메뉴 건너뛰기




Volumn 79, Issue , 2018, Pages 290-302

A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning

Author keywords

Cross modal transfer learning; Deeply supervised ResNet; HEp 2 cell classification; Residual network

Indexed keywords

CELLS; COMPUTER AIDED DIAGNOSIS; CYTOLOGY; DEEP NEURAL NETWORKS; IMAGE CLASSIFICATION; NETWORK LAYERS; NEURAL NETWORKS;

EID: 85044647278     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2018.02.006     Document Type: Article
Times cited : (113)

References (60)
  • 2
    • 84897111566 scopus 로고    scopus 로고
    • HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns
    • Nosaka, R., Fukui, K., HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recognit. 47 (2014), 2428–2436.
    • (2014) Pattern Recognit. , vol.47 , pp. 2428-2436
    • Nosaka, R.1    Fukui, K.2
  • 3
    • 84903773823 scopus 로고    scopus 로고
    • HEp-2 cell classification using shape index histograms with donut-shaped spatial pooling
    • Larsen, A.B., Vestergaard, J.S., Larsen, R., HEp-2 cell classification using shape index histograms with donut-shaped spatial pooling. IEEE Trans. Med. Imaging 33 (2014), 1573–1580.
    • (2014) IEEE Trans. Med. Imaging , vol.33 , pp. 1573-1580
    • Larsen, A.B.1    Vestergaard, J.S.2    Larsen, R.3
  • 4
    • 84907421490 scopus 로고    scopus 로고
    • Pattern recognition in stained HEp-2 cells: where are we now?
    • Foggia, P., Percannella, G., Saggese, A., Vento, M., Pattern recognition in stained HEp-2 cells: where are we now?. Pattern Recognit. 47 (2014), 2305–2314.
    • (2014) Pattern Recognit. , vol.47 , pp. 2305-2314
    • Foggia, P.1    Percannella, G.2    Saggese, A.3    Vento, M.4
  • 5
    • 77956026985 scopus 로고    scopus 로고
    • Segmentation of anti-nuclear antibody images based on the watershed approach
    • Cheng, C.C., Taur, J.S., Hsieh, T.Y., Tao, C.W., Segmentation of anti-nuclear antibody images based on the watershed approach. Ind. Electron. Appl., 2010, 1695–1700.
    • (2010) Ind. Electron. Appl. , pp. 1695-1700
    • Cheng, C.C.1    Taur, J.S.2    Hsieh, T.Y.3    Tao, C.W.4
  • 6
    • 84962091523 scopus 로고    scopus 로고
    • Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
    • Zhu, X., Suk, H.I., Lee, S.W., Shen, D., Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63 (2016), 607–618.
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , pp. 607-618
    • Zhu, X.1    Suk, H.I.2    Lee, S.W.3    Shen, D.4
  • 7
    • 84938780497 scopus 로고    scopus 로고
    • Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis
    • Zhu, X., Suk, H.I., Lee, S.W., Shen, D., Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis. Brain Imaging Behav. 10 (2016), 1–11.
    • (2016) Brain Imaging Behav. , vol.10 , pp. 1-11
    • Zhu, X.1    Suk, H.I.2    Lee, S.W.3    Shen, D.4
  • 8
    • 84903899707 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • Zhu, X., Suk, H.I., Shen, D., A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage 100 (2014), 91–105.
    • (2014) NeuroImage , vol.100 , pp. 91-105
    • Zhu, X.1    Suk, H.I.2    Shen, D.3
  • 9
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Zhu, X., Li, X., Zhang, S., Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46 (2016), 450–461.
    • (2016) IEEE Trans. Cybern. , vol.46 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 10
    • 84885160193 scopus 로고    scopus 로고
    • Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification
    • Liu, F., Wee, C.-Y., Chen, H., Shen, D., Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification. NeuroImage 84 (2014), 466–475.
    • (2014) NeuroImage , vol.84 , pp. 466-475
    • Liu, F.1    Wee, C.-Y.2    Chen, H.3    Shen, D.4
  • 11
    • 85019867612 scopus 로고    scopus 로고
    • Manifold preserving: an intrinsic approach for semisupervised distance metric Learning
    • Ying, S., Wen, Z., Shi, J., Peng, Y., Peng, J., Qiao, H., Manifold preserving: an intrinsic approach for semisupervised distance metric Learning. IEEE Trans. Neural Netw. Learn. Syst. PP (2018), 1–12.
    • (2018) IEEE Trans. Neural Netw. Learn. Syst. , vol.PP , pp. 1-12
    • Ying, S.1    Wen, Z.2    Shi, J.3    Peng, Y.4    Peng, J.5    Qiao, H.6
  • 12
    • 85040340661 scopus 로고    scopus 로고
    • Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
    • Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE J. Biomed. Health Inf. 22 (2018), 173–183.
    • (2018) IEEE J. Biomed. Health Inf. , vol.22 , pp. 173-183
    • Shi, J.1    Zheng, X.2    Li, Y.3    Zhang, Q.4    Ying, S.5
  • 13
    • 84903879262 scopus 로고    scopus 로고
    • Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics
    • Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., et al. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100 (2014), 75–90.
    • (2014) NeuroImage , vol.100 , pp. 75-90
    • Jin, Y.1    Shi, Y.2    Zhan, L.3    Gutman, B.A.4    de Zubicaray, G.I.5    McMahon, K.L.6
  • 14
    • 84889584090 scopus 로고    scopus 로고
    • Multivariate classification of social anxiety disorder using whole brain functional connectivity
    • Liu, F., Guo, W., Fouche, J.-P., Wang, Y., Wang, W., Ding, J., et al. Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct. Funct. 220 (2015), 101–115.
    • (2015) Brain Struct. Funct. , vol.220 , pp. 101-115
    • Liu, F.1    Guo, W.2    Fouche, J.-P.3    Wang, Y.4    Wang, W.5    Ding, J.6
  • 15
    • 84956577012 scopus 로고    scopus 로고
    • Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks
    • Jin, Y., Wee, C.Y., Shi, F., Thung, K.H., Ni, D., Yap, P.T., et al. Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks. Hum. Brain Mapp. 36 (2015), 4880–4896.
    • (2015) Hum. Brain Mapp. , vol.36 , pp. 4880-4896
    • Jin, Y.1    Wee, C.Y.2    Shi, F.3    Thung, K.H.4    Ni, D.5    Yap, P.T.6
  • 17
    • 84900841488 scopus 로고    scopus 로고
    • Multiple kernel learning in the primal for multimodal Alzheimer's disease classification
    • Liu, F., Zhou, L., Shen, C., Yin, J., Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J. Biomed. Health Inf. 18 (2014), 984–990.
    • (2014) IEEE J. Biomed. Health Inf. , vol.18 , pp. 984-990
    • Liu, F.1    Zhou, L.2    Shen, C.3    Yin, J.4
  • 18
    • 82755161873 scopus 로고    scopus 로고
    • Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
    • Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., et al. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiol. Aging 33 (2012), 427.e15–427.e30.
    • (2012) Neurobiol. Aging , vol.33 , pp. 427.e15-427.e30
    • Li, Y.1    Wang, Y.2    Wu, G.3    Shi, F.4    Zhou, L.5    Lin, W.6
  • 19
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage 55 (2011), 856–867.
    • (2011) NeuroImage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 20
    • 84991693784 scopus 로고    scopus 로고
    • Learning discriminative bayesian networks from high-dimensional continuous neuroimaging data
    • Zhou, L., Wang, L., Liu, L., Ogunbona, P., Shen, D., Learning discriminative bayesian networks from high-dimensional continuous neuroimaging data. IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016), 2269–2283.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , pp. 2269-2283
    • Zhou, L.1    Wang, L.2    Liu, L.3    Ogunbona, P.4    Shen, D.5
  • 21
    • 85024475643 scopus 로고    scopus 로고
    • Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis
    • Hao, X., Li, C., Yan, J., Yao, X., Risacher, S.L., Saykin, A.J., et al. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. Bioinformatics 33 (2017), i341–i349.
    • (2017) Bioinformatics , vol.33 , pp. i341-i349
    • Hao, X.1    Li, C.2    Yan, J.3    Yao, X.4    Risacher, S.L.5    Saykin, A.J.6
  • 22
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • Zhang, D., Shen, D., Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 59 (2012), 895–907.
    • (2012) NeuroImage , vol.59 , pp. 895-907
    • Zhang, D.1    Shen, D.2
  • 23
    • 84992501772 scopus 로고    scopus 로고
    • A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
    • Zhu, X., Suk, H.-I., Wang, L., Lee, S.-W., Shen, D., A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 75 (2015), 570–577.
    • (2015) Med. Image Anal. , vol.75 , pp. 570-577
    • Zhu, X.1    Suk, H.-I.2    Wang, L.3    Lee, S.-W.4    Shen, D.5
  • 24
    • 84960157230 scopus 로고    scopus 로고
    • Robust joint graph sparse coding for unsupervised spectral feature selection
    • Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X., Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), 1263–1275.
    • (2017) IEEE Trans. Neural Netw. Learn. Syst. , vol.28 , pp. 1263-1275
    • Zhu, X.1    Li, X.2    Zhang, S.3    Ju, C.4    Wu, X.5
  • 25
    • 85037976122 scopus 로고    scopus 로고
    • Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers
    • Zhu, X., Suk, H.I., Huang, H., Shen, D., Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans. Big Data 3 (2017), 405–414.
    • (2017) IEEE Trans. Big Data , vol.3 , pp. 405-414
    • Zhu, X.1    Suk, H.I.2    Huang, H.3    Shen, D.4
  • 26
    • 85032440732 scopus 로고    scopus 로고
    • Local and global structure preservation for robust unsupervised spectral feature selection
    • Zhu, X., Zhang, S., Hu, R., Zhu, Y., S.J, Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30 (2018), 517–529.
    • (2018) IEEE Trans. Knowl. Data Eng. , vol.30 , pp. 517-529
    • Zhu, X.1    Zhang, S.2    Hu, R.3    Zhu, Y.4    S.J5
  • 28
    • 85045917483 scopus 로고    scopus 로고
    • A deep convolutional neural network based framework for automatic fetal facial standard plane recognition
    • Yu, Z., Tan, E.L., Ni, D., Qin, J., Chen, S., Li, S., et al. A deep convolutional neural network based framework for automatic fetal facial standard plane recognition. IEEE J. Biomed. Health Inf., 2017, 10.1109/JBHI.2017.2705031.
    • (2017) IEEE J. Biomed. Health Inf.
    • Yu, Z.1    Tan, E.L.2    Ni, D.3    Qin, J.4    Chen, S.5    Li, S.6
  • 32
    • 77951464520 scopus 로고    scopus 로고
    • License plate character recognition based on convolutional neural network LeNet-5
    • Zhao, Z.H., Yang, S.P., Ma, Z.Q., License plate character recognition based on convolutional neural network LeNet-5. J. Syst. Simul. 22 (2010), 638–641.
    • (2010) J. Syst. Simul. , vol.22 , pp. 638-641
    • Zhao, Z.H.1    Yang, S.P.2    Ma, Z.Q.3
  • 34
    • 85044634511 scopus 로고    scopus 로고
    • Visualizing and Understanding Convolutional Networks, arXiv:., 1311.2901
    • M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks, arXiv: 1311.2901, 2013.
    • (2013)
    • Zeiler, M.D.1    Fergus, R.2
  • 35
    • 84954314676 scopus 로고    scopus 로고
    • ``Deeply-supervised nets,” Eprint Arxiv
    • C.Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, ``Deeply-supervised nets,” Eprint Arxiv, pp. 562–570, 2014.
    • (2014) , pp. 562-570
    • Lee, C.Y.1    Xie, S.2    Gallagher, P.3    Zhang, Z.4    Tu, Z.5
  • 36
    • 84990034009 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. Comput. Sci., 2014.
    • (2014) Comput. Sci.
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 84994843365 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift
    • Ioffe, S., Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift. Comput. Sci., 2015.
    • (2015) Comput. Sci.
    • Ioffe, S.1    Szegedy, C.2
  • 39
    • 85028407444 scopus 로고    scopus 로고
    • HEp-2 specimen image segmentation and classification using very deep fully convolutional network
    • Li, Y., Shen, L., Yu, S., HEp-2 specimen image segmentation and classification using very deep fully convolutional network. IEEE Trans. Med. Imaging, 2017, 10.1109/TMI.2017.2672702.
    • (2017) IEEE Trans. Med. Imaging
    • Li, Y.1    Shen, L.2    Yu, S.3
  • 40
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • presented at the
    • Bengio, Y., Deep learning of representations for unsupervised and transfer learning. presented at the Proc. ICML Workshop Unsupervised Transfer Learn., 2012.
    • (2012) Proc. ICML Workshop Unsupervised Transfer Learn.
    • Bengio, Y.1
  • 41
    • 84897111309 scopus 로고    scopus 로고
    • HEp-2 image classification using intensity order pooling based features and bag of words
    • Shen, L., Lin, J., Wu, S., Yu, S., HEp-2 image classification using intensity order pooling based features and bag of words. Pattern Recognit. 47 (2014), 2419–2427.
    • (2014) Pattern Recognit. , vol.47 , pp. 2419-2427
    • Shen, L.1    Lin, J.2    Wu, S.3    Yu, S.4
  • 43
    • 0003444648 scopus 로고
    • Learning Internal Representations By Error Propagation
    • MIT Press
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning Internal Representations By Error Propagation. 1988, MIT Press.
    • (1988)
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 44
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 48
    • 85044648084 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:., 1409.1556
    • K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv: 1409.1556, 2014.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 49
    • 85044627137 scopus 로고    scopus 로고
    • Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:., 1502.03167
    • S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv: 1502.03167, 2015.
    • (2015)
    • Ioffe, S.1    Szegedy, C.2
  • 51
    • 85044641217 scopus 로고
    • Learning Long-Term Dependencies with Gradient Descent is Difficult
    • IEEE Press
    • Bengio, Y., Simard, P., Frasconi, P., Learning Long-Term Dependencies with Gradient Descent is Difficult. 1994, IEEE Press.
    • (1994)
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 53
    • 84969549144 scopus 로고    scopus 로고
    • Learning transferable features with deep adaptation networks
    • Long, M., Cao, Y., Wang, J., Jordan, M.I., Learning transferable features with deep adaptation networks. Comput. Sci., 2015, 97–105.
    • (2015) Comput. Sci. , pp. 97-105
    • Long, M.1    Cao, Y.2    Wang, J.3    Jordan, M.I.4
  • 57
    • 84964329259 scopus 로고    scopus 로고
    • Classification of ANA HEp-2 slide images using morphological features of stained patterns ☆
    • Ponomarev, G.V., Kazanov, M.D., Classification of ANA HEp-2 slide images using morphological features of stained patterns ☆. Pattern Recognit. Lett. 82 (2016), 79–84.
    • (2016) Pattern Recognit. Lett. , vol.82 , pp. 79-84
    • Ponomarev, G.V.1    Kazanov, M.D.2
  • 59
    • 84977930046 scopus 로고    scopus 로고
    • Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset
    • Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., Wang, T., Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194 (2016), 87–94.
    • (2016) Neurocomputing , vol.194 , pp. 87-94
    • Shi, J.1    Zhou, S.2    Liu, X.3    Zhang, Q.4    Lu, M.5    Wang, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.