-
1
-
-
84958264664
-
-
arXiv preprint arXiv: 1603. 04467
-
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C, Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D. G., Olah, C, Schuster, M., Shlens, J., Steiner, B, Sutskever, I., Talwar, K., Tucker, P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y, and Zheng, X. Ten-sorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603.04467, 2015.
-
(2015)
Ten-sorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.J.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Józefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Mané, D.21
Monga, R.22
Moore, S.23
Murray, D.G.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.A.31
Vanhoucke, V.32
Vasudevan, V.33
Viégas, F.B.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
-
2
-
-
85013211830
-
-
arXiv preprint arXiv: 1602. 07043
-
Adler, P., Falk, C, Fricdler, S. A., Rybcck, G., Schcidcg-gcr, C, Smith, B., and Vcnkatasubramanian, S. Auditing black-box models for indirect influence. arXiv preprint arXiv: 1602.07043, 2016.
-
(2016)
Auditing Black-box Models for Indirect Influence
-
-
Adler, P.1
Falk, C.2
Fricdler, S.A.3
Rybcck, G.4
Schcidcg-Gcr, C.5
Smith, B.6
Vcnkatasubramanian, S.7
-
4
-
-
84946584360
-
Modeltracker: Redesigning performance analysis tools for machine learning
-
Amershi, S., Chickering, M., Drucker, S. M., Lee, B., Simard, P., and Suh, J. Modeltracker: Redesigning performance analysis tools for machine learning. In Conference on Human Factors in Computing Systems (CHI), pp. 337-346, 2015.
-
(2015)
Conference on Human Factors in Computing Systems (CHI)
, pp. 337-346
-
-
Amershi, S.1
Chickering, M.2
Drucker, S.M.3
Lee, B.4
Simard, P.5
Suh, J.6
-
5
-
-
84897573740
-
A theory of learning from different domains
-
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. A theory of learning from different domains. Machine Learning, 79(1): 151-175, 2010.
-
(2010)
Machine Learning
, vol.79
, Issue.1
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
6
-
-
84867112504
-
Support vector machines under adversarial label noise
-
Biggio, B., Nelson, B., and Laskov, P. Support vector machines under adversarial label noise. ACML, 20: 97-112, 2011.
-
(2011)
ACML
, vol.20
, pp. 97-112
-
-
Biggio, B.1
Nelson, B.2
Laskov, P.3
-
7
-
-
84867136631
-
Poisoning attacks against support vector machines
-
Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks against support vector machines. In International Conference on Machine Learning (ICML), pp. 1467-1474, 2012.
-
(2012)
International Conference on Machine Learning (ICML)
, pp. 1467-1474
-
-
Biggio, B.1
Nelson, B.2
Laskov, P.3
-
9
-
-
84972496372
-
Influential observations, high leverage points, and outliers in linear regression
-
Chatterjee, S. and Hadi, A. S. Influential observations, high leverage points, and outliers in linear regression. Statistical Science, pp. 379-393, 1986.
-
(1986)
Statistical Science
, pp. 379-393
-
-
Chatterjee, S.1
Hadi, A.S.2
-
11
-
-
18244390064
-
On robustness properties of convex risk minimization methods for pattern recognition
-
Christmann, A. and Steinwart, I. On robustness properties of convex risk minimization methods for pattern recognition. Journal of Machine Learning Research (JMLR), 5(0): 1007-1034, 2004.
-
(2004)
Journal of Machine Learning Research (JMLR)
, vol.5
, pp. 1007-1034
-
-
Christmann, A.1
Steinwart, I.2
-
12
-
-
84952094529
-
Detection of influential observation in linear regression
-
Cook, R. D. Detection of influential observation in linear regression. Technometrics, 19: 15-18, 1977.
-
(1977)
Technometrics
, vol.19
, pp. 15-18
-
-
Cook, R.D.1
-
14
-
-
4243118724
-
Characterizations of an empirical influence function for detecting influential cases in regression
-
Cook, R. D. and Weisberg, S. Characterizations of an empirical influence function for detecting influential cases in regression. Technometrics, 22: 495-508, 1980.
-
(1980)
Technometrics
, vol.22
, pp. 495-508
-
-
Cook, R.D.1
Weisberg, S.2
-
16
-
-
84987644106
-
Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems
-
Datta, A., Sen, S., and Zick, Y. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. In Security and Privacy (SP), 2016 IEEE Symposium on, pp. 598-617, 2016.
-
(2016)
Security and Privacy (SP), 2016 IEEE Symposium on
, pp. 598-617
-
-
Datta, A.1
Sen, S.2
Zick, Y.3
-
17
-
-
56349086986
-
Model selection in kernel based regression using the influence function
-
Debruyne, M., Hubert, M., and Suykens, J. A. Model selection in kernel based regression using the influence function. Journal of Machine Learning Research (JMLR), 9 (0): 2377-2400, 2008.
-
(2008)
Journal of Machine Learning Research (JMLR)
, vol.9
, pp. 2377-2400
-
-
Debruyne, M.1
Hubert, M.2
Suykens, J.A.3
-
18
-
-
84906332834
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
Donahue, J., Jia, Y, Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. Decaf: A deep convolutional activation feature for generic visual recognition. In International Conference on Machine Learning (ICML), volume 32, pp. 647-655, 2014.
-
International Conference on Machine Learning (ICML)
, vol.32
, Issue.2014
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
22
-
-
80955143573
-
Adversarial machine learning
-
Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and Tygar, J. Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and artificial intelligence, pp. 43-58, 2011.
-
(2011)
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence
, pp. 43-58
-
-
Huang, L.1
Joseph, A.D.2
Nelson, B.3
Rubinstein, B.I.4
Tygar, J.5
-
23
-
-
0010018048
-
-
Unpublished memorandum, Bell Telephone laboratories, Murray Hill, NJ
-
Jaeckel, L. A. The infinitesimal jackknife. Unpublished memorandum, Bell Telephone laboratories, Murray Hill, NJ, 1972.
-
(1972)
The Infinitesimal Jackknife
-
-
Jaeckel, L.A.1
-
24
-
-
80054764509
-
Risk prediction models for hospital readmission: A systematic review
-
Kansagara, D., Englander, H., Salanitro, A., Kagen, D., Theobald, C, Freeman, M., and Kripalani, S. Risk prediction models for hospital readmission: a systematic review. JAMA, 306(15): 1688-1698, 2011.
-
(2011)
JAMA
, vol.306
, Issue.15
, pp. 1688-1698
-
-
Kansagara, D.1
Englander, H.2
Salanitro, A.3
Kagen, D.4
Theobald, C.5
Freeman, M.6
Kripalani, S.7
-
26
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (NIPS), pp. 1097-1105, 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
27
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
IEEE
-
LeCun, Y, Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
-
(1998)
Proceedings of the
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
28
-
-
85019261471
-
Data poisoning attacks on factorization-based collaborative filtering
-
Li, B., Wang, Y, Singh, A., and Vorobeychik, Y. Data poisoning attacks on factorization-based collaborative filtering. In Advances in Neural Information Processing Systems (NIPS), 2016a.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
-
-
Li, B.1
Wang, Y.2
Singh, A.3
Vorobeychik, Y.4
-
29
-
-
85031903206
-
-
fsti arXiv preprint arXiv: 1612. 08220, 2016b
-
Li, J., Monroe, W., and Jurafsky, D. Understanding neural networks through representation erasure. arXiv preprint arXiv: 1612.08220, 2016b.
-
Understanding Neural Networks Through Representation Erasure.
-
-
Li, J.1
Monroe, W.2
Jurafsky, D.3
-
30
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
Liu, D. C. and Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1): 503-528, 1989.
-
(1989)
Mathematical Programming
, vol.45
, Issue.1
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
31
-
-
84919816683
-
Efficient approximation of cross-validation for kernel methods using Bouligand influence function
-
Liu, Y., Jiang, S., and Liao, S. Efficient approximation of cross-validation for kernel methods using Bouligand influence function. In International Conference on Machine Learning (ICML), pp. 324-332, 2014.
-
(2014)
International Conference on Machine Learning (ICML)
, pp. 324-332
-
-
Liu, Y.1
Jiang, S.2
Liao, S.3
-
35
-
-
84904809957
-
Spam filtering with naive Bayes - Which naive Bayes?
-
Metsis, V., Androutsopoulos, I., and Paliouras, G. Spam filtering with naive Bayes - which naive Bayes? In CEAS, volume 17, pp. 28-69, 2006.
-
(2006)
CEAS
, vol.17
, pp. 28-69
-
-
Metsis, V.1
Androutsopoulos, I.2
Paliouras, G.3
-
36
-
-
84986325571
-
Deep-fool: A simple and accurate method to fool deep neural networks
-
Moosavi-Dezfooli, S., Fawzi, A., and Frossard, P. Deep-fool: a simple and accurate method to fool deep neural networks. In Computer Vision and Pattern Recognition (CVPR), pp. 2574-2582, 2016.
-
(2016)
Computer Vision and Pattern Recognition (CVPR)
, pp. 2574-2582
-
-
Moosavi-Dezfooli, S.1
Fawzi, A.2
Frossard, P.3
-
37
-
-
0000255539
-
Fast exact multiplication by the hessian
-
Pearlmutter, B. A. Fast exact multiplication by the hessian. Neural Computation, 6(1): 147-160, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.1
, pp. 147-160
-
-
Pearlmutter, B.A.1
-
39
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3): 211-252, 2015.
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
40
-
-
85009806478
-
-
arXiv preprint arXiv: 1605. 01713
-
Shrikumar, A., Greenside, P., Shcherbina, A., and Kun-daje, A. Not just a black box: Learning important features through propagating activation differences. arXiv preprint arXiv: 1605.01713, 2016.
-
(2016)
Not Just A Black Box: Learning Important Features Through Propagating Activation Differences
-
-
Shrikumar, A.1
Greenside, P.2
Shcherbina, A.3
Kun-Daje, A.4
-
41
-
-
84965180077
-
-
arXiv preprint arXiv: 1312. 6034
-
Simonyan, K., Vcdaldi, A., and Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv: 1312.6034, 2013.
-
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
, pp. 2013
-
-
Simonyan, K.1
Vcdaldi, A.2
Zisserman, A.3
-
42
-
-
84990021927
-
-
arXiv preprint arXiv: 1412. 6806
-
Springenberg, J. T., Dosovitskiy, A., Brox, T, and Ried-miller, M. Striving for simplicity: The all convolutional net. arXiv preprint arXiv: 1412.6806, 2014.
-
Striving for Simplicity: The All Convolutional Net
, pp. 2014
-
-
Springenberg, J.T.1
Dosovitskiy, A.2
Brox, T.3
Ried-Miller, M.4
-
43
-
-
84899571892
-
Impact of HbAlc measurement on hospital readmission rates: Analysis of 70, 000 clinical database patient records
-
Strack, B., DeShazo, J. P., Gennings, C, Olmo, J. L., Ventura, S., Cios, K. J., and Clore, J. N. Impact of HbAlc measurement on hospital readmission rates: analysis of 70, 000 clinical database patient records. BioMed Research International, 2014, 2014.
-
(2014)
BioMed Research International
, pp. 2014
-
-
Strack, B.1
DeShazo, J.P.2
Gennings, C.3
Olmo, J.L.4
Ventura, S.5
Cios, K.J.6
Clore, J.N.7
-
44
-
-
84986296808
-
Rethinking the Inception architecture for computer vision
-
Szegedy, C, Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the Inception architecture for computer vision. In Computer Vision and Pattern Recognition (CVPR), pp. 2818-2826, 2016.
-
(2016)
Computer Vision and Pattern Recognition (CVPR)
, pp. 2818-2826
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
46
-
-
0025388464
-
Assessing influence on predictions from generalized linear models
-
Thomas, W. and Cook, R. D. Assessing influence on predictions from generalized linear models. Technometrics, 32(1): 59-65, 1990.
-
(1990)
Technometrics
, vol.32
, Issue.1
, pp. 59-65
-
-
Thomas, W.1
Cook, R.D.2
-
47
-
-
0032361524
-
Generalized leverage and its applications
-
Wei, B, Hu, Y, and Fung, W. Generalized leverage and its applications. Scandinavian Journal of Statistics, 25: 25-37, 1998.
-
(1998)
Scandinavian Journal of Statistics
, vol.25
, pp. 25-37
-
-
Wei, B.1
Hu, Y.2
Fung, W.3
-
48
-
-
85048416573
-
-
arXiv preprint arXiv: 1611. 05923
-
Wojnowicz, M., Cruz, B., Zhao, X., Wallace, B., Wolff, M., Luan, J., and Crable, C. "Influence sketching": Finding influential samples in large-scale regressions. arXiv preprint arXiv: 1611.05923, 2016.
-
(2016)
"influence Sketching": Finding Influential Samples in Large-scale Regressions
-
-
Wojnowicz, M.1
Cruz, B.2
Zhao, X.3
Wallace, B.4
Wolff, M.5
Luan, J.6
Crable, C.7
|