메뉴 건너뛰기




Volumn , Issue , 2012, Pages 702-709

Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation

Author keywords

[No Author keywords available]

Indexed keywords

AUXILIARY VARIABLES; HIGH-ORDER; HOLISTIC MODEL; MESSAGE PASSING ALGORITHM; NUMBER OF STATE; OBJECT DETECTION; PRIOR KNOWLEDGE; SCENE CLASSIFICATION; SCENE UNDERSTANDING; SEMANTIC SEGMENTATION; SPATIAL EXTENT; SUBMODULARITY;

EID: 84866687133     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247739     Document Type: Conference Paper
Times cited : (403)

References (27)
  • 1
    • 80052887473 scopus 로고    scopus 로고
    • Object segmentation by alignment of poselet activations to image contours
    • 2
    • T. Brox, L. Bourdev, S. Maji, and J. Malik. Object segmentation by alignment of poselet activations to image contours. In CVPR, 2011. 2
    • (2011) CVPR
    • Brox, T.1    Bourdev, L.2    Maji, S.3    Malik, J.4
  • 3
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • 4
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462467, 1968. 4
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462467
    • Chow, C.K.1    Liu, C.N.2
  • 4
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (VOC) challenge
    • 4, 7
    • M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303-338, 2010. 4, 7
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Gool, L.V.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 5
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 1, 3, 5, 7
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9), 2010. 1, 3, 5, 7
    • (2010) PAMI , vol.32 , Issue.9
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 6
    • 84858716911 scopus 로고    scopus 로고
    • Region-based segmentation and object detection
    • 1, 2
    • S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In NIPS, 2009. 1, 2
    • (2009) NIPS
    • Gould, S.1    Gao, T.2    Koller, D.3
  • 8
    • 85162009902 scopus 로고    scopus 로고
    • A primal-dual message-passing algorithm for approximated large scale structured prediction
    • 2, 3, 4, 7
    • T. Hazan and R. Urtasun. A primal-dual message-passing algorithm for approximated large scale structured prediction. In NIPS, 2010. 2, 3, 4, 7
    • (2010) NIPS
    • Hazan, T.1    Urtasun, R.2
  • 9
    • 84858763935 scopus 로고    scopus 로고
    • Cascaded classification models: Combining models for holistic scene understanding
    • 1, 2
    • G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded classification models: Combining models for holistic scene understanding. In NIPS, 2008. 1, 2
    • (2008) NIPS
    • Heitz, G.1    Gould, S.2    Saxena, A.3    Koller, D.4
  • 10
    • 70450182221 scopus 로고    scopus 로고
    • Efficient scale space auto-context for image segmentation and labeling
    • 5
    • J. Jiang and Z. Tu. Efficient scale space auto-context for image segmentation and labeling. In CVPR, 2009. 5
    • (2009) CVPR
    • Jiang, J.1    Tu, Z.2
  • 11
    • 84887335032 scopus 로고    scopus 로고
    • P3 and beyond: Solving energies with higher order cliquess
    • 3
    • P. Kohli, M. P. Kumar, and P. H. S. Torr. p3 and beyond: Solving energies with higher order cliquess. In CVPR'07. 3
    • CVPR'07
    • Kohli, P.1    Kumar, M.P.2    Torr, P.H.S.3
  • 12
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFS with Gaussian edge potentials
    • 5, 7
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS, 2011. 5, 7
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 13
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified context-based classification
    • 2
    • S. Kumar and M. Hebert. A hierarchical field framework for unified context-based classification. In ICCV, 2005. 2
    • (2005) ICCV
    • Kumar, S.1    Hebert, M.2
  • 14
    • 80052871895 scopus 로고    scopus 로고
    • Graph cut based inference with co-occurrence statistics
    • 1, 2, 3
    • L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Graph cut based inference with co-occurrence statistics. In ECCV, 2010. 1, 2, 3
    • (2010) ECCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 15
    • 78149308416 scopus 로고    scopus 로고
    • What, where and how many? combining object detectors and crfs
    • 1, 2, 5, 6
    • L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr. What, where and how many? combining object detectors and crfs. In ECCV, 2010. 1, 2, 5, 6
    • (2010) ECCV
    • Ladicky, L.1    Sturgess, P.2    Alahari, K.3    Russell, C.4    Torr, P.H.S.5
  • 16
    • 51949086303 scopus 로고    scopus 로고
    • Combining appearance models and markov Random fields for category level object segmentation
    • 2
    • D. Larlus and F. Jurie. Combining appearance models and markov random fields for category level object segmentation. In CVPR, 2008. 2
    • (2008) CVPR
    • Larlus, D.1    Jurie, F.2
  • 17
    • 85161973668 scopus 로고    scopus 로고
    • Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces
    • 3
    • D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In NIPS, 2010. 3
    • (2010) NIPS
    • Lee, D.C.1    Gupta, A.2    Hebert, M.3    Kanade, T.4
  • 18
  • 19
    • 84898492432 scopus 로고    scopus 로고
    • Improving spatial support for objects via multiple segmentations
    • 5
    • T. Malisiewicz and A. A.Efros. Improving spatial support for objects via multiple segmentations. In BMVC, 2007. 5
    • (2007) BMVC
    • Malisiewicz, T.1    Efros, A.A.2
  • 20
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • 2, 4, 6
    • P.Arbelaez, M.Maire, C.Fowlkes, and J.Malik. Contour detection and hierarchical image segmentation. In PAMI, 2011. 2, 4, 6
    • (2011) PAMI
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 21
    • 80052908754 scopus 로고    scopus 로고
    • Distributed message passing for large scale graphical models
    • 2, 4, 7
    • A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Distributed message passing for large scale graphical models. In CVPR, 2011. 2, 4, 7
    • (2011) CVPR
    • Schwing, A.1    Hazan, T.2    Pollefeys, M.3    Urtasun, R.4
  • 22
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • 4, 5, 6
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 4, 5, 6
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 23
    • 33745918022 scopus 로고    scopus 로고
    • Learning hierarchical models of scenes, objects, and parts
    • 2
    • E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky. Learning hierarchical models of scenes, objects, and parts. In ICCV, 2005. 2
    • (2005) ICCV
    • Sudderth, E.1    Torralba, A.2    Freeman, W.T.3    Wilsky, A.4
  • 24
    • 84899024607 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted Random fields
    • 1, 2
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS, pages 1401-1408, 2005. 1, 2
    • (2005) NIPS , pp. 1401-1408
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 25
    • 57149143156 scopus 로고    scopus 로고
    • A dynamic conditional Random field model for joint labeling of object and scene classes
    • 1, 2
    • C. Wojek and B. Schiele. A dynamic conditional random field model for joint labeling of object and scene classes. In ECCV, volume 4, pages 733-747, 2008. 1, 2
    • (2008) ECCV , vol.4 , pp. 733-747
    • Wojek, C.1    Schiele, B.2
  • 26
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • 1
    • J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010. 1
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.3    Oliva, A.4    Torralba, A.5
  • 27
    • 77956008428 scopus 로고    scopus 로고
    • Layered object detection for multi-class segmentation
    • 1
    • Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered object detection for multi-class segmentation. In CVPR, 2010. 1
    • (2010) CVPR
    • Yang, Y.1    Hallman, S.2    Ramanan, D.3    Fowlkes, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.