메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3143-3150

Analyzing semantic segmentation using hybrid human-machine CRFS

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL RANDOM FIELD; CONTEXTUAL REASONING; IN-DEPTH ANALYSIS; SCENE RECOGNITION; SCENE UNDERSTANDING; SEMANTIC IMAGE SEGMENTATIONS; SEMANTIC SEGMENTATION; STATE-OF-THE-ART PERFORMANCE;

EID: 84887361716     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.404     Document Type: Conference Paper
Times cited : (23)

References (40)
  • 1
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. In PAMI, 2011. 4
    • (2011) PAMI , pp. 4
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 2
    • 84887323591 scopus 로고
    • Identification of spatially quantized tachistoscopic images of faces: How many pixels does it take to carry identity
    • 2
    • T. Bachmann. Identification of spatially quantized tachistoscopic images of faces: How many pixels does it take to carry identity? Europ. J. of Cogn. Psych., 1991. 2
    • (1991) Europ. J. of Cogn. Psych.
    • Bachmann, T.1
  • 3
    • 0002309377 scopus 로고
    • Recovering intrinsic scene characteristics from images
    • 2
    • H. Barrow and J. Tenenbaum. Recovering intrinsic scene characteristics from images. In Comp. Vision Systems, 1978. 2
    • (1978) Comp. Vision Systems
    • Barrow, H.1    Tenenbaum, J.2
  • 4
    • 70449601274 scopus 로고    scopus 로고
    • Segmentation and recognition using structure from motion point clouds
    • 3
    • G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Segmentation and recognition using structure from motion point clouds. In ECCV, 2008. 3
    • (2008) ECCV
    • Brostow, G.J.1    Shotton, J.2    Fauqueur, J.3    Cipolla, R.4
  • 5
    • 80052887473 scopus 로고    scopus 로고
    • Object segmentation by alignment of poselet activations to image contours
    • 2
    • T. Brox, L. Bourdev, S. Maji, and J. Malik. Object segmentation by alignment of poselet activations to image contours. In CVPR, 2011. 2
    • (2011) CVPR
    • Brox, T.1    Bourdev, L.2    Maji, S.3    Malik, J.4
  • 7
    • 77956006912 scopus 로고    scopus 로고
    • Exploiting hierarchical context on a large database of object categories
    • 3
    • M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large database of object categories. In CVPR, 2010. 3
    • (2010) CVPR
    • Choi, M.J.1    Lim, J.J.2    Torralba, A.3    Willsky, A.S.4
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • 4
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462467, 1968. 4
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462467
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 0037047130 scopus 로고    scopus 로고
    • Rapid natural scene categorization in the near absence of attention
    • 2
    • L. Fei-Fei, R. VanRullen, C. Koch, and P. Perona. Rapid natural scene categorization in the near absence of attention. PNAS, 2002. 2
    • (2002) PNAS
    • Fei-Fei, L.1    Vanrullen, R.2    Koch, C.3    Perona, P.4
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 1, 3, 4
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 32(9), 2010. 1, 3, 4
    • (2010) PAMI , vol.32 , Issue.9
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 12
    • 84858716911 scopus 로고    scopus 로고
    • Region-based segmentation and object detection
    • 1, 2
    • S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In NIPS, 2009. 1, 2
    • (2009) NIPS
    • Gould, S.1    Gao, T.2    Koller, D.3
  • 15
    • 85162009902 scopus 로고    scopus 로고
    • A primal-dual message-passing algorithm for approximated large scale structured prediction
    • 3
    • T. Hazan and R. Urtasun. A primal-dual message-passing algorithm for approximated large scale structured prediction. In NIPS, 2010. 3
    • (2010) NIPS
    • Hazan, T.1    Urtasun, R.2
  • 16
    • 84858763935 scopus 로고    scopus 로고
    • Cascaded classification models: Combining models for holistic scene understanding
    • 1, 2
    • G. Heitz, S. Gould, A. Saxena, and D. Koller. Cascaded classification models: Combining models for holistic scene understanding. In NIPS, 2008. 1, 2
    • (2008) NIPS
    • Heitz, G.1    Gould, S.2    Saxena, A.3    Koller, D.4
  • 17
    • 51949101047 scopus 로고    scopus 로고
    • Closing the loop on scene interpretation
    • 2
    • D. Hoiem, A. A. Efros, and M. Hebert. Closing the loop on scene interpretation. In CVPR, 2008. 2
    • (2008) CVPR
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 18
    • 34948905773 scopus 로고    scopus 로고
    • P3 and beyond: Solving energies with higher order cliquess
    • 4
    • P. Kohli, M. P. Kumar, and P. H. S. Torr. p3 and beyond: Solving energies with higher order cliquess. In CVPR, 2007. 4
    • (2007) CVPR
    • Kohli, P.1    Kumar, M.P.2    Torr, P.H.S.3
  • 19
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified contextbased classification
    • 2
    • S. Kumar and M. Hebert. A hierarchical field framework for unified contextbased classification. In ICCV, 2005. 2
    • (2005) ICCV
    • Kumar, S.1    Hebert, M.2
  • 20
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical crfs for object class image segmentation
    • 3, 4
    • L. Ladicky, C. Russell, P. H. S. Torr, and P. Kohli. Associative hierarchical crfs for object class image segmentation. In ICCV, 2009. 3, 4
    • (2009) ICCV
    • Ladicky, L.1    Russell, C.2    Torr, P.H.S.3    Kohli, P.4
  • 21
    • 78149308416 scopus 로고    scopus 로고
    • What, where and how many? Combining object detectors and crfs
    • 2, 3, 4
    • L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr. What, where and how many? combining object detectors and crfs. In ECCV, 2010. 2, 3, 4
    • (2010) ECCV
    • Ladicky, L.1    Sturgess, P.2    Alahari, K.3    Russell, C.4    Torr, P.H.5
  • 22
  • 23
    • 85162313618 scopus 로고    scopus 로고
    • Towards holistic scene understanding: Feedback enabled cascaded classification models
    • 1, 2
    • C. Li, A. Kowdle, A. Saxena, and T. Chen. Towards holistic scene understanding: Feedback enabled cascaded classification models. In NIPS, 2010. 1, 2
    • (2010) NIPS
    • Li, C.1    Kowdle, A.2    Saxena, A.3    Chen, T.4
  • 24
    • 70450169911 scopus 로고    scopus 로고
    • Nonparametric scene parsing: Label transfer via dense scene alignment
    • 3
    • C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: label transfer via dense scene alignment. In CVPR, 2009. 3
    • (2009) CVPR
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 25
    • 84898492432 scopus 로고    scopus 로고
    • Improving spatial support for objects via multiple segmentations
    • 4
    • T. Malisiewicz and A. A. Efros. Improving spatial support for objects via multiple segmentations. In BMVC, 2007. 4
    • (2007) BMVC
    • Malisiewicz, T.1    Efros, A.A.2
  • 26
  • 27
    • 80052886153 scopus 로고    scopus 로고
    • Finding the weakest link in person detectors
    • 2
    • D. Parikh and C. Zitnick. Finding the weakest link in person detectors. In CVPR, 2011. 2
    • (2011) CVPR
    • Parikh, D.1    Zitnick, C.2
  • 28
    • 84887357605 scopus 로고    scopus 로고
    • Disentangling scene content from its spatial boundary: Complementary roles for the ppa and loc in representing real-world scenes
    • 1
    • S. Park, T. Brady, M. Greene, and A. Oliva. Disentangling scene content from its spatial boundary: Complementary roles for the ppa and loc in representing real-world scenes. Journal of Neuroscience, 2011. 1
    • (2011) Journal of Neuroscience
    • Park, S.1    Brady, T.2    Greene, M.3    Oliva, A.4
  • 30
    • 0029655798 scopus 로고    scopus 로고
    • Localizing contours defined by more than one attribute
    • 2
    • J. Rivest and P. Cabanagh. Localizing contours defined by more than one attribute. Vision Research, 1996. 2
    • (1996) Vision Research
    • Rivest, J.1    Cabanagh, P.2
  • 31
    • 80052908754 scopus 로고    scopus 로고
    • Distributed message passing for large scale graphical models
    • 3
    • A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Distributed message passing for large scale graphical models. In CVPR, 2011. 3
    • (2011) CVPR
    • Schwing, A.1    Hazan, T.2    Pollefeys, M.3    Urtasun, R.4
  • 32
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • 4
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008. 4
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 33
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context
    • 3, 4, 7
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context. IJCV, 81(1), 2007. 3, 4, 7
    • (2007) IJCV , vol.81 , Issue.1
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 34
    • 33745918022 scopus 로고    scopus 로고
    • Learning hierarchical models of scenes, objects, and parts
    • 2
    • E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky. Learning hierarchical models of scenes, objects, and parts. In ICCV, 2005. 2
    • (2005) ICCV
    • Sudderth, E.1    Torralba, A.2    Freeman, W.T.3    Wilsky, A.4
  • 35
    • 65249140851 scopus 로고    scopus 로고
    • How many pixels make an image
    • 1, 2
    • A. Torrabla. How many pixels make an image? Visual Neuroscience, 2009. 1, 2
    • (2009) Visual Neuroscience
    • Torrabla, A.1
  • 36
    • 84899024607 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • 2
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In NIPS, pages 1401-1408, 2005. 2
    • (2005) NIPS , pp. 1401-1408
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 37
    • 57149143156 scopus 로고    scopus 로고
    • A dynamic conditional random field model for joint labeling of object and scene classes
    • 2
    • C. Wojek and B. Schiele. A dynamic conditional random field model for joint labeling of object and scene classes. In ECCV, volume 4, pages 733-747, 2008. 2
    • (2008) ECCV , vol.4 , pp. 733-747
    • Wojek, C.1    Schiele, B.2
  • 38
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Largescale scene recognition from abbey to zoo
    • 1, 3, 4, 8
    • J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun database: Largescale scene recognition from abbey to zoo. In CVPR, 2010. 1, 3, 4, 8
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.3    Oliva, A.4    Torralba, A.5
  • 39
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation using flexible mixtures of parts
    • 1
    • Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. In CVPR, 2011. 1
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2
  • 40
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • 1, 2, 3, 4, 5, 8
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012. 1, 2, 3, 4, 5, 8.
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.