-
1
-
-
80052887473
-
Object segmentation by alignment of poselet activations to image contours
-
2
-
T. Brox, L. Bourdev, S. Maji, and J. Malik. Object segmentation by alignment of poselet activations to image contours. In CVPR, 2011. 2
-
(2011)
CVPR
-
-
Brox, T.1
Bourdev, L.2
Maji, S.3
Malik, J.4
-
2
-
-
77955998994
-
Harmony potentials for joint classification and segmentation
-
1, 2, 5
-
G. Cardinal, X. Boix, J. van de Weijer, A. D. Bagdanov, J. Serrat, and J. Gonzalez. Harmony potentials for joint classification and segmentation. In CVPR, 2010. 1, 2, 5
-
(2010)
CVPR
-
-
Cardinal, G.1
Boix, X.2
Van De Weijer, J.3
Bagdanov, A.D.4
Serrat, J.5
Gonzalez, J.6
-
3
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
4
-
C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462467, 1968. 4
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.3
, pp. 462467
-
-
Chow, C.K.1
Liu, C.N.2
-
4
-
-
77951298115
-
The pascal visual object classes (VOC) challenge
-
4, 7
-
M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303-338, 2010. 4, 7
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Gool, L.V.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
5
-
-
77955422240
-
Object detection with discriminatively trained part based models
-
1, 3, 5, 7
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9), 2010. 1, 3, 5, 7
-
(2010)
PAMI
, vol.32
, Issue.9
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
6
-
-
84858716911
-
Region-based segmentation and object detection
-
1, 2
-
S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In NIPS, 2009. 1, 2
-
(2009)
NIPS
-
-
Gould, S.1
Gao, T.2
Koller, D.3
-
8
-
-
85162009902
-
A primal-dual message-passing algorithm for approximated large scale structured prediction
-
2, 3, 4, 7
-
T. Hazan and R. Urtasun. A primal-dual message-passing algorithm for approximated large scale structured prediction. In NIPS, 2010. 2, 3, 4, 7
-
(2010)
NIPS
-
-
Hazan, T.1
Urtasun, R.2
-
9
-
-
84858763935
-
Cascaded classification models: Combining models for holistic scene understanding
-
1, 2
-
G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded classification models: Combining models for holistic scene understanding. In NIPS, 2008. 1, 2
-
(2008)
NIPS
-
-
Heitz, G.1
Gould, S.2
Saxena, A.3
Koller, D.4
-
10
-
-
70450182221
-
Efficient scale space auto-context for image segmentation and labeling
-
5
-
J. Jiang and Z. Tu. Efficient scale space auto-context for image segmentation and labeling. In CVPR, 2009. 5
-
(2009)
CVPR
-
-
Jiang, J.1
Tu, Z.2
-
11
-
-
84887335032
-
P3 and beyond: Solving energies with higher order cliquess
-
3
-
P. Kohli, M. P. Kumar, and P. H. S. Torr. p3 and beyond: Solving energies with higher order cliquess. In CVPR'07. 3
-
CVPR'07
-
-
Kohli, P.1
Kumar, M.P.2
Torr, P.H.S.3
-
12
-
-
85162351107
-
Efficient inference in fully connected CRFS with Gaussian edge potentials
-
5, 7
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS, 2011. 5, 7
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
13
-
-
33745848658
-
A hierarchical field framework for unified context-based classification
-
2
-
S. Kumar and M. Hebert. A hierarchical field framework for unified context-based classification. In ICCV, 2005. 2
-
(2005)
ICCV
-
-
Kumar, S.1
Hebert, M.2
-
14
-
-
80052871895
-
Graph cut based inference with co-occurrence statistics
-
1, 2, 3
-
L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Graph cut based inference with co-occurrence statistics. In ECCV, 2010. 1, 2, 3
-
(2010)
ECCV
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
15
-
-
78149308416
-
What, where and how many? combining object detectors and crfs
-
1, 2, 5, 6
-
L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr. What, where and how many? combining object detectors and crfs. In ECCV, 2010. 1, 2, 5, 6
-
(2010)
ECCV
-
-
Ladicky, L.1
Sturgess, P.2
Alahari, K.3
Russell, C.4
Torr, P.H.S.5
-
16
-
-
51949086303
-
Combining appearance models and markov Random fields for category level object segmentation
-
2
-
D. Larlus and F. Jurie. Combining appearance models and markov random fields for category level object segmentation. In CVPR, 2008. 2
-
(2008)
CVPR
-
-
Larlus, D.1
Jurie, F.2
-
17
-
-
85161973668
-
Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces
-
3
-
D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In NIPS, 2010. 3
-
(2010)
NIPS
-
-
Lee, D.C.1
Gupta, A.2
Hebert, M.3
Kanade, T.4
-
19
-
-
84898492432
-
Improving spatial support for objects via multiple segmentations
-
5
-
T. Malisiewicz and A. A.Efros. Improving spatial support for objects via multiple segmentations. In BMVC, 2007. 5
-
(2007)
BMVC
-
-
Malisiewicz, T.1
Efros, A.A.2
-
20
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
2, 4, 6
-
P.Arbelaez, M.Maire, C.Fowlkes, and J.Malik. Contour detection and hierarchical image segmentation. In PAMI, 2011. 2, 4, 6
-
(2011)
PAMI
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
21
-
-
80052908754
-
Distributed message passing for large scale graphical models
-
2, 4, 7
-
A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Distributed message passing for large scale graphical models. In CVPR, 2011. 2, 4, 7
-
(2011)
CVPR
-
-
Schwing, A.1
Hazan, T.2
Pollefeys, M.3
Urtasun, R.4
-
22
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
4, 5, 6
-
J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 4, 5, 6
-
(2008)
CVPR
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
23
-
-
33745918022
-
Learning hierarchical models of scenes, objects, and parts
-
2
-
E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky. Learning hierarchical models of scenes, objects, and parts. In ICCV, 2005. 2
-
(2005)
ICCV
-
-
Sudderth, E.1
Torralba, A.2
Freeman, W.T.3
Wilsky, A.4
-
24
-
-
84899024607
-
Contextual models for object detection using boosted Random fields
-
1, 2
-
A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS, pages 1401-1408, 2005. 1, 2
-
(2005)
NIPS
, pp. 1401-1408
-
-
Torralba, A.1
Murphy, K.P.2
Freeman, W.T.3
-
25
-
-
57149143156
-
A dynamic conditional Random field model for joint labeling of object and scene classes
-
1, 2
-
C. Wojek and B. Schiele. A dynamic conditional random field model for joint labeling of object and scene classes. In ECCV, volume 4, pages 733-747, 2008. 1, 2
-
(2008)
ECCV
, vol.4
, pp. 733-747
-
-
Wojek, C.1
Schiele, B.2
-
26
-
-
77955988947
-
Sun database: Large-scale scene recognition from abbey to zoo
-
1
-
J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 1
-
(2010)
CVPR
-
-
Xiao, J.1
Hays, J.2
Ehinger, K.3
Oliva, A.4
Torralba, A.5
-
27
-
-
77956008428
-
Layered object detection for multi-class segmentation
-
1
-
Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered object detection for multi-class segmentation. In CVPR, 2010. 1
-
(2010)
CVPR
-
-
Yang, Y.1
Hallman, S.2
Ramanan, D.3
Fowlkes, C.4
|