-
2
-
-
0002979137
-
An algorithm for fast recovery of sparse causal graphs
-
P. Spirtes and C. Glymour, "An algorithm for fast recovery of sparse causal graphs," Social Science Comput. Rev., vol. 9, no. 1, pp. 62-72, 1991.
-
(1991)
Social Science Comput. Rev.
, vol.9
, Issue.1
, pp. 62-72
-
-
Spirtes, P.1
Glymour, C.2
-
3
-
-
84872408464
-
-
Ph.D. dissertation, Univ. Massachusetts Amherst, Amherst, MA, USA
-
A. Fast, "Learning the structure of Bayesian networks with constraint satisfaction," Ph.D. dissertation, Univ. Massachusetts Amherst, Amherst, MA, USA, 2010.
-
(2010)
Learning the Structure of Bayesian Networks with Constraint Satisfaction
-
-
Fast, A.1
-
5
-
-
0037262841
-
Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
-
N. Friedman and D. Koller, "Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks," Mach. Learn., vol. 50, nos. 1/2, pp. 95-125, 2003.
-
(2003)
Mach. Learn.
, vol.50
, Issue.1-2
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
6
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
M. Koivisto and K. Sood, "Exact Bayesian structure discovery in Bayesian networks," J. Mach. Learn. Res., vol. 5, pp. 549-573, 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
8
-
-
0003021797
-
A construction of Bayesian networks from databases based on an MDL principle
-
J. Suzuki, "A construction of Bayesian networks from databases based on an MDL principle," in Proc. 9th Int. Conf. Uncertainty Artif. Intell., 1993, pp. 266-273.
-
(1993)
Proc. 9th Int. Conf. Uncertainty Artif. Intell.
, pp. 266-273
-
-
Suzuki, J.1
-
9
-
-
21244484641
-
Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
-
S. Acid and L. Campos, "Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs," J. Artif. Intell. Res., vol. 18, pp. 445-490, 2003.
-
(2003)
J. Artif. Intell. Res.
, vol.18
, pp. 445-490
-
-
Acid, S.1
Campos, L.2
-
10
-
-
33746035971
-
The max-min hillclimbing Bayesian network structure learning algorithm
-
I. Tsamardinos, L. Brown, and C. Aliferis, "The max-min hillclimbing Bayesian network structure learning algorithm," Mach. Learn., vol. 65, no. 1, pp. 31-78, 2006.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.2
Aliferis, C.3
-
11
-
-
78651369196
-
Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood
-
J. L. M. Jose A. Gamez, and J. M. Puerta, "Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood," Data Mining Knowl. Discovery, vol. 22, nos. 1/2, pp. 106-148, 2011.
-
(2011)
Data Mining Knowl. Discovery
, vol.22
, Issue.1-2
, pp. 106-148
-
-
Jose Gamez A, J.L.M.1
Puerta, J.M.2
-
12
-
-
36348990694
-
Learning graphical model structures using L1-regularization paths
-
M. Schmidt, A. Niculescu-Mizil, and K. Murphy, "Learning graphical model structures using L1-regularization paths," in Proc. 22nd Nat. Conf. Artif. Intell., 2007, pp. 1278-1283.
-
(2007)
Proc. 22nd Nat. Conf. Artif. Intell.
, pp. 1278-1283
-
-
Schmidt, M.1
Niculescu-Mizil, A.2
Murphy, K.3
-
13
-
-
48849110444
-
Using markov blankets for causal structure learning
-
J. Pellet and A. Elisseeff, "Using Markov blankets for causal structure learning," J. Mach. Learn. Res., vol. 9, pp. 1295-1342, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1295-1342
-
-
Pellet, J.1
Elisseeff, A.2
-
14
-
-
84885013182
-
A sparse structure learning algorithm for Gaussian Bayesian network identification from high-dimensional data
-
Jun.
-
S. Huang, J. Li, J. Ye, A. Fleisher, K. Chen, T. Wu, and E. Reiman, "A sparse structure learning algorithm for Gaussian Bayesian network identification from high-dimensional data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1328-1342, Jun. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.6
, pp. 1328-1342
-
-
Huang, S.1
Li, J.2
Ye, J.3
Fleisher, A.4
Chen, K.5
Wu, T.6
Reiman, E.7
-
15
-
-
84899032594
-
A∗Lasso for learning a sparse Bayesian network structure for continuous variables
-
J. Xiang and S. Kim, "A∗Lasso for learning a sparse Bayesian network structure for continuous variables," in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 2418-2426.
-
(2013)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 2418-2426
-
-
Xiang, J.1
Kim, S.2
-
16
-
-
77956911311
-
Efficient heuristics for discriminative structure learning of Bayesian network classifiers
-
F. Pernkopf and J. Bilmes, "Efficient heuristics for discriminative structure learning of Bayesian network classifiers," J. Mach. Learn. Res., vol. 11, pp. 2323-2360, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2323-2360
-
-
Pernkopf, F.1
Bilmes, J.2
-
17
-
-
84856204760
-
Maximum margin Bayesian network classifiers
-
Mar.
-
F. Pernkopf, M. Wohlmayr, and S. Tschiatschek, "Maximum margin Bayesian network classifiers," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 521-532, Mar. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.3
, pp. 521-532
-
-
Pernkopf, F.1
Wohlmayr, M.2
Tschiatschek, S.3
-
18
-
-
55649114611
-
Maximum margin Bayesian networks
-
Y. Guo, D. Wilkinson, and D. Schuurmans, "Maximum margin Bayesian networks," in Proc. Uncertainty Artif. Intell., 2005, pp. 233-242.
-
(2005)
Proc. Uncertainty Artif. Intell.
, pp. 233-242
-
-
Guo, Y.1
Wilkinson, D.2
Schuurmans, D.3
-
20
-
-
60549103853
-
Complex brain networks: Graph theoretical analysis of structural and functional systems
-
E. Bullmore and O. Sporns, "Complex brain networks: Graph theoretical analysis of structural and functional systems," Nat. Rev. Neurosci., vol. 10, no. 3, pp. 186-198, 2009.
-
(2009)
Nat. Rev. Neurosci.
, vol.10
, Issue.3
, pp. 186-198
-
-
Bullmore, E.1
Sporns, O.2
-
21
-
-
78649717035
-
Network modeling methods for fMRI
-
S. Smith, K. Miller, G. Khorshidi, M. Webster, C. Beckmann, T. Nichols, J. Ramsey, and M. Woolrich, "Network modeling methods for fMRI," Neuroimage, vol. 54, no. 2, pp. 875-891, 2011.
-
(2011)
Neuroimage
, vol.54
, Issue.2
, pp. 875-891
-
-
Smith, S.1
Miller, K.2
Khorshidi, G.3
Webster, M.4
Beckmann, C.5
Nichols, T.6
Ramsey, J.7
Woolrich, M.8
-
22
-
-
84891941471
-
Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease
-
R. Li, J. Yu, S. Zhang, F. Bao, P. Wang, X. Huang, and J. Li, "Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease," PLoS One, vol. 8, no. 12, p. e82104, 2013.
-
(2013)
PLoS One
, vol.8
, Issue.12
, pp. e82104
-
-
Li, R.1
Yu, J.2
Zhang, S.3
Bao, F.4
Wang, P.5
Huang, X.6
Li, J.7
-
23
-
-
84876175622
-
Alterations of directional connectivity among resting-state networks in Alzheimer disease
-
R. Li, X. Wu, K. Chen, A. Fleisher, E. Reiman, and L. Yao, "Alterations of directional connectivity among resting-state networks in Alzheimer disease," Am. J. Neuroradiol., vol. 34, pp. 340- 345, 2012.
-
(2012)
Am. J. Neuroradiol.
, vol.34
, pp. 340-345
-
-
Li, R.1
Wu, X.2
Chen, K.3
Fleisher, A.4
Reiman, E.5
Yao, L.6
-
24
-
-
80054918532
-
Gray matter concentration and effective connectivity changes in Alzheimers disease: A longitudinal structural MRI study
-
X. Li, D. Coyle, L. Maguire, D. Watson, and T. McGinnity, "Gray matter concentration and effective connectivity changes in Alzheimers disease: A longitudinal structural MRI study," Neuroradiology, vol. 53, no. 10, pp. 733-748, 2011.
-
(2011)
Neuroradiology
, vol.53
, Issue.10
, pp. 733-748
-
-
Li, X.1
Coyle, D.2
Maguire, L.3
Watson, D.4
McGinnity, T.5
-
25
-
-
84887361661
-
Discriminative brain effective connectivity analysis for Alzheimers disease: A kernel learning approach upon sparse Gaussian Bayesian network
-
L. Zhou, L. Wang, L. Liu, P. Ogunbona, and D. Shen, "Discriminative brain effective connectivity analysis for Alzheimers disease: A kernel learning approach upon sparse Gaussian Bayesian network," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2013, pp. 2243-2250.
-
(2013)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 2243-2250
-
-
Zhou, L.1
Wang, L.2
Liu, L.3
Ogunbona, P.4
Shen, D.5
-
26
-
-
84906975882
-
Max-margin based learning for discriminative Bayesian network from neuroimaging data
-
L. Zhou, L. Wang, L. Liu, P. Ogunbona, and D. Shen, "Max-margin based learning for discriminative Bayesian network from neuroimaging data," in Proc. 17th Int. Conf. Med. Image Comput. Comput.-Assisted Intervention, 2014, pp. 321-328.
-
(2014)
Proc. 17th Int. Conf. Med. Image Comput. Comput.-Assisted Intervention
, pp. 321-328
-
-
Zhou, L.1
Wang, L.2
Liu, L.3
Ogunbona, P.4
Shen, D.5
-
27
-
-
33846898773
-
Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data
-
J. Kim, W. Zhu, L. Chang, P. Bentler, and T. Ernst, "Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data," Human Brain Mapping, vol. 28, pp. 85-93, 2007.
-
(2007)
Human Brain Mapping
, vol.28
, pp. 85-93
-
-
Kim, J.1
Zhu, W.2
Chang, L.3
Bentler, P.4
Ernst, T.5
-
28
-
-
0041924877
-
Dynamic causal modeling
-
K. Friston, L. Harrison, and W. Penney, "Dynamic causal modeling," Neuroimage, vol. 19, pp. 1273-1302, 2003.
-
(2003)
Neuroimage
, vol.19
, pp. 1273-1302
-
-
Friston, K.1
Harrison, L.2
Penney, W.3
-
29
-
-
84861311948
-
Free energy score spaces: Using generative information in discriminative classifiers
-
Jul.
-
A. Perina, M. Cristani, U. Castellani, V. Murino, and N. Jojic, "Free energy score spaces: Using generative information in discriminative classifiers," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1249-1262, Jul. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.7
, pp. 1249-1262
-
-
Perina, A.1
Cristani, M.2
Castellani, U.3
Murino, V.4
Jojic, N.5
-
31
-
-
84856626270
-
Modeling spatial layout with fisher vectors for image categorization
-
J. Krapac, J. Verbeek, and F. Jurie, "Modeling spatial layout with Fisher vectors for image categorization," in Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 1487-1494.
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 1487-1494
-
-
Krapac, J.1
Verbeek, J.2
Jurie, F.3
-
32
-
-
84911395964
-
Deep fisher kernels- end to end learning of the fisher kernel GMM parameters
-
V. Sydorov, M. Sakurada, and C. Lampert, "Deep fisher kernels- end to end learning of the fisher kernel GMM parameters," in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 1402-1409.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recog.
, pp. 1402-1409
-
-
Sydorov, V.1
Sakurada, M.2
Lampert, C.3
-
33
-
-
80053444073
-
Learning discriminative Fisher kernels
-
L. Maaten, "Learning discriminative Fisher kernels," in Proc. Int. Conf. Mach. Learn., 2011, pp. 217-224.
-
(2011)
Proc. Int. Conf. Mach. Learn.
, pp. 217-224
-
-
Maaten, L.1
-
34
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, nos. 1-3, pp. 131-159, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
35
-
-
48049087439
-
Feature selection with kernel class separability
-
Sep.
-
L. Wang, "Feature selection with kernel class separability," IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1534-1546, Sep. 2008.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.9
, pp. 1534-1546
-
-
Wang, L.1
-
36
-
-
84890433386
-
An efficient approach to integrating radius information into multiple kernel learning
-
Apr.
-
X. Liu, L. Wang, J. Yin, E. Zhu, and J. Zhang, "An efficient approach to integrating radius information into multiple kernel learning," IEEE Trans. Cybern., vol. 43, no. 2, pp. 557-569, Apr. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.2
, pp. 557-569
-
-
Liu, X.1
Wang, L.2
Yin, J.3
Zhu, E.4
Zhang, J.5
-
38
-
-
84867127557
-
Exactmaximummargin structure learning of Bayesian networks
-
R. Peharz and F. Pernkopf, "Exactmaximummargin structure learning of Bayesian networks," in Proc. Int. Conf. Mach. Learn., 2012, pp. 1047-1054.
-
(2012)
Proc. Int. Conf. Mach. Learn.
, pp. 1047-1054
-
-
Peharz, R.1
Pernkopf, F.2
-
39
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
H. Zou, "The adaptive lasso and its oracle properties," J. Amer. Statistical Assoc., vol. 101, no. 476, pp. 1418-1429, 2006.
-
(2006)
J. Amer. Statistical Assoc.
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
-
40
-
-
77953107844
-
Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs
-
A. Shojaie and G. Michailidis, "Penalized likelihood methods for estimation of sparse high dimensional directed acyclic graphs," Biometrika, vol. 97, no. 3, pp. 519-538, 2010.
-
(2010)
Biometrika
, vol.97
, Issue.3
, pp. 519-538
-
-
Shojaie, A.1
Michailidis, G.2
-
41
-
-
84878227409
-
Learning sparse causal Gaussian networkswith experimental intervention: Regularization and coordinate descent
-
F. Fu and Q. Zhou, "Learning sparse causal Gaussian networkswith experimental intervention: Regularization and coordinate descent," J.Amer. Statistical Assoc., vol. 108, no. 501, pp. 288-300, 2013.
-
(2013)
J.Amer. Statistical Assoc.
, vol.108
, Issue.501
, pp. 288-300
-
-
Fu, F.1
Zhou, Q.2
-
42
-
-
84991590289
-
-
[Online]
-
ADNI. (2004). [Online]. Available: http://www.adni-info.org
-
(2004)
-
-
ADNI1
-
43
-
-
84862839697
-
Similarity-based extraction of individual networks from gray matter MRI scans
-
B. Tijms, P. Seris, D. Willshaw, and S. Lawrie, "Similarity-based extraction of individual networks from gray matter MRI scans," Cereb Cortex, vol. 22, no. 7, pp. 1530-1541, 2012.
-
(2012)
Cereb Cortex
, vol.22
, Issue.7
, pp. 1530-1541
-
-
Tijms, B.1
Seris, P.2
Willshaw, D.3
Lawrie, S.4
-
47
-
-
0003614273
-
-
New York, NY, USA: Springer-Verlag
-
P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search. New York, NY, USA: Springer-Verlag, 1993.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
48
-
-
46249131887
-
Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
-
K. Supekar, V. Menon, D. Rubin, M. Musen, and M. Greicius, "Network analysis of intrinsic functional brain connectivity in Alzheimer's disease," PLoS Comput. Biol., vol. 4, no. 6, pp. 1-11, 2008.
-
(2008)
PLoS Comput. Biol.
, vol.4
, Issue.6
, pp. 1-11
-
-
Supekar, K.1
Menon, V.2
Rubin, D.3
Musen, M.4
Greicius, M.5
-
49
-
-
35148890661
-
Altered functional connectivity in early Alzheimer's disease: Za resting-state fMRI study
-
K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, "Altered functional connectivity in early Alzheimer's disease: za resting-state fMRI study," Human Brain Mapping, vol. 28, no. 10, pp. 967-978, 2007.
-
(2007)
Human Brain Mapping
, vol.28
, Issue.10
, pp. 967-978
-
-
Wang, K.1
Liang, M.2
Wang, L.3
Tian, L.4
Zhang, X.5
Li, K.6
Jiang, T.7
-
50
-
-
33749010323
-
Brain mechanisms of successful compensation during learning in Alzheimer disease
-
R. Gould, B. Arroyo, R. Brown, A. Owen, E. Bullmore, and R. Howard, "Brain mechanisms of successful compensation during learning in Alzheimer disease," Neurology, vol. 67, no. 6, pp. 1011- 1017, 2006.
-
(2006)
Neurology
, vol.67
, Issue.6
, pp. 1011-1017
-
-
Gould, R.1
Arroyo, B.2
Brown, R.3
Owen, A.4
Bullmore, E.5
Howard, R.6
|