-
1
-
-
84885138103
-
Benchmarking HEp-2 cells classification methods
-
Foggia, P., Percannella, G., Soda, P., Vento, M., Benchmarking HEp-2 cells classification methods. IEEE Trans. Med. Imaging 32 (2013), 1878–1889.
-
(2013)
IEEE Trans. Med. Imaging
, vol.32
, pp. 1878-1889
-
-
Foggia, P.1
Percannella, G.2
Soda, P.3
Vento, M.4
-
2
-
-
84897111566
-
HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns
-
Nosaka, R., Fukui, K., HEp-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recognit. 47 (2014), 2428–2436.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 2428-2436
-
-
Nosaka, R.1
Fukui, K.2
-
3
-
-
84903773823
-
HEp-2 cell classification using shape index histograms with donut-shaped spatial pooling
-
Larsen, A.B., Vestergaard, J.S., Larsen, R., HEp-2 cell classification using shape index histograms with donut-shaped spatial pooling. IEEE Trans. Med. Imaging 33 (2014), 1573–1580.
-
(2014)
IEEE Trans. Med. Imaging
, vol.33
, pp. 1573-1580
-
-
Larsen, A.B.1
Vestergaard, J.S.2
Larsen, R.3
-
4
-
-
84907421490
-
Pattern recognition in stained HEp-2 cells: where are we now?
-
Foggia, P., Percannella, G., Saggese, A., Vento, M., Pattern recognition in stained HEp-2 cells: where are we now?. Pattern Recognit. 47 (2014), 2305–2314.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 2305-2314
-
-
Foggia, P.1
Percannella, G.2
Saggese, A.3
Vento, M.4
-
5
-
-
77956026985
-
Segmentation of anti-nuclear antibody images based on the watershed approach
-
Cheng, C.C., Taur, J.S., Hsieh, T.Y., Tao, C.W., Segmentation of anti-nuclear antibody images based on the watershed approach. Ind. Electron. Appl., 2010, 1695–1700.
-
(2010)
Ind. Electron. Appl.
, pp. 1695-1700
-
-
Cheng, C.C.1
Taur, J.S.2
Hsieh, T.Y.3
Tao, C.W.4
-
6
-
-
84962091523
-
Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
-
Zhu, X., Suk, H.I., Lee, S.W., Shen, D., Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63 (2016), 607–618.
-
(2016)
IEEE Trans. Biomed. Eng.
, vol.63
, pp. 607-618
-
-
Zhu, X.1
Suk, H.I.2
Lee, S.W.3
Shen, D.4
-
7
-
-
84938780497
-
Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis
-
Zhu, X., Suk, H.I., Lee, S.W., Shen, D., Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis. Brain Imaging Behav. 10 (2016), 1–11.
-
(2016)
Brain Imaging Behav.
, vol.10
, pp. 1-11
-
-
Zhu, X.1
Suk, H.I.2
Lee, S.W.3
Shen, D.4
-
8
-
-
84903899707
-
A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
-
Zhu, X., Suk, H.I., Shen, D., A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage 100 (2014), 91–105.
-
(2014)
NeuroImage
, vol.100
, pp. 91-105
-
-
Zhu, X.1
Suk, H.I.2
Shen, D.3
-
9
-
-
84923658744
-
Block-row sparse multiview multilabel learning for image classification
-
Zhu, X., Li, X., Zhang, S., Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46 (2016), 450–461.
-
(2016)
IEEE Trans. Cybern.
, vol.46
, pp. 450-461
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
-
10
-
-
84885160193
-
Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification
-
Liu, F., Wee, C.-Y., Chen, H., Shen, D., Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification. NeuroImage 84 (2014), 466–475.
-
(2014)
NeuroImage
, vol.84
, pp. 466-475
-
-
Liu, F.1
Wee, C.-Y.2
Chen, H.3
Shen, D.4
-
11
-
-
85019867612
-
Manifold preserving: an intrinsic approach for semisupervised distance metric Learning
-
Ying, S., Wen, Z., Shi, J., Peng, Y., Peng, J., Qiao, H., Manifold preserving: an intrinsic approach for semisupervised distance metric Learning. IEEE Trans. Neural Netw. Learn. Syst. PP (2018), 1–12.
-
(2018)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.PP
, pp. 1-12
-
-
Ying, S.1
Wen, Z.2
Shi, J.3
Peng, Y.4
Peng, J.5
Qiao, H.6
-
12
-
-
85040340661
-
Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease
-
Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S., Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer's disease. IEEE J. Biomed. Health Inf. 22 (2018), 173–183.
-
(2018)
IEEE J. Biomed. Health Inf.
, vol.22
, pp. 173-183
-
-
Shi, J.1
Zheng, X.2
Li, Y.3
Zhang, Q.4
Ying, S.5
-
13
-
-
84903879262
-
Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics
-
Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., et al. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100 (2014), 75–90.
-
(2014)
NeuroImage
, vol.100
, pp. 75-90
-
-
Jin, Y.1
Shi, Y.2
Zhan, L.3
Gutman, B.A.4
de Zubicaray, G.I.5
McMahon, K.L.6
-
14
-
-
84889584090
-
Multivariate classification of social anxiety disorder using whole brain functional connectivity
-
Liu, F., Guo, W., Fouche, J.-P., Wang, Y., Wang, W., Ding, J., et al. Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct. Funct. 220 (2015), 101–115.
-
(2015)
Brain Struct. Funct.
, vol.220
, pp. 101-115
-
-
Liu, F.1
Guo, W.2
Fouche, J.-P.3
Wang, Y.4
Wang, W.5
Ding, J.6
-
15
-
-
84956577012
-
Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks
-
Jin, Y., Wee, C.Y., Shi, F., Thung, K.H., Ni, D., Yap, P.T., et al. Identification of infants at high-risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks. Hum. Brain Mapp. 36 (2015), 4880–4896.
-
(2015)
Hum. Brain Mapp.
, vol.36
, pp. 4880-4896
-
-
Jin, Y.1
Wee, C.Y.2
Shi, F.3
Thung, K.H.4
Ni, D.5
Yap, P.T.6
-
16
-
-
84894519440
-
A hierarchical word-merging algorithm with class separability measure
-
Wang, L., Zhou, L., Shen, C., Liu, L., Liu, H., A hierarchical word-merging algorithm with class separability measure. IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014), 417–435.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, pp. 417-435
-
-
Wang, L.1
Zhou, L.2
Shen, C.3
Liu, L.4
Liu, H.5
-
17
-
-
84900841488
-
Multiple kernel learning in the primal for multimodal Alzheimer's disease classification
-
Liu, F., Zhou, L., Shen, C., Yin, J., Multiple kernel learning in the primal for multimodal Alzheimer's disease classification. IEEE J. Biomed. Health Inf. 18 (2014), 984–990.
-
(2014)
IEEE J. Biomed. Health Inf.
, vol.18
, pp. 984-990
-
-
Liu, F.1
Zhou, L.2
Shen, C.3
Yin, J.4
-
18
-
-
82755161873
-
Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
-
Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., et al. Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiol. Aging 33 (2012), 427.e15–427.e30.
-
(2012)
Neurobiol. Aging
, vol.33
, pp. 427.e15-427.e30
-
-
Li, Y.1
Wang, Y.2
Wu, G.3
Shi, F.4
Zhou, L.5
Lin, W.6
-
19
-
-
79952073234
-
Multimodal classification of Alzheimer's disease and mild cognitive impairment
-
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage 55 (2011), 856–867.
-
(2011)
NeuroImage
, vol.55
, pp. 856-867
-
-
Zhang, D.1
Wang, Y.2
Zhou, L.3
Yuan, H.4
Shen, D.5
-
20
-
-
84991693784
-
Learning discriminative bayesian networks from high-dimensional continuous neuroimaging data
-
Zhou, L., Wang, L., Liu, L., Ogunbona, P., Shen, D., Learning discriminative bayesian networks from high-dimensional continuous neuroimaging data. IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016), 2269–2283.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, pp. 2269-2283
-
-
Zhou, L.1
Wang, L.2
Liu, L.3
Ogunbona, P.4
Shen, D.5
-
21
-
-
85024475643
-
Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis
-
Hao, X., Li, C., Yan, J., Yao, X., Risacher, S.L., Saykin, A.J., et al. Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis. Bioinformatics 33 (2017), i341–i349.
-
(2017)
Bioinformatics
, vol.33
, pp. i341-i349
-
-
Hao, X.1
Li, C.2
Yan, J.3
Yao, X.4
Risacher, S.L.5
Saykin, A.J.6
-
22
-
-
83055184373
-
Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
-
Zhang, D., Shen, D., Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 59 (2012), 895–907.
-
(2012)
NeuroImage
, vol.59
, pp. 895-907
-
-
Zhang, D.1
Shen, D.2
-
23
-
-
84992501772
-
A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
-
Zhu, X., Suk, H.-I., Wang, L., Lee, S.-W., Shen, D., A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 75 (2015), 570–577.
-
(2015)
Med. Image Anal.
, vol.75
, pp. 570-577
-
-
Zhu, X.1
Suk, H.-I.2
Wang, L.3
Lee, S.-W.4
Shen, D.5
-
24
-
-
84960157230
-
Robust joint graph sparse coding for unsupervised spectral feature selection
-
Zhu, X., Li, X., Zhang, S., Ju, C., Wu, X., Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), 1263–1275.
-
(2017)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.28
, pp. 1263-1275
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
Ju, C.4
Wu, X.5
-
25
-
-
85037976122
-
Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers
-
Zhu, X., Suk, H.I., Huang, H., Shen, D., Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans. Big Data 3 (2017), 405–414.
-
(2017)
IEEE Trans. Big Data
, vol.3
, pp. 405-414
-
-
Zhu, X.1
Suk, H.I.2
Huang, H.3
Shen, D.4
-
26
-
-
85032440732
-
Local and global structure preservation for robust unsupervised spectral feature selection
-
Zhu, X., Zhang, S., Hu, R., Zhu, Y., S.J, Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30 (2018), 517–529.
-
(2018)
IEEE Trans. Knowl. Data Eng.
, vol.30
, pp. 517-529
-
-
Zhu, X.1
Zhang, S.2
Hu, R.3
Zhu, Y.4
S.J5
-
27
-
-
85198028989
-
ImageNet: a large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L.J., Kai, L., Li, F.-F., ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, 248–255.
-
(2009)
2009 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Kai, L.5
Li, F.-F.6
-
28
-
-
85045917483
-
A deep convolutional neural network based framework for automatic fetal facial standard plane recognition
-
Yu, Z., Tan, E.L., Ni, D., Qin, J., Chen, S., Li, S., et al. A deep convolutional neural network based framework for automatic fetal facial standard plane recognition. IEEE J. Biomed. Health Inf., 2017, 10.1109/JBHI.2017.2705031.
-
(2017)
IEEE J. Biomed. Health Inf.
-
-
Yu, Z.1
Tan, E.L.2
Ni, D.3
Qin, J.4
Chen, S.5
Li, S.6
-
29
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems, 2012, 1097–1105.
-
(2012)
International Conference on Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
84978427634
-
Transfer learning of a convolutional neural network for HEp-2 cell image classification
-
Phan, H.T.H., Kumar, A., Kim, J., Feng, D., Transfer learning of a convolutional neural network for HEp-2 cell image classification. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, 1208–1211.
-
(2016)
2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
, pp. 1208-1211
-
-
Phan, H.T.H.1
Kumar, A.2
Kim, J.3
Feng, D.4
-
31
-
-
84919414531
-
HEp-2 cell image classification with convolutional neural networks
-
Gao, Z., Zhang, J., Zhou, L., Wang, L., HEp-2 cell image classification with convolutional neural networks. 2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images, 2014, 24–28.
-
(2014)
2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images
, pp. 24-28
-
-
Gao, Z.1
Zhang, J.2
Zhou, L.3
Wang, L.4
-
32
-
-
77951464520
-
License plate character recognition based on convolutional neural network LeNet-5
-
Zhao, Z.H., Yang, S.P., Ma, Z.Q., License plate character recognition based on convolutional neural network LeNet-5. J. Syst. Simul. 22 (2010), 638–641.
-
(2010)
J. Syst. Simul.
, vol.22
, pp. 638-641
-
-
Zhao, Z.H.1
Yang, S.P.2
Ma, Z.Q.3
-
34
-
-
85044634511
-
-
Visualizing and Understanding Convolutional Networks, arXiv:., 1311.2901
-
M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks, arXiv: 1311.2901, 2013.
-
(2013)
-
-
Zeiler, M.D.1
Fergus, R.2
-
35
-
-
84954314676
-
-
``Deeply-supervised nets,” Eprint Arxiv
-
C.Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, ``Deeply-supervised nets,” Eprint Arxiv, pp. 562–570, 2014.
-
(2014)
, pp. 562-570
-
-
Lee, C.Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
36
-
-
84990034009
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. Comput. Sci., 2014.
-
(2014)
Comput. Sci.
-
-
Simonyan, K.1
Zisserman, A.2
-
37
-
-
84994843365
-
Batch normalization: accelerating deep network training by reducing internal covariate shift
-
Ioffe, S., Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift. Comput. Sci., 2015.
-
(2015)
Comput. Sci.
-
-
Ioffe, S.1
Szegedy, C.2
-
38
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. Computer Vision and Pattern Recognition, 2015, 770–778.
-
(2015)
Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
39
-
-
85028407444
-
HEp-2 specimen image segmentation and classification using very deep fully convolutional network
-
Li, Y., Shen, L., Yu, S., HEp-2 specimen image segmentation and classification using very deep fully convolutional network. IEEE Trans. Med. Imaging, 2017, 10.1109/TMI.2017.2672702.
-
(2017)
IEEE Trans. Med. Imaging
-
-
Li, Y.1
Shen, L.2
Yu, S.3
-
40
-
-
84904548965
-
Deep learning of representations for unsupervised and transfer learning
-
presented at the
-
Bengio, Y., Deep learning of representations for unsupervised and transfer learning. presented at the Proc. ICML Workshop Unsupervised Transfer Learn., 2012.
-
(2012)
Proc. ICML Workshop Unsupervised Transfer Learn.
-
-
Bengio, Y.1
-
41
-
-
84897111309
-
HEp-2 image classification using intensity order pooling based features and bag of words
-
Shen, L., Lin, J., Wu, S., Yu, S., HEp-2 image classification using intensity order pooling based features and bag of words. Pattern Recognit. 47 (2014), 2419–2427.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 2419-2427
-
-
Shen, L.1
Lin, J.2
Wu, S.3
Yu, S.4
-
42
-
-
84919422239
-
Biologically-inspired dense local descriptor for indirect immunofluorescence image classification
-
Gragnaniello, D., Sansone, C., Verdoliva, L., Biologically-inspired dense local descriptor for indirect immunofluorescence image classification. 2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images, 2014, 1–5.
-
(2014)
2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images
, pp. 1-5
-
-
Gragnaniello, D.1
Sansone, C.2
Verdoliva, L.3
-
43
-
-
0003444648
-
Learning Internal Representations By Error Propagation
-
MIT Press
-
Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning Internal Representations By Error Propagation. 1988, MIT Press.
-
(1988)
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
44
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
45
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
46
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
presented at the
-
Girshick, R., Donahue, J., Darrell, T., Malik, J., Rich feature hierarchies for accurate object detection and semantic segmentation. presented at the Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
47
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
presented at the
-
Long, J., Shelhamer, E., Darrell, T., Fully convolutional networks for semantic segmentation. presented at the Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
48
-
-
85044648084
-
-
Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:., 1409.1556
-
K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv: 1409.1556, 2014.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
49
-
-
85044627137
-
-
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:., 1502.03167
-
S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv: 1502.03167, 2015.
-
(2015)
-
-
Ioffe, S.1
Szegedy, C.2
-
50
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–778.
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
51
-
-
85044641217
-
Learning Long-Term Dependencies with Gradient Descent is Difficult
-
IEEE Press
-
Bengio, Y., Simard, P., Frasconi, P., Learning Long-Term Dependencies with Gradient Descent is Difficult. 1994, IEEE Press.
-
(1994)
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
52
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1 (1989), 541–551.
-
(1989)
Neural Comput.
, vol.1
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
-
53
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
Long, M., Cao, Y., Wang, J., Jordan, M.I., Learning transferable features with deep adaptation networks. Comput. Sci., 2015, 97–105.
-
(2015)
Comput. Sci.
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.I.4
-
54
-
-
84937508363
-
How transferable are features in deep neural networks?
-
presented at the
-
Yosinski, J., Clune, J., Bengio, Y., Lipson, H., How transferable are features in deep neural networks?. presented at the Proc. Adv. Neural Inform. Process. Syst., 2014.
-
(2014)
Proc. Adv. Neural Inform. Process. Syst.
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
55
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Full training or fine tuning?
-
Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., et al. Convolutional neural networks for medical image analysis: Full training or fine tuning?. IEEE Trans. Med. Imaging 35 (2016), 1299–1312.
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1299-1312
-
-
Tajbakhsh, N.1
Shin, J.Y.2
Gurudu, S.R.3
Hurst, R.T.4
Kendall, C.B.5
Gotway, M.B.6
-
56
-
-
84904482223
-
Decaf: a deep convolutional activation feature for generic visual recognition
-
presented at the
-
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., et al. Decaf: a deep convolutional activation feature for generic visual recognition. presented at the Proc. 30th Int. Conf. Mach. Learn., 2013.
-
(2013)
Proc. 30th Int. Conf. Mach. Learn.
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
-
57
-
-
84964329259
-
Classification of ANA HEp-2 slide images using morphological features of stained patterns ☆
-
Ponomarev, G.V., Kazanov, M.D., Classification of ANA HEp-2 slide images using morphological features of stained patterns ☆. Pattern Recognit. Lett. 82 (2016), 79–84.
-
(2016)
Pattern Recognit. Lett.
, vol.82
, pp. 79-84
-
-
Ponomarev, G.V.1
Kazanov, M.D.2
-
58
-
-
84962812190
-
Human Epithelial Type 2 cell classification with convolutional neural networks
-
Bayramoglu, N., Kannala, J., Heikkilä, J., Human Epithelial Type 2 cell classification with convolutional neural networks. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), 2015, 1–6.
-
(2015)
2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)
, pp. 1-6
-
-
Bayramoglu, N.1
Kannala, J.2
Heikkilä, J.3
-
59
-
-
84977930046
-
Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset
-
Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., Wang, T., Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 194 (2016), 87–94.
-
(2016)
Neurocomputing
, vol.194
, pp. 87-94
-
-
Shi, J.1
Zhou, S.2
Liu, X.3
Zhang, Q.4
Lu, M.5
Wang, T.6
-
60
-
-
85019169344
-
Deep convolutional neural network based HEp-2 cell classification
-
Xi, J., Linlin, S., Xiande, Z., Shiqi, Y., Deep convolutional neural network based HEp-2 cell classification. 2016 23rd International Conference on Pattern Recognition (ICPR), 2016, 77–80.
-
(2016)
2016 23rd International Conference on Pattern Recognition (ICPR)
, pp. 77-80
-
-
Xi, J.1
Linlin, S.2
Xiande, Z.3
Shiqi, Y.4
|