메뉴 건너뛰기




Volumn 28, Issue 6, 2017, Pages 1263-1275

Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection

Author keywords

Dimensionality reduction; manifold learning; regression; sparse coding

Indexed keywords

CLASSIFICATION (OF INFORMATION); CODES (SYMBOLS); DATA MINING; FEATURE EXTRACTION; NEAREST NEIGHBOR SEARCH;

EID: 84960157230     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2016.2521602     Document Type: Article
Times cited : (304)

References (62)
  • 1
    • 84886176482 scopus 로고    scopus 로고
    • Semi-supervised classification based on subspace sparse representation
    • G. Yu, G. Zhang, Z. Zhang, Z. Yu, and L. Deng, "Semi-supervised classification based on subspace sparse representation," Knowl. Inf. Syst., vol. 43, no. 1, pp. 81-101, 2015.
    • (2015) Knowl. Inf. Syst. , vol.43 , Issue.1 , pp. 81-101
    • Yu, G.1    Zhang, G.2    Zhang, Z.3    Yu, Z.4    Deng, L.5
  • 2
    • 84897025208 scopus 로고    scopus 로고
    • A unified learning framework for single image super-resolution
    • Apr.
    • J. Yu, X. Gao, D. Tao, X. Li, and K. Zhang, "A unified learning framework for single image super-resolution," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 4, pp. 780-792, Apr. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.4 , pp. 780-792
    • Yu, J.1    Gao, X.2    Tao, D.3    Li, X.4    Zhang, K.5
  • 3
    • 85027942548 scopus 로고    scopus 로고
    • Targeting accurate object extraction from an image: A comprehensive study of natural image matting
    • Feb.
    • Q. Zhu, L. Shao, X. Li, and L. Wang, "Targeting accurate object extraction from an image: A comprehensive study of natural image matting," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 185-207, Feb. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.2 , pp. 185-207
    • Zhu, Q.1    Shao, L.2    Li, X.3    Wang, L.4
  • 4
    • 84922418338 scopus 로고    scopus 로고
    • p-norm robust matrix completion for missing value recovery
    • p-norm robust matrix completion for missing value recovery," Knowl. Inf. Syst., vol. 42, no. 3, pp. 525-544, 2013.
    • (2013) Knowl. Inf. Syst. , vol.42 , Issue.3 , pp. 525-544
    • Nie, F.1    Wang, H.2    Huang, H.3    Ding, C.4
  • 5
    • 84891274311 scopus 로고    scopus 로고
    • Multiresolution imaging
    • Jan.
    • X. Lu and X. Li, "Multiresolution imaging," IEEE Trans. Cybern., vol. 44, no. 1, pp. 149-160, Jan. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.1 , pp. 149-160
    • Lu, X.1    Li, X.2
  • 6
    • 84876133796 scopus 로고    scopus 로고
    • Sparse coding from a Bayesian perspective
    • Jun.
    • X. Lu, Y. Wang, and Y. Yuan, "Sparse coding from a Bayesian perspective," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 929-939, Jun. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.6 , pp. 929-939
    • Lu, X.1    Wang, Y.2    Yuan, Y.3
  • 7
    • 84903274914 scopus 로고    scopus 로고
    • Feature learning for image classification via multiobjective genetic programming
    • Jul.
    • L. Shao, L. Liu, and X. Li, "Feature learning for image classification via multiobjective genetic programming," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1359-1371, Jul. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.7 , pp. 1359-1371
    • Shao, L.1    Liu, L.2    Li, X.3
  • 8
    • 78649402552 scopus 로고    scopus 로고
    • Missing value estimation for mixed-attribute data sets
    • Jan.
    • X. Zhu, S. Zhang, Z. Jin, Z. Zhang, and Z. Xu, "Missing value estimation for mixed-attribute data sets," IEEE Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 110-121, Jan. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.1 , pp. 110-121
    • Zhu, X.1    Zhang, S.2    Jin, Z.3    Zhang, Z.4    Xu, Z.5
  • 9
    • 84940005208 scopus 로고    scopus 로고
    • Multi-class active learning by uncertainty sampling with diversity maximization
    • Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, "Multi-class active learning by uncertainty sampling with diversity maximization," Int. J. Comput. Vis., vol. 113, no. 2, pp. 113-127, 2015.
    • (2015) Int. J. Comput. Vis. , vol.113 , Issue.2 , pp. 113-127
    • Yang, Y.1    Ma, Z.2    Nie, F.3    Chang, X.4    Hauptmann, A.G.5
  • 10
    • 84899519151 scopus 로고    scopus 로고
    • Image annotation by multiple-instance learning with discriminative feature mapping and selection
    • May
    • R. Hong, M. Wang, Y. Gao, D. Tao, X. Li, and X. Wu, "Image annotation by multiple-instance learning with discriminative feature mapping and selection," IEEE Trans. Cybern., vol. 44, no. 5, pp. 669-680, May 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.5 , pp. 669-680
    • Hong, R.1    Wang, M.2    Gao, Y.3    Tao, D.4    Li, X.5    Wu, X.6
  • 11
    • 84942294797 scopus 로고    scopus 로고
    • Greedy column subset selection for large-scale data sets
    • A. K. Farahat, A. Elgohary, A. Ghodsi, and M. S. Kamel, "Greedy column subset selection for large-scale data sets," Knowl. Inf. Syst., vol. 45, no. 1, pp. 1-34, 2015.
    • (2015) Knowl. Inf. Syst. , vol.45 , Issue.1 , pp. 1-34
    • Farahat, A.K.1    Elgohary, A.2    Ghodsi, A.3    Kamel, M.S.4
  • 12
    • 84863116061 scopus 로고    scopus 로고
    • A multimedia retrieval framework based on semi-supervised ranking and relevance feedback
    • Apr.
    • Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, and Y. Pan, "A multimedia retrieval framework based on semi-supervised ranking and relevance feedback," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 723-742, Apr. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.4 , pp. 723-742
    • Yang, Y.1    Nie, F.2    Xu, D.3    Luo, J.4    Zhuang, Y.5    Pan, Y.6
  • 13
    • 84952716620 scopus 로고    scopus 로고
    • Centrality measuresbased algorithm to visualize a maximal common induced subgraph in large communication networks
    • P. Nirmala, L. R. Sulochana, and N. Rethnasamy, "Centrality measuresbased algorithm to visualize a maximal common induced subgraph in large communication networks," Knowl. Inf. Syst., vol. 46, no. 1, pp. 213-239, 2015.
    • (2015) Knowl. Inf. Syst. , vol.46 , Issue.1 , pp. 213-239
    • Nirmala, P.1    Sulochana, L.R.2    Rethnasamy, N.3
  • 14
    • 79955371363 scopus 로고    scopus 로고
    • Graph regularized sparse coding for image representation
    • May
    • M. Zheng et al., "Graph regularized sparse coding for image representation," IEEE Trans. Image Process., vol. 20, no. 5, pp. 1327-1336, May 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.5 , pp. 1327-1336
    • Zheng, M.1
  • 15
    • 84905573114 scopus 로고    scopus 로고
    • Knowledge adaptation with partially shared features for event detection using few exemplars
    • Sep.
    • Z. Ma, Y. Yang, N. Sebe, and A. G. Hauptmann, "Knowledge adaptation with partially shared features for event detection using few exemplars," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 9, pp. 1789-1802, Sep. 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.9 , pp. 1789-1802
    • Ma, Z.1    Yang, Y.2    Sebe, N.3    Hauptmann, A.G.4
  • 16
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by mixed kernel canonical correlation analysis
    • X. Zhu, Z. Huang, H. T. Shen, J. Cheng, and C. Xu, "Dimensionality reduction by mixed kernel canonical correlation analysis," Pattern Recognit., vol. 45, no. 8, pp. 3003-3016, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.8 , pp. 3003-3016
    • Zhu, X.1    Huang, Z.2    Shen, H.T.3    Cheng, J.4    Xu, C.5
  • 17
    • 84992525957 scopus 로고    scopus 로고
    • Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis
    • Aug.
    • X. Zhu, H.-I. Suk, S.-W. Lee, and D. Shen, "Canonical feature selection for joint regression and multi-class identification in Alzheimer's disease diagnosis," Brain Imag. Behavior, pp. 1-11, Aug. 2015.
    • (2015) Brain Imag. Behavior , pp. 1-11
    • Zhu, X.1    Suk, H.-I.2    Lee, S.-W.3    Shen, D.4
  • 18
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-cluster data
    • D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multi-cluster data," in Proc. 16th ACM SIGKDD Int. Conf. KDD, 2010, pp. 333-342.
    • (2010) Proc. 16th ACM SIGKDD Int. Conf. KDD , pp. 333-342
    • Cai, D.1    Zhang, C.2    He, X.3
  • 19
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely-Laplacian sparse coding for image classification
    • Jun.
    • S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao, "Local features are not lonely-Laplacian sparse coding for image classification," in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 3555-3561.
    • (2010) Proc. IEEE Conf. CVPR , pp. 3555-3561
    • Gao, S.1    Tsang, I.W.-H.2    Chia, L.-T.3    Zhao, P.4
  • 20
    • 41549136620 scopus 로고    scopus 로고
    • Harmonizing hierarchical manifolds for multimedia document semantics understanding and crossmedia retrieval
    • Apr.
    • Y. Yang, Y.-T. Zhuang, F. Wu, and Y.-H. Pan, "Harmonizing hierarchical manifolds for multimedia document semantics understanding and crossmedia retrieval," IEEE Trans. Multimedia, vol. 10, no. 3, pp. 437-446, Apr. 2008.
    • (2008) IEEE Trans. Multimedia , vol.10 , Issue.3 , pp. 437-446
    • Yang, Y.1    Zhuang, Y.-T.2    Wu, F.3    Pan, Y.-H.4
  • 21
    • 84859564250 scopus 로고    scopus 로고
    • Efficient spectral feature selection with minimum redundancy
    • Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. AAAI, 2010, pp. 55-60.
    • (2010) Proc. AAAI , pp. 55-60
    • Zhao, Z.1    Wang, L.2    Liu, H.3
  • 22
    • 84962091523 scopus 로고    scopus 로고
    • Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification
    • to be published
    • X. Zhu, H.-I. Suk, S.-W. Lee, and D. Shen, "Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification," IEEE Trans. Biomed. Eng., to be published.
    • IEEE Trans. Biomed. Eng.
    • Zhu, X.1    Suk, H.-I.2    Lee, S.-W.3    Shen, D.4
  • 23
    • 84903907116 scopus 로고    scopus 로고
    • Feature selection by joint graph sparse coding
    • X. Zhu, X. Wu, W. Ding, and S. Zhang, "Feature selection by joint graph sparse coding," in Proc. SDM, 2013, pp. 803-811.
    • (2013) Proc. SDM , pp. 803-811
    • Zhu, X.1    Wu, X.2    Ding, W.3    Zhang, S.4
  • 24
    • 84903154900 scopus 로고    scopus 로고
    • From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms
    • Jul.
    • L. Shao, R. Yan, X. Li, and Y. Liu, "From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms," IEEE Trans. Cybern., vol. 44, no. 7, pp. 1001-1013, Jul. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.7 , pp. 1001-1013
    • Shao, L.1    Yan, R.2    Li, X.3    Liu, Y.4
  • 25
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mar.
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Mach. Learn. Res., vol. 11, pp. 19-60, Mar. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 26
    • 84881041271 scopus 로고    scopus 로고
    • 2,1-norm regularized discriminative feature selection for unsupervised learning
    • 2,1-norm regularized discriminative feature selection for unsupervised learning," in Proc. 22nd IJCAI, 2011, pp. 1589-1594.
    • (2011) Proc. 22nd IJCAI , pp. 1589-1594
    • Yang, Y.1    Shen, H.T.2    Ma, Z.3    Huang, Z.4    Zhou, X.5
  • 27
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • Sep.
    • X. Zhu, L. Zhang, and Z. Huang, "A sparse embedding and least variance encoding approach to hashing," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 28
    • 84901242471 scopus 로고    scopus 로고
    • Feature selection for machine learning classification problems: A recent overview
    • S. B. Kotsiantis, "Feature selection for machine learning classification problems: A recent overview," Artif. Intell. Rev., vol. 42, no. 1, pp. 1-20, 2011.
    • (2011) Artif. Intell. Rev. , vol.42 , Issue.1 , pp. 1-20
    • Kotsiantis, S.B.1
  • 29
    • 84930653781 scopus 로고    scopus 로고
    • Robust visual tracking using structurally random projection and weighted least squares
    • Nov.
    • S. Zhang, H. Zhou, F. Jiang, and X. Li, "Robust visual tracking using structurally random projection and weighted least squares," IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 11, pp. 1749-1760, Nov. 2015.
    • (2015) IEEE Trans. Circuits Syst. Video Technol. , vol.25 , Issue.11 , pp. 1749-1760
    • Zhang, S.1    Zhou, H.2    Jiang, F.3    Li, X.4
  • 30
    • 84946497703 scopus 로고    scopus 로고
    • Synthesized computational aesthetic evaluation of photos
    • Jan.
    • W. Wang, D. Cai, L. Wang, Q. Huang, X. Xu, and X. Li, "Synthesized computational aesthetic evaluation of photos," Neurocomputing, vol. 172, pp. 244-252, Jan. 2016.
    • (2016) Neurocomputing , vol.172 , pp. 244-252
    • Wang, W.1    Cai, D.2    Wang, L.3    Huang, Q.4    Xu, X.5    Li, X.6
  • 31
    • 67650705016 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using mutual information feature selector and rough sets
    • S. Foitong, P. Rojanavasu, B. Attachoo, and O. Pinngern, "Estimating optimal feature subsets using mutual information feature selector and rough sets," in Proc. 13th PAKDD, 2009, pp. 973-980.
    • (2009) Proc. 13th PAKDD , pp. 973-980
    • Foitong, S.1    Rojanavasu, P.2    Attachoo, B.3    Pinngern, O.4
  • 32
    • 2942734703 scopus 로고    scopus 로고
    • Benefitting from the variables that variable selection discards
    • Mar.
    • R. Caruana and V. R. de Sa, "Benefitting from the variables that variable selection discards," J. Mach. Learn. Res., vol. 3, pp. 1245-1264, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1245-1264
    • Caruana, R.1    De Sa, V.R.2
  • 33
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • X. He and P. Niyogi, "Locality preserving projections," in Proc. NIPS, 2003, pp. 197-204.
    • (2003) Proc. NIPS , pp. 197-204
    • He, X.1    Niyogi, P.2
  • 34
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., no. 46, no. 1, pp. 389-422, 2002.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 35
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • S. Maldonado and R. Weber, "A wrapper method for feature selection using support vector machines," Inf. Sci., vol. 179, no. 13, pp. 2208-2217, 2009.
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 36
    • 85027941907 scopus 로고    scopus 로고
    • Scene parsing from an MAP perspective
    • Sep.
    • X. Li, L. Mou, and X. Lu, "Scene parsing from an MAP perspective," IEEE Trans. Cybern., vol. 45, no. 9, pp. 1876-1886, Sep. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.9 , pp. 1876-1886
    • Li, X.1    Mou, L.2    Lu, X.3
  • 37
    • 84964888387 scopus 로고    scopus 로고
    • Robust image hashing with ring partition and invariant vector distance
    • Jan.
    • Z. Tang, X. Zhang, X. Li, and S. Zhang, "Robust image hashing with ring partition and invariant vector distance," IEEE Trans. Inf. Forensics Security, vol. 11, no. 1, pp. 200-214, Jan. 2016.
    • (2016) IEEE Trans. Inf. Forensics Security , vol.11 , Issue.1 , pp. 200-214
    • Tang, Z.1    Zhang, X.2    Li, X.3    Zhang, S.4
  • 38
    • 84890520049 scopus 로고    scopus 로고
    • Use of the zero norm with linear models and kernel methods
    • Jan.
    • J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping, "Use of the zero norm with linear models and kernel methods," J. Mach. Learn. Res., vol. 3, pp. 1439-1461, Jan. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1439-1461
    • Weston, J.1    Elisseeff, A.2    Schölkopf, B.3    Tipping, M.4
  • 40
    • 80555129673 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • Feb.
    • R. Jenatton, J.-Y. Audibert, and F. Bach, "Structured variable selection with sparsity-inducing norms," J. Mach. Learn. Res., vol. 12, pp. 2777-2824, Feb. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2777-2824
    • Jenatton, R.1    Audibert, J.-Y.2    Bach, F.3
  • 41
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 68, no. 1, pp. 49-67, 2006.
    • (2006) J. Roy. Statist. Soc. B (Statist. Methodol.) , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 42
    • 84903899707 scopus 로고    scopus 로고
    • A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis
    • Oct.
    • X. Zhu, H.-I. Suk, and D. Shen, "A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis," NeuroImage, vol. 100, pp. 91-105, Oct. 2014.
    • (2014) NeuroImage , vol.100 , pp. 91-105
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 45
    • 33745309913 scopus 로고    scopus 로고
    • Sparse principal component analysis
    • Jun.
    • H. Zou, T. Hastie, and R. Tibshirani, "Sparse principal component analysis," J. Comput. Graph. Statist., vol. 15, no. 2, pp. 265-286, Jun. 2006.
    • (2006) J. Comput. Graph. Statist. , vol.15 , Issue.2 , pp. 265-286
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 47
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex multi-task feature learning," Mach. Learn., vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 48
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 49
    • 84897584700 scopus 로고    scopus 로고
    • Video-to-shot tag propagation by graph sparse group lasso
    • Apr.
    • X. Zhu, Z. Huang, J. Cui, and H. T. Shen, "Video-to-shot tag propagation by graph sparse group lasso," IEEE Trans. Multimedia, vol. 15, no. 3, pp. 633-646, Apr. 2013.
    • (2013) IEEE Trans. Multimedia , vol.15 , Issue.3 , pp. 633-646
    • Zhu, X.1    Huang, Z.2    Cui, J.3    Shen, H.T.4
  • 50
    • 78651272402 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • J. Peng et al., "Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer," Ann. Appl. Statist., vol. 4, no. 1, pp. 53-77, 2010.
    • (2010) Ann. Appl. Statist. , vol.4 , Issue.1 , pp. 53-77
    • Peng, J.1
  • 51
    • 80051715215 scopus 로고    scopus 로고
    • C-HiLasso: A collaborative hierarchical sparse modeling framework
    • Sep.
    • P. Sprechmann, I. Ramírez, G. Sapiro, and Y. C. Eldar, "C-HiLasso: A collaborative hierarchical sparse modeling framework," IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4183-4198, Sep. 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.9 , pp. 4183-4198
    • Sprechmann, P.1    Ramírez, I.2    Sapiro, G.3    Eldar, Y.C.4
  • 52
    • 77956551904 scopus 로고    scopus 로고
    • Learning sparse SVM for feature selection on very high dimensional datasets
    • M. Tan, L. Wang, and I. W. Tsang, "Learning sparse SVM for feature selection on very high dimensional datasets," in Proc. 27th ICML, 2010, pp. 1047-1054.
    • (2010) Proc. 27th ICML , pp. 1047-1054
    • Tan, M.1    Wang, L.2    Tsang, I.W.3
  • 54
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Feb.
    • X. Zhu, X. Li, and S. Zhang, "Block-row sparse multiview multilabel learning for image classification," IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2015.
    • (2015) IEEE Trans. Cybern. , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 55
    • 84897584116 scopus 로고    scopus 로고
    • Feature selection for multimedia analysis by sharing information among multiple tasks
    • Apr.
    • Y. Yang, Z. Ma, A. G. Hauptmann, and N. Sebe, "Feature selection for multimedia analysis by sharing information among multiple tasks," IEEE Trans. Multimedia, vol. 15, no. 3, pp. 661-669, Apr. 2013.
    • (2013) IEEE Trans. Multimedia , vol.15 , Issue.3 , pp. 661-669
    • Yang, Y.1    Ma, Z.2    Hauptmann, A.G.3    Sebe, N.4
  • 56
    • 84866033003 scopus 로고    scopus 로고
    • Selftaught dimensionality reduction on the high-dimensional small-sized data
    • X. Zhu, Z. Huang, Y. Yang, H. T. Shen, C. Xu, and J. Luo, "Selftaught dimensionality reduction on the high-dimensional small-sized data," Pattern Recognit., vol. 46, no. 1, pp. 215-229, 2013.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Shen, H.T.4    Xu, C.5    Luo, J.6
  • 57
    • 84911457687 scopus 로고    scopus 로고
    • Matrix-similarity based loss function and feature selection for Alzheimer's disease diagnosis
    • Jun.
    • X. Zhu, H.-I. Suk, and D. Shen, "Matrix-similarity based loss function and feature selection for Alzheimer's disease diagnosis," in Proc. IEEE Conf. CVPR, Jun. 2014, pp. 3089-3096.
    • (2014) Proc. IEEE Conf. CVPR , pp. 3089-3096
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 58
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Nov.
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 61
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
    • S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, "A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers," Statist. Sci., vol. 27, no. 4, pp. 538-557, 2012.
    • (2012) Statist. Sci. , vol.27 , Issue.4 , pp. 538-557
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 62
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, "Self-taught learning: Transfer learning from unlabeled data," in Proc. 24th ICML, 2007, pp. 759-766.
    • (2007) Proc. 24th ICML , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.