng , vol.12 , pp. 537-551
    • Wisselink, H.W.1    Cipollina, C.2    Oud, B.3
  • 72
    • 34547752339 scopus 로고    scopus 로고
    • Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-Arabinose
    • Wisselink HW, Toirkens MJ, Del Rosario Franco Berriel M et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-Arabinose. Appl EnvironMicrob 2007;73:4881-91.
    • (2007) Appl EnvironMicrob , vol.73 , pp. 4881-4891
    • Wisselink, H.W.1    Toirkens, M.J.2    Del Rosario, F.B.M.3
  • 73
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink HW, Toirkens MJ, Wu Q et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microb 2009;75:907-14.
    • (2009) Appl Environ Microb , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3
  • 75
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • Wright J, Bellissimi E, De Hulster E et al. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2011;11:299-306.
    • (2011) FEMS Yeast Res , vol.11 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    De Hulster, E.3
  • 76
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H, Cheng JS, Wang BL et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012;14:611-22.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.