메뉴 건너뛰기




Volumn 18, Issue , 2018, Pages 1-46

Making better use of the crowd: How crowdsourcing can advance machine learning research

Author keywords

Behavioral experiments; Crowdsourcing; Data generation; Hybrid intelligence; Incentives; Mechanical turk; Model evaluation

Indexed keywords

ARTIFICIAL INTELLIGENCE; COGNITIVE SYSTEMS; CROWDSOURCING; LEARNING SYSTEMS; PROGRAM DEBUGGING;

EID: 85048744056     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (91)

References (229)
  • 1
    • 84879762326 scopus 로고    scopus 로고
    • Efficient market making via convex optimization, and a connection to online learning
    • Article
    • Jacob Abernethy, Yiling Chen, and Jennifer Wortman Vaughan. Efficient market making via convex optimization, and a connection to online learning. ACM Transactions on Economics and Computation, 1(2):Article 12, 2013.
    • (2013) ACM Transactions on Economics and Computation , vol.1 , Issue.2
    • Abernethy, J.1    Chen, Y.2    Vaughan, J.W.3
  • 2
    • 84980317079 scopus 로고    scopus 로고
    • How many workers to ask? Adaptive exploration for collecting high quality labels
    • Ittai Abraham, Omar Alonso, Vasilis Kandylas, Rajesh Patel, Steven Shelford, and Aleksandrs Slivkins. How many workers to ask? Adaptive exploration for collecting high quality labels. In SIGIR, 2016.
    • (2016) SIGIR
    • Abraham, I.1    Alonso, O.2    Kandylas, V.3    Patel, R.4    Shelford, S.5    Slivkins, A.6
  • 3
  • 4
    • 84875658677 scopus 로고    scopus 로고
    • Implementing crowdsourcing-based relevance experimentation: An industrial perspective
    • Omar Alonso. Implementing crowdsourcing-based relevance experimentation: An industrial perspective. Information Retrieval, 16(2):101-120, 2013.
    • (2013) Information Retrieval , vol.16 , Issue.2 , pp. 101-120
    • Alonso, O.1
  • 5
    • 65249129950 scopus 로고    scopus 로고
    • Crowdsourcing for relevance evaluation
    • Omar Alonso, Daniel E. Rose, and Benjamin Stewart. Crowdsourcing for relevance evaluation. ACM SigIR Forum, 42(2):9-15, 2008.
    • (2008) ACM SigIR Forum , vol.42 , Issue.2 , pp. 9-15
    • Alonso, O.1    Rose, D.E.2    Stewart, B.3
  • 6
    • 84858211339 scopus 로고    scopus 로고
    • Collaborative workflow for crowdsourcing translation
    • Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Collaborative workflow for crowdsourcing translation. In CSCW, 2012.
    • (2012) CSCW
    • Ambati, V.1    Vogel, S.2    Carbonell, J.3
  • 7
    • 85066422029 scopus 로고    scopus 로고
    • Community clustering: Leveraging an academic crowd to form coherent conference sessions
    • Paul André, Haoqi Zhang, Juho Kim, Lydia B. Chilton, Steven P. Dow, and Robert C. Miller. Community clustering: Leveraging an academic crowd to form coherent conference sessions. In HCOMP, 2013.
    • (2013) HCOMP
    • André, P.1    Zhang, H.2    Kim, J.3    Chilton, L.B.4    Dow, S.P.5    Miller, R.C.6
  • 10
    • 85044085595 scopus 로고    scopus 로고
    • Crowdsourcing for multiple-choice question answering
    • Bahadir Ismail Aydin, Yavuz Selim Yilmaz, Yaliang Li, Qi Li, Jing Gao, and Murat Demirbas. Crowdsourcing for multiple-choice question answering. In AAAI, 2014.
    • (2014) AAAI
    • Aydin, B.I.1    Yilmaz, Y.S.2    Li, Y.3    Li, Q.4    Gao, J.5    Demirbas, M.6
  • 12
    • 84901658129 scopus 로고    scopus 로고
    • Two reasons to make aggregated probability forecasts more extreme
    • Jonathan Baron, Barbara A. Mellers, Philip E. Tetlock, Eric Stone, and Lyle H. Ungar. Two reasons to make aggregated probability forecasts more extreme. Decision Analysis, 11(2):133-145, 2014.
    • (2014) Decision Analysis , vol.11 , Issue.2 , pp. 133-145
    • Baron, J.1    Mellers, B.A.2    Tetlock, P.E.3    Stone, E.4    Ungar, L.H.5
  • 15
    • 85013072822 scopus 로고    scopus 로고
    • Attendee-sourcing: Exploring the design space of community-informed conference scheduling
    • Anant Bhardwaj, Juho Kim, Steven P. Dow, David Karger, Sam Madden, Robert C. Miller, and Haoqi Zhang. Attendee-sourcing: Exploring the design space of community-informed conference scheduling. In HCOMP, 2014.
    • (2014) HCOMP
    • Bhardwaj, A.1    Kim, J.2    Dow, S.P.3    Karger, D.4    Madden, S.5    Miller, R.C.6    Zhang, H.7
  • 20
    • 85114255699 scopus 로고    scopus 로고
    • Crowdsourcing multi-label classification for taxonomy creation
    • Jonathan Bragg, Mausam, and Daniel S. Weld. Crowdsourcing multi-label classification for taxonomy creation. In HCOMP, 2013.
    • (2013) HCOMP
    • Bragg, J.1    Mausam2    Weld, D.S.3
  • 21
    • 85048739379 scopus 로고    scopus 로고
    • FeatureInsight: Visual support for error-driven feature ideation in text classification
    • Michael Brooks, Saleema Amershi, Bongshin Lee, Steven Drucker, Ashish Kapoor, and Patrice Simard. FeatureInsight: Visual support for error-driven feature ideation in text classification. In IEEE VAST, 2015.
    • (2015) IEEE VAST
    • Brooks, M.1    Amershi, S.2    Lee, B.3    Drucker, S.4    Kapoor, A.5    Simard, P.6
  • 22
    • 79960392344 scopus 로고    scopus 로고
    • Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data?
    • Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1):3-5, 2011.
    • (2011) Perspectives on Psychological Science , vol.6 , Issue.1 , pp. 3-5
    • Buhrmester, M.1    Kwang, T.2    Gosling, S.D.3
  • 26
  • 27
    • 84894669519 scopus 로고    scopus 로고
    • Nonnaïveté among Amazon Mechanical Turk workers: Consequences and solutions for behavioral researchers
    • Jesse Chandler, Pam Mueller, and Gabriele Paolacci. Nonnaïveté among Amazon Mechanical Turk workers: Consequences and solutions for behavioral researchers. Behavior Research Methods, 46(1):112-130, 2014.
    • (2014) Behavior Research Methods , vol.46 , Issue.1 , pp. 112-130
    • Chandler, J.1    Mueller, P.2    Paolacci, G.3
  • 28
    • 85020091313 scopus 로고    scopus 로고
    • Lie for a dime: When most prescreening responses are honest but most study participants are imposters
    • Jesse J. Chandler and Gabriele Paolacci. Lie for a dime: When most prescreening responses are honest but most study participants are imposters. Social Psychological and Personality Science, 8(5):500-508, 2017.
    • (2017) Social Psychological and Personality Science , vol.8 , Issue.5 , pp. 500-508
    • Chandler, J.J.1    Paolacci, G.2
  • 29
  • 31
    • 80053191054 scopus 로고    scopus 로고
    • A utility framework for bounded-loss market makers
    • Yiling Chen and David M. Pennock. A utility framework for bounded-loss market makers. In UAI, 2007.
    • (2007) UAI
    • Chen, Y.1    Pennock, D.M.2
  • 32
    • 84879759041 scopus 로고    scopus 로고
    • A new understanding of prediction markets via no-regret learning
    • Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction markets via no-regret learning. In ACM EC, 2010.
    • (2010) ACM EC
    • Chen, Y.1    Vaughan, J.W.2
  • 36
    • 85021102916 scopus 로고    scopus 로고
    • Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
    • Special on Social and Technical Trade-Offs
    • Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big Data, Special Issue on Social and Technical Trade-Offs, 2017.
    • (2017) Big Data
    • Chouldechova, A.1
  • 38
    • 84893032455 scopus 로고    scopus 로고
    • Crowdsourced judgement elicitation with endogenous proficiency
    • Anirban Dasgupta and Arpita Ghosh. Crowdsourced judgement elicitation with endogenous proficiency. In WWW, 2013.
    • (2013) WWW
    • Dasgupta, A.1    Ghosh, A.2
  • 41
    • 84860873929 scopus 로고    scopus 로고
    • Zencrowd: Leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking
    • Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zencrowd: Leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In WWW, 2012.
    • (2012) WWW
    • Demartini, G.1    Difallah, D.E.2    Cudré-Mauroux, P.3
  • 43
    • 84925663297 scopus 로고    scopus 로고
    • Algorithm aversion: People erroneously avoid algorithms after seeing them err
    • Berkeley J. Dietvorst, Joseph P. Simmons, and Cade Massey. Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1):114, 2015.
    • (2015) Journal of Experimental Psychology: General , vol.144 , Issue.1 , pp. 114
    • Dietvorst, B.J.1    Simmons, J.P.2    Massey, C.3
  • 44
    • 84969926799 scopus 로고    scopus 로고
    • Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them
    • Berkeley J. Dietvorst, Joseph P. Simmons, and Cade Massey. Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them. Management Science, 2016.
    • (2016) Management Science
    • Dietvorst, B.J.1    Simmons, J.P.2    Massey, C.3
  • 46
    • 84867131265 scopus 로고    scopus 로고
    • Crowdsourcing and all-pay auctions
    • Dominic DiPalantino and Milan Vojnovic. Crowdsourcing and all-pay auctions. In ACM EC, 2009.
    • (2009) ACM EC
    • DiPalantino, D.1    Vojnovic, M.2
  • 48
    • 0036304961 scopus 로고    scopus 로고
    • The perceived utility of human and automated AIDS in a visual detection task
    • Mary T. Dzindolet, Linda G. Pierce, Hall P. Beck, and Lloyd A. Dawe. The perceived utility of human and automated aids in a visual detection task. Human Factors, 44(1): 79-94, 2002.
    • (2002) Human Factors , vol.44 , Issue.1 , pp. 79-94
    • Dzindolet, M.T.1    Pierce, L.G.2    Beck, H.P.3    Dawe, L.A.4
  • 50
    • 84957558382 scopus 로고    scopus 로고
    • Icrowd: An adaptive crowdsourcing framework
    • Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng. icrowd: An adaptive crowdsourcing framework. In SIGMOD, 2015.
    • (2015) SIGMOD
    • Fan, J.1    Li, G.2    Ooi, B.C.3    Tan, K.-L.4    Feng, J.5
  • 51
    • 84939609466 scopus 로고    scopus 로고
    • Improving paid microtasks through gamification and adaptive furtherance incentives
    • Oluwaseyi Feyisetan, Elena Simperl, Max Van Kleek, and Nigel Shadbolt. Improving paid microtasks through gamification and adaptive furtherance incentives. In WWW, 2015.
    • (2015) WWW
    • Feyisetan, O.1    Simperl, E.2    Van Kleek, M.3    Shadbolt, N.4
  • 53
    • 84998579474 scopus 로고    scopus 로고
    • Exact exponent in optimal rates for crowdsourcing
    • Chao Gao, Yu Lu, and Dengyong Zhou. Exact exponent in optimal rates for crowdsourcing. In ICML, 2016.
    • (2016) ICML
    • Gao, C.1    Lu, Y.2    Zhou, D.3
  • 54
    • 84876121693 scopus 로고    scopus 로고
    • Quality expectation-variance tradeoffs in crowdsourcing contests
    • Xi Alice Gao, Yoram Bachrach, Peter Key, and Thore Graepel. Quality expectation-variance tradeoffs in crowdsourcing contests. In AAAI, 2012.
    • (2012) AAAI
    • Gao, X.A.1    Bachrach, Y.2    Key, P.3    Graepel, T.4
  • 55
    • 85048777720 scopus 로고    scopus 로고
    • Trick or treat: Putting peer prediction to the test
    • Xi Alice Gao, Andrew Mao, Yiling Chen, and Ryan Prescott Adams. Trick or treat: Putting peer prediction to the test. In ACM EC, 2014.
    • (2014) ACM EC
    • Gao, X.A.1    Mao, A.2    Chen, Y.3    Adams, R.P.4
  • 56
    • 84959147559 scopus 로고    scopus 로고
    • Using keyword spotting to help humans correct captioning faster
    • Yashesh Gaur, Florian Metze, Yajie Miao, and Jeffrey P. Bigham. Using keyword spotting to help humans correct captioning faster. In INTERSPEECH, 2015.
    • (2015) INTERSPEECH
    • Gaur, Y.1    Metze, F.2    Miao, Y.3    Bigham, J.P.4
  • 57
    • 84994200760 scopus 로고    scopus 로고
    • Manipulating word lattices to incorporate human corrections
    • Yashesh Gaur, Florian Metze, and Jeffrey P. Bigham. Manipulating word lattices to incorporate human corrections. In INTERSPEECH, 2016.
    • (2016) INTERSPEECH
    • Gaur, Y.1    Metze, F.2    Bigham, J.P.3
  • 58
    • 85048799594 scopus 로고    scopus 로고
    • Scalable annotation of fine-grained objects without experts
    • Timnit Gebru, Jonathan Krause, Jia Deng, and Li Fei-Fei. Scalable annotation of fine-grained objects without experts. In CHI, 2017.
    • (2017) CHI
    • Gebru, T.1    Krause, J.2    Deng, J.3    Fei-Fei, L.4
  • 59
    • 79960270083 scopus 로고    scopus 로고
    • Who moderates the moderators? Crowdsourcing abuse detection in user-generated content
    • Arpita Ghosh, Satyen Kale, and Preston McAfee. Who moderates the moderators? Crowdsourcing abuse detection in user-generated content. In ACM EC, 2011.
    • (2011) ACM EC
    • Ghosh, A.1    Kale, S.2    McAfee, P.3
  • 64
    • 84963596897 scopus 로고    scopus 로고
    • The crowd is a collaborative network
    • Mary L. Gray, Siddharth Suri, Syed Shoaib Ali, and Deepti Kulkarni. The crowd is a collaborative network. In CSCW, 2016.
    • (2016) CSCW
    • Gray, M.L.1    Suri, S.2    Ali, S.S.3    Kulkarni, D.4
  • 67
    • 0037258594 scopus 로고    scopus 로고
    • Combinatorial information market design
    • Robin Hanson. Combinatorial information market design. Information Systems Frontiers, 5(1):105-119, 2003.
    • (2003) Information Systems Frontiers , vol.5 , Issue.1 , pp. 105-119
    • Hanson, R.1
  • 68
    • 84856146589 scopus 로고    scopus 로고
    • You're hired! An examination of crowdsourcing incentive models in human resource tasks
    • Christopher G. Harris. You're hired! An examination of crowdsourcing incentive models in human resource tasks. In WSDM Workshop on Crwdsourcing for Search and Data Mining, 2011.
    • (2011) WSDM Workshop on Crwdsourcing for Search and Data Mining
    • Harris, C.G.1
  • 69
    • 77953992027 scopus 로고    scopus 로고
    • Crowdsourcing graphical perception: Using Mechanical Turk to assess visualization design
    • Jeffrey Heer and Michael Bostock. Crowdsourcing graphical perception: Using Mechanical Turk to assess visualization design. In CHI, 2010.
    • (2010) CHI
    • Heer, J.1    Bostock, M.2
  • 70
    • 85167446452 scopus 로고    scopus 로고
    • The crowd-median algorithm
    • Hannes Heikinheimo and Antti Ukkonen. The crowd-median algorithm. In HCOMP, 2013.
    • (2013) HCOMP
    • Heikinheimo, H.1    Ukkonen, A.2
  • 71
    • 84886397297 scopus 로고    scopus 로고
    • Online task assignment in crowdsourcing markets
    • Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowdsourcing markets. In AAAI, 2012.
    • (2012) AAAI
    • Ho, C.-J.1    Vaughan, J.W.2
  • 72
    • 84897504552 scopus 로고    scopus 로고
    • Adaptive task assignment for crowdsourced classification
    • Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive task assignment for crowdsourced classification. In ICML, 2013.
    • (2013) ICML
    • Ho, C.-J.1    Jabbari, S.2    Vaughan, J.W.3
  • 73
    • 84968835134 scopus 로고    scopus 로고
    • Incen-tivizing high quality crowdwork
    • Chien-Ju Ho, Aleksandrs Slivkins, Siddharth Suri, and Jennifer Wortman Vaughan. Incen-tivizing high quality crowdwork. In WWW, 2015.
    • (2015) WWW
    • Ho, C.-J.1    Slivkins, A.2    Suri, S.3    Vaughan, J.W.4
  • 74
    • 84958047672 scopus 로고    scopus 로고
    • Adaptive contract design for crowdsourcing markets: Bandit algorithms for repeated principal-agent problems
    • Chien-Ju Ho, Aleksandrs Slivkins, and Jennifer Wortman Vaughan. Adaptive contract design for crowdsourcing markets: Bandit algorithms for repeated principal-agent problems. Journal of Artificial Intelligence Research, 55:317-359, 2016.
    • (2016) Journal of Artificial Intelligence Research , vol.55 , pp. 317-359
    • Ho, C.-J.1    Slivkins, A.2    Vaughan, J.W.3
  • 75
    • 79960844583 scopus 로고    scopus 로고
    • The online laboratory: Conducting experiments in a real labor market
    • John J. Horton, David Rand, and Richard Zeckhauser. The online laboratory: Conducting experiments in a real labor market. Experimental Economics, 14(3):399-425, 2011.
    • (2011) Experimental Economics , vol.14 , Issue.3 , pp. 399-425
    • Horton, J.J.1    Rand, D.2    Zeckhauser, R.3
  • 77
    • 84899004690 scopus 로고    scopus 로고
    • Turkopticon: Interrupting worker invisibility in Amazon Mechanical Turk
    • Lilly C. Irani and M. Six Silberman. Turkopticon: Interrupting worker invisibility in Amazon Mechanical Turk. In CHI, 2013.
    • (2013) CHI
    • Irani, L.C.1    Six Silberman, M.2
  • 78
    • 85021626555 scopus 로고    scopus 로고
    • Understanding workers, developing effective tasks, and enhancing marketplace dynamics: A study of a large crowdsourcing marketplace
    • Ayush Jain, Akash Das Sarma, Aditya Parameswaran, and Jennifer Widom. Understanding workers, developing effective tasks, and enhancing marketplace dynamics: A study of a large crowdsourcing marketplace. Proceedings of the VLDB Endowment, 10(7):829-840, 2017.
    • (2017) Proceedings of The VLDB Endowment , vol.10 , Issue.7 , pp. 829-840
    • Jain, A.1    Sarma, A.D.2    Parameswaran, A.3    Widom, J.4
  • 81
    • 85006100710 scopus 로고    scopus 로고
    • Directions in hybrid intelligence: Complementing AI systems with human intelligence
    • Ece Kamar. Directions in hybrid intelligence: Complementing AI systems with human intelligence. Abstract for IJCAI Early Career Spotlight Track Talk, 2016.
    • (2016) Abstract for IJCAI Early Career Spotlight Track Talk
    • Kamar, E.1
  • 82
    • 84906997869 scopus 로고    scopus 로고
    • Incentives for truthful reporting in crowdsourcing (short paper)
    • Ece Kamar and Eric Horvitz. Incentives for truthful reporting in crowdsourcing (short paper). In AAMAS, 2012.
    • (2012) AAMAS
    • Kamar, E.1    Horvitz, E.2
  • 83
    • 85048771058 scopus 로고    scopus 로고
    • Truth serums for massively crowdsourced evaluation tasks
    • Vijay Kamble, David Marn, Nihar Shah, Abhay Parekh, and Kannan Ramachandran. Truth serums for massively crowdsourced evaluation tasks. CoRR arXiv:1507.07045, 2015.
    • (2015) CoRR
    • Kamble, V.1    Marn, D.2    Shah, N.3    Parekh, A.4    Ramachandran, K.5
  • 84
    • 85083954103 scopus 로고    scopus 로고
    • Bayesian representation learning with oracle constraints
    • Theofanis Karaletsos, Serge Belongie, and Gunnar Rätsch. Bayesian representation learning with oracle constraints. In ICLR, 2016.
    • (2016) ICLR
    • Karaletsos, T.1    Belongie, S.2    Rätsch, G.3
  • 85
    • 85162483531 scopus 로고    scopus 로고
    • Iterative learning for reliable crowdsourcing systems
    • David Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing systems. In NIPS, 2011.
    • (2011) NIPS
    • Karger, D.1    Oh, S.2    Shah, D.3
  • 86
    • 84896842331 scopus 로고    scopus 로고
    • Budget-optimal task allocation for reliable crowdsourcing systems
    • David Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal task allocation for reliable crowdsourcing systems. Operations Research, 62:1-24, 2014.
    • (2014) Operations Research , vol.62 , pp. 1-24
    • Karger, D.1    Oh, S.2    Shah, D.3
  • 87
    • 84860863465 scopus 로고    scopus 로고
    • In search of quality in crowdsourcing for search engine evaluation
    • Gabriella Kazai. In search of quality in crowdsourcing for search engine evaluation. In ECIR, 2011.
    • (2011) ECIR
    • Kazai, G.1
  • 88
    • 85011336703 scopus 로고    scopus 로고
    • Achieving budget-optimality with adaptive schemes in crowdsourcing
    • Ashish Khetan and Sewoong Oh. Achieving budget-optimality with adaptive schemes in crowdsourcing. In NIPS, 2016.
    • (2016) NIPS
    • Khetan, A.1    Oh, S.2
  • 89
    • 84908590703 scopus 로고    scopus 로고
    • Bayesian classifier combination
    • Hyun-Chul Kim and Zoubin Ghahramani. Bayesian classifier combination. In AISTATS, 2012.
    • (2012) AISTATS
    • Kim, H.-C.1    Ghahramani, Z.2
  • 90
    • 85014759092 scopus 로고    scopus 로고
    • Mechanical novel: Crowdsourcing complex work through reflection and revision
    • Joy Kim, Sarah Sterman, Allegra Argent Beal Cohen, and Michael S. Bernstein. Mechanical novel: Crowdsourcing complex work through reflection and revision. In CSCW, 2017.
    • (2017) CSCW
    • Kim, J.1    Sterman, S.2    Cohen, A.A.B.3    Bernstein, M.S.4
  • 92
    • 57649217556 scopus 로고    scopus 로고
    • Crowdsourcing user studies with Mechanical Turk
    • Aniket Kittur, Ed Chi, and Bongwon Suh. Crowdsourcing user studies with Mechanical Turk. In CHI, 2008.
    • (2008) CHI
    • Kittur, A.1    Chi, E.2    Suh, B.3
  • 93
    • 80755168388 scopus 로고    scopus 로고
    • Crowdforge: Crowdsourcing complex work
    • Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. Crowdforge: Crowdsourcing complex work. In UIST, 2011.
    • (2011) UIST
    • Kittur, A.1    Smus, B.2    Khamkar, S.3    Kraut, R.E.4
  • 95
    • 85048455773 scopus 로고    scopus 로고
    • Understanding black-box predictions via influence functions
    • Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In ICML, 2017.
    • (2017) ICML
    • Koh, P.W.1    Liang, P.2
  • 98
    • 84869855459 scopus 로고    scopus 로고
    • A readability evaluation of real-time crowd captions in the classroom
    • Raja S. Kushalnagar, Walter S. Lasecki, and Jeffrey P. Bigham. A readability evaluation of real-time crowd captions in the classroom. In ASSETS, 2012.
    • (2012) ASSETS
    • Kushalnagar, R.S.1    Lasecki, W.S.2    Bigham, J.P.3
  • 99
    • 84869835491 scopus 로고    scopus 로고
    • Online quality control for real-time crowd captioning
    • Walter S. Lasecki and Jeffrey P. Bigham. Online quality control for real-time crowd captioning. In ASSETS, 2012.
    • (2012) ASSETS
    • Lasecki, W.S.1    Bigham, J.P.2
  • 101
    • 84877983946 scopus 로고    scopus 로고
    • Warping time for more effective real-time crowdsourcing
    • Walter S. Lasecki, Christopher D. Miller, and Jeffrey P. Bigham. Warping time for more effective real-time crowdsourcing. In CHI, 2013.
    • (2013) CHI
    • Lasecki, W.S.1    Miller, C.D.2    Bigham, J.P.3
  • 103
    • 85015044190 scopus 로고    scopus 로고
    • Curiosity killed the cat, but makes crowdwork better
    • Edith Law, Ming Yin, Joslin Goh, Kevin Chen, Michael Terry, and Krzysztof Z. Gajos. Curiosity killed the cat, but makes crowdwork better. In CHI, 2016.
    • (2016) CHI
    • Law, E.1    Yin, M.2    Goh, J.3    Chen, K.4    Terry, M.5    Gajos, K.Z.6
  • 106
    • 0034352262 scopus 로고    scopus 로고
    • The practical use of the A* algorithm for exact multiple sequence alignment
    • Martin Lermen and Knut Reinert. The practical use of the A* algorithm for exact multiple sequence alignment. Journal of Computational Biology, 7(5):655-671, 2000.
    • (2000) Journal of Computational Biology , vol.7 , Issue.5 , pp. 655-671
    • Lermen, M.1    Reinert, K.2
  • 109
    • 84904367424 scopus 로고    scopus 로고
    • Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation
    • Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation. In SIGMOD, 2014b.
    • (2014) SIGMOD
    • Li, Q.1    Li, Y.2    Gao, J.3    Zhao, B.4    Fan, W.5    Han, J.6
  • 111
    • 84939895552 scopus 로고    scopus 로고
    • The relationship between motivation, monetary compensation, and data quality among US- And India-based workers on Mechanical Turk
    • Leib Litman, Jonathan Robinson, and Cheskie Rosenzweig. The relationship between motivation, monetary compensation, and data quality among US- and India-based workers on Mechanical Turk. Behavioral Research Methods, 47(2):519-528, 2014.
    • (2014) Behavioral Research Methods , vol.47 , Issue.2 , pp. 519-528
    • Litman, L.1    Robinson, J.2    Rosenzweig, C.3
  • 112
    • 84877752474 scopus 로고    scopus 로고
    • Variational inference for crowdsourcing
    • Qiang Liu, Jian Peng, and Alexander Ihler. Variational inference for crowdsourcing. In NIPS, 2012a.
    • (2012) NIPS
    • Liu, Q.1    Peng, J.2    Ihler, A.3
  • 113
    • 84898947098 scopus 로고    scopus 로고
    • Scoring workers in crowdsourcing: How many control questions are enough?
    • Qiang Liu, Mark Steyvers, and Alexander Ihler. Scoring workers in crowdsourcing: How many control questions are enough? In NIPS, 2013.
    • (2013) NIPS
    • Liu, Q.1    Steyvers, M.2    Ihler, A.3
  • 117
    • 84866050054 scopus 로고    scopus 로고
    • Intelligible models for classification and regression
    • Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification and regression. In KDD, 2012.
    • (2012) KDD
    • Lou, Y.1    Caruana, R.2    Gehrke, J.3
  • 118
    • 84991616590 scopus 로고    scopus 로고
    • Accurate intelligible models with pairwise interactions
    • Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with pairwise interactions. In KDD, 2013.
    • (2013) KDD
    • Lou, Y.1    Caruana, R.2    Gehrke, J.3    Hooker, G.4
  • 119
    • 84954098959 scopus 로고    scopus 로고
    • FaitCrowd: Fine grained truth discovery for crowdsourced data aggregation
    • Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing Gao, Shi Zhi, Lu Su, Bo Zhao, Heng Ji, and Jiawei Han. FaitCrowd: Fine grained truth discovery for crowdsourced data aggregation. In SIGMOD, 2015.
    • (2015) SIGMOD
    • Ma, F.1    Li, Y.2    Li, Q.3    Qiu, M.4    Gao, J.5    Zhi, S.6    Su, L.7    Zhao, B.8    Ji, H.9    Han, J.10
  • 121
    • 85039412602 scopus 로고
    • Heuristics for designing enjoyable user interfaces: Lessons from computer games
    • Thomas W. Malone. Heuristics for designing enjoyable user interfaces: Lessons from computer games. In CHI, 1982.
    • (1982) CHI
    • Malone, T.W.1
  • 124
    • 82655180226 scopus 로고    scopus 로고
    • Conducting behavioral research on Amazon's Mechanical Turk
    • Winter Mason and Siddharth Suri. Conducting behavioral research on Amazon's Mechanical Turk. Behavior Research Methods, 44(1):1-23, 2012.
    • (2012) Behavior Research Methods , vol.44 , Issue.1 , pp. 1-23
    • Mason, W.1    Suri, S.2
  • 125
    • 70449657723 scopus 로고    scopus 로고
    • Financial incentives and the “performance of crowds
    • Winter Mason and Duncan J. Watts. Financial incentives and the “performance of crowds”. In HCOMP, 2009.
    • (2009) HCOMP
    • Mason, W.1    Watts, D.J.2
  • 126
    • 85048791419 scopus 로고    scopus 로고
    • Clustering via crowdsourcing
    • Arya Mazumdar and Barna Saha. Clustering via crowdsourcing. CoRR arXiv:1604.01839, 2016.
    • (2016) CoRR
    • Mazumdar, A.1    Saha, B.2
  • 129
    • 25844515285 scopus 로고    scopus 로고
    • Eliciting informative feedback: The peer-prediction method
    • Nolan Miller, Paul Resnick, and Richard Zeckhauser. Eliciting informative feedback: The peer-prediction method. Management Science, 51(9):1359-1373, 2005.
    • (2005) Management Science , vol.51 , Issue.9 , pp. 1359-1373
    • Miller, N.1    Resnick, P.2    Zeckhauser, R.3
  • 130
    • 84887361716 scopus 로고    scopus 로고
    • Analyzing semantic segmentation using hybrid human-machine CRFs
    • Roozbeh Mottaghi, Sanja Fidler, Jian Yao, Raquel Urtasun, and Devi Parikh. Analyzing semantic segmentation using hybrid human-machine CRFs. In CVPR, 2013.
    • (2013) CVPR
    • Mottaghi, R.1    Fidler, S.2    Yao, J.3    Urtasun, R.4    Parikh, D.5
  • 132
    • 84901371496 scopus 로고    scopus 로고
    • Text alignment for real-time crowd captioning
    • Iftekhar Naim, Daniel Gildea, Walter Lasecki, and Jeffrey P. Bigham. Text alignment for real-time crowd captioning. In NAACL, 2013.
    • (2013) NAACL
    • Naim, I.1    Gildea, D.2    Lasecki, W.3    Bigham, J.P.4
  • 133
    • 85162543244 scopus 로고    scopus 로고
    • Improving topic coherence with regularized topic models
    • David Newman, Edwin V. Bonilla, and Wray Buntine. Improving topic coherence with regularized topic models. In NIPS, 2011.
    • (2011) NIPS
    • Newman, D.1    Bonilla, E.V.2    Buntine, W.3
  • 134
    • 85030469300 scopus 로고    scopus 로고
    • On human intellect and machine failures: Troubleshooting integrative machine learning systems
    • Besmira Nushi, Ece Kamar, Donald Kossmann, and Eric Horvitz. On human intellect and machine failures: Troubleshooting integrative machine learning systems. In AAAI, 2017.
    • (2017) AAAI
    • Nushi, B.1    Kamar, E.2    Kossmann, D.3    Horvitz, E.4
  • 135
    • 84923421915 scopus 로고    scopus 로고
    • Programmatic gold: Targeted and scalable quality assurance in crowdsourcing
    • David Oleson, Alexander Sorokin, Greg Laughlin, Vaughn Hester, John Le, and Lukas Biewald. Programmatic gold: Targeted and scalable quality assurance in crowdsourcing. In HCOMP, 2011.
    • (2011) HCOMP
    • Oleson, D.1    Sorokin, A.2    Laughlin, G.3    Hester, V.4    Le, J.5    Biewald, L.6
  • 138
    • 78649593360 scopus 로고    scopus 로고
    • Gestalt: Integrated support for implementation and analysis in machine learning processes
    • Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Andrew J. Ko, and James A. Landay. Gestalt: Integrated support for implementation and analysis in machine learning processes. In UIST, 2010.
    • (2010) UIST
    • Patel, K.1    Bancroft, N.2    Drucker, S.M.3    Fogarty, J.4    Ko, A.J.5    Landay, J.A.6
  • 139
    • 84866637964 scopus 로고    scopus 로고
    • Sun attribute database: Discovering, annotating, and recognizing scene attributes
    • Genevieve Patterson and James Hays. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In CVPR, 2012.
    • (2012) CVPR
    • Patterson, G.1    Hays, J.2
  • 140
    • 84900870389 scopus 로고    scopus 로고
    • The sun attribute database: Beyond categories for deeper scene understanding
    • Genevieve Patterson, Chen Xu, Hang Su, and James Hays. The sun attribute database: Beyond categories for deeper scene understanding. International Journal of Computer Vision, 108(1-2):59-81, 2014.
    • (2014) International Journal of Computer Vision , vol.108 , Issue.1-2 , pp. 59-81
    • Patterson, G.1    Xu, C.2    Su, H.3    Hays, J.4
  • 142
    • 84928205991 scopus 로고    scopus 로고
    • Discovering health topics in social media using topic models
    • Michael J. Paul and Mark Dredze. Discovering health topics in social media using topic models. PloS one, 9(8):e103408, 2014.
    • (2014) PloS One , vol.9 , Issue.8 , pp. e103408
    • Paul, M.J.1    Dredze, M.2
  • 144
    • 85048830380 scopus 로고    scopus 로고
    • Beyond the Turk: An empirical comparison of alternative platforms for crowdsourcing online behavioral research
    • Eyal Peera, Laura Brandimarteb, Sonam Samatc, and Alessandro Acquistic. Beyond the Turk: An empirical comparison of alternative platforms for crowdsourcing online behavioral research. Journal of Experimental Social Psychology, 70:153-163, 2017.
    • (2017) Journal of Experimental Social Psychology , vol.70 , pp. 153-163
    • Peera, E.1    Brandimarteb, L.2    Samatc, S.3    Acquistic, A.4
  • 147
    • 5644221311 scopus 로고    scopus 로고
    • A Bayesian truth serum for subjective data
    • Drazen Prelec. A Bayesian truth serum for subjective data. Science, 306(5695):462-466, 2004.
    • (2004) Science , vol.306 , Issue.5695 , pp. 462-466
    • Prelec, D.1
  • 148
    • 85016162849 scopus 로고    scopus 로고
    • A solution to the single-question crowd wisdom problem
    • Drazen Prelec, H. Sebastian Seung, and John McCoy. A solution to the single-question crowd wisdom problem. Nature, 541:532-535, 2017.
    • (2017) Nature , vol.541 , pp. 532-535
    • Prelec, D.1    Sebastian Seung, H.2    McCoy, J.3
  • 150
    • 84893347052 scopus 로고    scopus 로고
    • A robust Bayesian truth serum for non-binary signals
    • Goran Radanovic and Boi Faltings. A robust Bayesian truth serum for non-binary signals. In AAAI, 2013.
    • (2013) AAAI
    • Radanovic, G.1    Faltings, B.2
  • 152
    • 85048842012 scopus 로고    scopus 로고
    • ProPublica article accessed at
    • Srinivas Rao and Amanda Michel. ProPublica's guide to Mechanical Turk. ProPublica article accessed at https://www.propublica.org/article/ propublicas-guide-to-mechanical-turk, 2016.
    • (2016) ProPublica'S Guide to Mechanical Turk
    • Rao, S.1    Michel, A.2
  • 154
    • 84984985889 scopus 로고    scopus 로고
    • Why should I trust you?: Explaining the predictions of any classifier
    • Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?: Explaining the predictions of any classifier. In KDD, 2016.
    • (2016) KDD
    • Ribeiro, M.T.1    Singh, S.2    Guestrin, C.3
  • 155
    • 85055086357 scopus 로고    scopus 로고
    • An assessment of intrinsic and extrinsic motivation on task performance in crowdsourcing markets
    • Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo, and Maja Vukovic. An assessment of intrinsic and extrinsic motivation on task performance in crowdsourcing markets. In ICWSM, 2011.
    • (2011) ICWSM
    • Rogstadius, J.1    Kostakos, V.2    Kittur, A.3    Smus, B.4    Laredo, J.5    Vukovic, M.6
  • 157
    • 84959184491 scopus 로고    scopus 로고
    • Best of both worlds: Human-machine collaboration for object annotation
    • Olga Russakovsky, Li-Jia Li, and Li Fei-Fei. Best of both worlds: Human-machine collaboration for object annotation. In CVPR, 2015b.
    • (2015) CVPR
    • Russakovsky, O.1    Li, L.-J.2    Fei-Fei, L.3
  • 158
    • 84951013363 scopus 로고    scopus 로고
    • We are dynamo: Overcoming stalling and friction in collective action for crowd workers
    • Niloufar Salehi, Lilly Irani, Michael Bernstein, Ali Alkhatib, Eva Ogbe, Kristy Milland, and Clickhappier. We are dynamo: Overcoming stalling and friction in collective action for crowd workers. In CHI, 2015.
    • (2015) CHI
    • Salehi, N.1    Irani, L.2    Bernstein, M.3    Alkhatib, A.4    Ogbe, E.5    Milland, K.6    Clickhappier7
  • 159
    • 85014796663 scopus 로고    scopus 로고
    • Communicating context to the crowd for complex writing tasks
    • Niloufar Salehi, Jaime Teevan, Shamsi Iqbal, and Ece Kamar. Communicating context to the crowd for complex writing tasks. In CSCW, 2017.
    • (2017) CSCW
    • Salehi, N.1    Teevan, J.2    Iqbal, S.3    Kamar, E.4
  • 160
    • 85003972524 scopus 로고    scopus 로고
    • Superforecasting: How to upgrade your company's judgment
    • Paul J. H. Schoemaker and Philip E. Tetlock. Superforecasting: How to upgrade your company's judgment. Harvard Business Review, 94:72-78, 2016.
    • (2016) Harvard Business Review , vol.94 , pp. 72-78
    • Schoemaker, P.J.H.1    Tetlock, P.E.2
  • 161
    • 85048780031 scopus 로고    scopus 로고
    • Reducing crowdsourcing to graphon estimation, statistically
    • Devavrat Shah and Christina E. Lee. Reducing crowdsourcing to graphon estimation, statistically. In AISTATS, 2018.
    • (2018) AISTATS
    • Shah, D.1    Lee, C.E.2
  • 162
    • 84969567943 scopus 로고    scopus 로고
    • Approval voting and incentives in crowdsourcing
    • Nihar Shah, Dengyong Zhou, and Yuval Peres. Approval voting and incentives in crowdsourcing. In ICML, 2015.
    • (2015) ICML
    • Shah, N.1    Zhou, D.2    Peres, Y.3
  • 163
    • 84995380129 scopus 로고    scopus 로고
    • Double or nothing: Multiplicative incentive mechanisms for crowdsourcing
    • Nihar B. Shah and Dengyong Zhou. Double or nothing: Multiplicative incentive mechanisms for crowdsourcing. Journal of Machine Learning Research, 17(165):1-52, 2016a.
    • (2016) Journal of Machine Learning Research , vol.17 , Issue.165 , pp. 1-52
    • Shah, N.B.1    Zhou, D.2
  • 164
    • 84997755074 scopus 로고    scopus 로고
    • No oops, you won't do it again: Mechanisms for self-correction in crowdsourcing
    • Nihar B. Shah and Dengyong Zhou. No oops, you won't do it again: Mechanisms for self-correction in crowdsourcing. In ICML, 2016b.
    • (2016) ICML
    • Shah, N.B.1    Zhou, D.2
  • 165
    • 79955134548 scopus 로고    scopus 로고
    • Designing incentives for inexpert human raters
    • Aaron D. Shaw, John J. Horton, and Daniel L. Chen. Designing incentives for inexpert human raters. In CSCW, 2011.
    • (2011) CSCW
    • Shaw, A.D.1    Horton, J.J.2    Chen, D.L.3
  • 166
    • 84897489785 scopus 로고    scopus 로고
    • Get another label? Improving data quality using multiple, noisy labelers
    • Victor Sheng, Foster Provost, and Panagiotis Ipeirotis. Get another label? Improving data quality using multiple, noisy labelers. In KDD, 2008.
    • (2008) KDD
    • Sheng, V.1    Provost, F.2    Ipeirotis, P.3
  • 171
    • 84871259397 scopus 로고    scopus 로고
    • Common (mis)beliefs about memory: A replication and comparison of telephone and Mechanical Turk survey methods
    • Daniel J. Simons and Christopher F. Chabris. Common (mis)beliefs about memory: A replication and comparison of telephone and Mechanical Turk survey methods. PLoS ONE, 7(12), 2012.
    • (2012) PLoS ONE , vol.7 , Issue.12
    • Simons, D.J.1    Chabris, C.F.2
  • 173
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks
    • Rion Snow, Brendan O'Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks. In EMNLP, 2008.
    • (2008) EMNLP
    • Snow, R.1    O'Connor, B.2    Jurafsky, D.3    Ng, A.Y.4
  • 174
    • 52049123532 scopus 로고    scopus 로고
    • Utility data annotation with Amazon Mechanical Turk
    • June
    • Alexander Sorokin and David Forsyth. Utility data annotation with Amazon Mechanical Turk. In CVPRW, June 2008.
    • (2008) CVPRW
    • Sorokin, A.1    Forsyth, D.2
  • 176
    • 85049065443 scopus 로고    scopus 로고
    • Crowdsourcing annotations for visual object detection
    • Hao Su, Jia Deng, and Li Fei-Fei. Crowdsourcing annotations for visual object detection. In HCOMP, 2012.
    • (2012) HCOMP
    • Su, H.1    Deng, J.2    Fei-Fei, L.3
  • 177
    • 79952666748 scopus 로고    scopus 로고
    • Cooperation and contagion in web-based, networked public goods experiments
    • Siddharth Suri and Duncan J. Watts. Cooperation and contagion in web-based, networked public goods experiments. PLoS ONE, 6(3), 2011.
    • (2011) PLoS ONE , vol.6 , Issue.3
    • Suri, S.1    Watts, D.J.2
  • 178
    • 84973606400 scopus 로고    scopus 로고
    • Honesty in an online labor market
    • Siddharth Suri, Daniel Goldstein, and Winter Mason. Honesty in an online labor market. In HCOMP, 2011.
    • (2011) HCOMP
    • Suri, S.1    Goldstein, D.2    Mason, W.3
  • 179
    • 84877913053 scopus 로고    scopus 로고
    • Discrimination in online ad delivery
    • Latanya Sweeney. Discrimination in online ad delivery. Communications of the ACM, 56 (5):44-54, 2013.
    • (2013) Communications of The ACM , vol.56 , Issue.5 , pp. 44-54
    • Sweeney, L.1
  • 181
    • 85015081717 scopus 로고    scopus 로고
    • Supporting collaborative writing with microtasks
    • Jaime Teevan, Shamsi Iqbal, and Curtis von Veh. Supporting collaborative writing with microtasks. In CHI, 2016.
    • (2016) CHI
    • Teevan, J.1    Iqbal, S.2    Von Veh, C.3
  • 182
    • 85011371264 scopus 로고    scopus 로고
    • Bringing probability judgments into policy debates via forecasting tournaments
    • Philip E. Tetlock, Barbara A. Mellers, and J. Peter Scoblic. Bringing probability judgments into policy debates via forecasting tournaments. Science, 355(6324):481-483, 2017.
    • (2017) Science , vol.355 , Issue.6324 , pp. 481-483
    • Tetlock, P.E.1    Mellers, B.A.2    Peter Scoblic, J.3
  • 183
    • 84965121902 scopus 로고    scopus 로고
    • Max-margin majority voting for learning from crowds
    • Tian Tian and Jun Zhu. Max-margin majority voting for learning from crowds. In NIPS, 2015.
    • (2015) NIPS
    • Tian, T.1    Zhu, J.2
  • 185
    • 84995365235 scopus 로고    scopus 로고
    • Do users' perceptions of password security match reality?
    • Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, and Lorrie Faith Cranor Nicolas Christin. Do users' perceptions of password security match reality? In CHI, 2016.
    • (2016) CHI
    • Ur, B.1    Bees, J.2    Segreti, S.M.3    Bauer, L.4    Christin, L.F.C.N.5
  • 186
    • 84959508477 scopus 로고    scopus 로고
    • Supersparse linear integer models for optimized medical scoring systems
    • Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized medical scoring systems. Machine Learning Journal, 102(3):349-391, 2016.
    • (2016) Machine Learning Journal , vol.102 , Issue.3 , pp. 349-391
    • Ustun, B.1    Rudin, C.2
  • 187
    • 84963565613 scopus 로고    scopus 로고
    • Beyond mechanical turk: An analysis of paid crowd work platforms
    • Donna Vakharia and Matthew Lease. Beyond Mechanical Turk: An analysis of paid crowd work platforms. In Proceedings of the iConference, 2015.
    • (2015) Proceedings of The iConference
    • Vakharia, D.1    Lease, M.2
  • 188
    • 84909581998 scopus 로고    scopus 로고
    • Community-based Bayesian aggregation models for crowdsourcing
    • Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shokouhi. Community-based Bayesian aggregation models for crowdsourcing. In WWW, 2014.
    • (2014) WWW
    • Venanzi, M.1    Guiver, J.2    Kazai, G.3    Kohli, P.4    Shokouhi, M.5
  • 190
    • 70450197013 scopus 로고    scopus 로고
    • What's it going to cost you?: Predicting effort vs. Informativeness for multi-label image annotations
    • Sudheendra Vijayanarasimhan and Kristen Grauman. What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations. In CVPR, 2009.
    • (2009) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 191
    • 85019171270 scopus 로고    scopus 로고
    • Crowdsourced clustering: Querying edges vs triangles
    • Ramya Korlakai Vinayak and Babak Hassibi. Crowdsourced clustering: Querying edges vs triangles. In NIPS, 2016.
    • (2016) NIPS
    • Vinayak, R.K.1    Hassibi, B.2
  • 192
    • 84937908958 scopus 로고    scopus 로고
    • Graph clustering with missing data: Convex algorithms and analysis
    • Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. Graph clustering with missing data: Convex algorithms and analysis. In NIPS, 2014.
    • (2014) NIPS
    • Vinayak, R.K.1    Oymak, S.2    Hassibi, B.3
  • 193
    • 4544353199 scopus 로고    scopus 로고
    • Labeling images with a computer game
    • Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In CHI, 2004.
    • (2004) CHI
    • Von Ahn, L.1    Dabbish, L.2
  • 194
    • 49249119915 scopus 로고    scopus 로고
    • General techniques for designing games with a purpose
    • August
    • Luis von Ahn and Laura Dabbish. General techniques for designing games with a purpose. Communications of the ACM, 51(8):58-67, August 2008.
    • (2008) Communications of The ACM , vol.51 , Issue.8 , pp. 58-67
    • Von Ahn, L.1    Dabbish, L.2
  • 196
  • 197
    • 85048786272 scopus 로고    scopus 로고
    • Verbosity: A game for collecting commonsense knowledge
    • Luis von Ahn, Mihir Kedia, and Manuel Blum. Verbosity: A game for collecting commonsense knowledge. In CHI Notes, 2006.
    • (2006) CHI Notes
    • Von Ahn, L.1    Kedia, M.2    Blum, M.3
  • 198
    • 51749107030 scopus 로고    scopus 로고
    • ReCAPTCHA: Human-based character recognition via web security measures
    • Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and Manuel Blum. reCAPTCHA: Human-based character recognition via web security measures. Science, 321(5895):1465-1468, 2008.
    • (2008) Science , vol.321 , Issue.5895 , pp. 1465-1468
    • Von Ahn, L.1    Maurer, B.2    McMillen, C.3    Abraham, D.4    Blum, M.5
  • 199
    • 85167458387 scopus 로고    scopus 로고
    • Output agreement mechanisms and common knowledge
    • Bo Waggoner and Yiling Chen. Output agreement mechanisms and common knowledge. In HCOMP, 2014.
    • (2014) HCOMP
    • Waggoner, B.1    Chen, Y.2
  • 201
    • 84911368243 scopus 로고    scopus 로고
    • Similarity comparisons for interactive fine-grained categorization
    • Catherine Wah, Grant Van Horn, Steve Branson, Subhransu Maji, Pietro Perona, and Serge Belongie. Similarity comparisons for interactive fine-grained categorization. In CVPR, 2014.
    • (2014) CVPR
    • Wah, C.1    Van Horn, G.2    Branson, S.3    Maji, S.4    Perona, P.5    Belongie, S.6
  • 204
    • 84866038973 scopus 로고    scopus 로고
    • Active spectral clustering via iterative uncertainty reduction
    • Fabian L. Wauthier, Nebojsa Jojic, and Michael I. Jordan. Active spectral clustering via iterative uncertainty reduction. In KDD, 2012.
    • (2012) KDD
    • Wauthier, F.L.1    Jojic, N.2    Jordan, M.I.3
  • 206
    • 85020066608 scopus 로고    scopus 로고
    • Character misrepresentation by Amazon Turk workers: Assessment and solutions
    • Kathryn Sharpe Wessling, Joel Huber, and Oded Netzer. Character misrepresentation by Amazon Turk workers: Assessment and solutions. Journal of Consumer Research, 44(1): 211-230, 2017.
    • (2017) Journal of Consumer Research , vol.44 , Issue.1 , pp. 211-230
    • Wessling, K.S.1    Huber, J.2    Netzer, O.3
  • 207
    • 84860606252 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul L. Ruvolo. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In NIPS, 2009.
    • (2009) NIPS
    • Whitehill, J.1    Wu, T.-F.2    Bergsma, J.3    Movellan, J.R.4    Ruvolo, P.L.5
  • 208
    • 85167413808 scopus 로고    scopus 로고
    • Cost-effective hits for relative similarity comparisons
    • Michael Wilber, Sam Kwak, and Serge Belongie. Cost-effective hits for relative similarity comparisons. In HCOMP, 2014.
    • (2014) HCOMP
    • Wilber, M.1    Kwak, S.2    Belongie, S.3
  • 209
    • 84955491999 scopus 로고    scopus 로고
    • On the ethics of crowdsourced research
    • Vanessa Williamson. On the ethics of crowdsourced research. Political Science & Politics, 49(1):77-81, 2016.
    • (2016) Political Science & Politics , vol.49 , Issue.1 , pp. 77-81
    • Williamson, V.1
  • 213
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 214
    • 85029418102 scopus 로고    scopus 로고
    • When does more money work? Examining the role of perceived fairness in pay on the performance quality of crowdworkers
    • Teng Ye, Sangseok You, and Lionel P. Robert Jr. When does more money work? Examining the role of perceived fairness in pay on the performance quality of crowdworkers. In ICWSM, 2017.
    • (2017) ICWSM
    • Ye, T.1    You, S.2    Robert, L.P.3
  • 216
    • 84898946909 scopus 로고    scopus 로고
    • Crowdclustering with sparse pairwise labels: A matrix completion approach
    • Jinfeng Yi, Rong Jin, Anil K. Jain, and Shaili Jain. Crowdclustering with sparse pairwise labels: A matrix completion approach. In HCOMP, 2012a.
    • (2012) HCOMP
    • Yi, J.1    Jin, R.2    Jain, A.K.3    Jain, S.4
  • 217
    • 84877727883 scopus 로고    scopus 로고
    • Semi crowdsourced clustering: Generalizing crowd labeling by robust distance metric learning
    • Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain, and Tianbao Yang. Semi crowdsourced clustering: Generalizing crowd labeling by robust distance metric learning. In NIPS, 2012b.
    • (2012) NIPS
    • Yi, J.1    Jin, R.2    Jain, A.K.3    Jain, S.4    Yang, T.5
  • 218
    • 84893402805 scopus 로고    scopus 로고
    • The effects of performance-contingent financial incentives in online labor markets
    • Ming Yin, Yiling Chen, and Yu-An Sun. The effects of performance-contingent financial incentives in online labor markets. In AAAI, 2013.
    • (2013) AAAI
    • Yin, M.1    Chen, Y.2    Sun, Y.-A.3
  • 219
    • 84973438529 scopus 로고    scopus 로고
    • Monetary interventions in crowdsourcing task switching
    • Ming Yin, Yiling Chen, and Yu-An Sun. Monetary interventions in crowdsourcing task switching. In HCOMP, 2014.
    • (2014) HCOMP
    • Yin, M.1    Chen, Y.2    Sun, Y.-A.3
  • 220
    • 85014793355 scopus 로고    scopus 로고
    • The communication network within the crowd
    • Ming Yin, Mary L. Gray, Siddharth Suri, and Jennifer Wortman Vaughan. The communication network within the crowd. In WWW, 2016.
    • (2016) WWW
    • Yin, M.1    Gray, M.L.2    Suri, S.3    Vaughan, J.W.4
  • 222
    • 84859040411 scopus 로고    scopus 로고
    • Crowdsourcing translation: Professional quality from non-professionals
    • Omar Zaidan and Chris Callison-Burch. Crowdsourcing translation: Professional quality from non-professionals. In ACL, 2011.
    • (2011) ACL
    • Zaidan, O.1    Callison-Burch, C.2
  • 225
    • 84976512003 scopus 로고    scopus 로고
    • Learning from crowdsourced labeled data: A survey
    • Jing Zhang, Xindong Wu, and Victor S. Sheng. Learning from crowdsourced labeled data: A survey. Artificial Intelligence Review, 46(4):543-576, 2016a.
    • (2016) Artificial Intelligence Review , vol.46 , Issue.4 , pp. 543-576
    • Zhang, J.1    Wu, X.2    Sheng, V.S.3
  • 226
    • 84988975385 scopus 로고    scopus 로고
    • Spectral methods meet EM: A provably optimal algorithm for crowdsourcing
    • Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spectral methods meet EM: A provably optimal algorithm for crowdsourcing. Journal of Machine Learning Research, 17(102):1-44, 2016b.
    • (2016) Journal of Machine Learning Research , vol.17 , Issue.102 , pp. 1-44
    • Zhang, Y.1    Chen, X.2    Zhou, D.3    Jordan, M.I.4
  • 227
    • 85020468498 scopus 로고    scopus 로고
    • Truth inference in crowdsourcing: Is the problem solved?
    • Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. Truth inference in crowdsourcing: Is the problem solved? Proceedings of the VLDB Endowment, 10(5): 541-552, 2017.
    • (2017) Proceedings of The VLDB Endowment , vol.10 , Issue.5 , pp. 541-552
    • Zheng, Y.1    Li, G.2    Li, Y.3    Shan, C.4    Cheng, R.5
  • 228
    • 84877729010 scopus 로고    scopus 로고
    • Learning from the wisdom of crowds by minimax entropy
    • Dengyong Zhou, Sumit Basu, Yi Mao, and John Platt. Learning from the wisdom of crowds by minimax entropy. In NIPS, 2012.
    • (2012) NIPS
    • Zhou, D.1    Basu, S.2    Mao, Y.3    Platt, J.4
  • 229
    • 84919947760 scopus 로고    scopus 로고
    • Aggregating ordinal labels from crowds by minimax conditional entropy
    • Dengyong Zhou, Qiang Liu, John C. Platt, and Christopher Meek. Aggregating ordinal labels from crowds by minimax conditional entropy. In ICML, 2014.
    • (2014) ICML
    • Zhou, D.1    Liu, Q.2    Platt, J.C.3    Meek, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.