메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2262-2269

What's it going to cost you?: Predicting effort vs. informativeness for multi-label image annotations

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE ANALYSIS; IMAGE ENHANCEMENT; IMAGE SEGMENTATION; LEARNING SYSTEMS; OBJECT RECOGNITION;

EID: 70450197013     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2009.5206705     Document Type: Conference Paper
Times cited : (148)

References (28)
  • 2
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • G. Cauwenberghs and T. Poggio. Incremental and Decremental Support Vector Machine Learning. In NIPS, 2000.
    • (2000) NIPS
    • Cauwenberghs, G.1    Poggio, T.2
  • 3
    • 70449605468 scopus 로고    scopus 로고
    • Towards scalable dataset construction: An active learning approach
    • B. Collins, J. Deng, K. Li, and L. Fei-Fei. Towards Scalable Dataset Construction: An Active Learning Approach. In ECCV, 2008.
    • (2008) ECCV
    • Collins, B.1    Deng, J.2    Li, K.3    Fei-Fei, L.4
  • 5
    • 0344983284 scopus 로고    scopus 로고
    • A bayesian approach to unsupervised one-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories. In ICCV, '03.
    • ICCV, '03
    • Fei-Fei, L.1    Fergus, R.2    Perona., P.3
  • 6
    • 33745839880 scopus 로고    scopus 로고
    • Learning object categories from google's image search
    • R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning Object Categories from Google's Image Search. In ICCV, 2005.
    • (2005) ICCV
    • Fergus, R.1    Fei-Fei, L.2    Perona, P.3    Zisserman., A.4
  • 8
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with gaussian processes for object categorization
    • A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active Learning with Gaussian Processes for Object Categorization. In ICCV, 2007.
    • (2007) ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 9
    • 78651463011 scopus 로고    scopus 로고
    • Selective supervision: Guiding supervised learning with decision-theoretic active learning
    • A. Kapoor, E. Horvitz, and S. Basu. Selective Supervision: Guiding Supervised Learning with Decision-Theoretic Active Learning. In IJCAI, 2007.
    • (2007) IJCAI
    • Kapoor, A.1    Horvitz, E.2    Basu, S.3
  • 10
    • 84880884345 scopus 로고    scopus 로고
    • Marginalized multi-instance kernels
    • J. T. Kwok and P. Cheung. Marginalized Multi-Instance Kernels. In In IJCAI, 2007.
    • (2007) In IJCAI
    • Kwok, J.T.1    Cheung, P.2
  • 11
    • 84898439135 scopus 로고    scopus 로고
    • Foreground focus: Finding meaningful features in unlabeled images
    • Y. Lee and K. Grauman. Foreground Focus: Finding Meaningful Features in Unlabeled Images. In BMVC, 2008.
    • (2008) BMVC
    • Lee, Y.1    Grauman, K.2
  • 12
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • O. Maron and A. L. Ratan. Multiple-Instance Learning for Natural Scene Classification. In ICML, 1998.
    • (1998) ICML
    • Maron, O.1    Ratan, A.L.2
  • 14
    • 51949086514 scopus 로고    scopus 로고
    • Two-dimensional active learning for image classification
    • G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang. Two-Dimensional Active Learning for Image Classification. In CVPR, 2008.
    • (2008) CVPR
    • Qi, G.1    Hua, X.2    Rui, Y.3    Tang, J.4    Zhang, H.5
  • 16
    • 85162065706 scopus 로고    scopus 로고
    • Multiple-instance active learning
    • B. Settles, M. Craven, and S. Ray. Multiple-Instance Active Learning. In NIPS, 2008.
    • (2008) NIPS
    • Settles, B.1    Craven, M.2    Ray, S.3
  • 17
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. In ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 19
    • 52049123532 scopus 로고    scopus 로고
    • Utility data annotation with amazon mechanical turk
    • A. Sorokin and D. Forsyth. Utility Data Annotation with Amazon Mechanical Turk. In CVPR Workshops, 2008.
    • (2008) CVPR Workshops
    • Sorokin, A.1    Forsyth, D.2
  • 20
    • 51949096901 scopus 로고    scopus 로고
    • Keywords to visual categories: Multiple-instance learning for weakly supervised object categorization
    • S. Vijayanarasimhan and K. Grauman. Keywords to Visual Categories: Multiple-Instance Learning for Weakly Supervised Object Categorization. In CVPR, 2008.
    • (2008) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 21
    • 85058225616 scopus 로고    scopus 로고
    • Multi-level active prediction of useful image annotations for recognition
    • S. Vijayanarasimhan and K. Grauman. Multi-Level Active Prediction of Useful Image Annotations for Recognition. In NIPS, 2008.
    • (2008) NIPS
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 22
    • 4544353199 scopus 로고    scopus 로고
    • Labeling images with a computer game
    • L. von Ahn and L. Dabbish. Labeling Images with a Computer Game. In CHI, 2004.
    • (2004) CHI
    • Ahn, L.V.1    Dabbish, L.2
  • 23
    • 0002409979 scopus 로고    scopus 로고
    • Unsupervised learning of models for recognition
    • M. Weber, M. Welling, and P. Perona. Unsupervised Learning of Models for Recognition. In ECCV, 2000.
    • (2000) ECCV
    • Weber, M.1    Welling, M.2    Perona, P.3
  • 24
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • J. Winn, A. Criminisi, and T. Minka. Object Categorization by Learned Universal Visual Dictionary. In ICCV '05, 2005.
    • (2005) ICCV '05
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 25
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi- class classification by pairwise coupling
    • T.-F.Wu, C.-J. Lin, and R. C.Weng. Probability Estimates for Multi- Class Classification by Pairwise Coupling. JMLR, 2004.
    • (2004) JMLR
    • Wu, T.-f.1    Lin, C.-J.2    Weng, C.3
  • 26
    • 0344551862 scopus 로고    scopus 로고
    • Automatically labeling video data using multi-class active learning
    • R. Yan, J. Yang, and A. Hauptmann. Automatically Labeling Video Data using Multi-Class Active Learning. In ICCV, 2003.
    • (2003) ICCV
    • Yan, R.1    Yang, J.2    Hauptmann, A.3
  • 27
    • 51949083216 scopus 로고    scopus 로고
    • Joint multi-label multi-instance learning for image classification
    • Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.-J. Qi, and Z. Wang. Joint Multi-Label Multi-Instance Learning for Image Classification. In CVPR, 2008.
    • (2008) CVPR
    • Zha, Z.-J.1    Hua, X.-S.2    Mei, T.3    Wang, J.4    Qi, G.-J.5    Wang, Z.6
  • 28
    • 85108375679 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Z. H. Zhou and M. L. Zhang. Multi-Instance Multi-Label Learning with Application to Scene Classification. In NIPS, 2006.
    • (2006) NIPS
    • Zhou, Z.H.1    Zhang, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.